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Photon-Photon Scattering Contribution to the Sixth-Order Magnetic
Moments of the Muon and Electron*
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We have calculated the three-photon exchange contribution to the sixth-order anomalous magnetic
moment of the leptons. Our result for the electron-loop contribution to the muon moment i18.4&1.1l (a/vl'
brings the theoretical prediction into agreement with the CERN measurements within the 1-standard-
deviation experimental accuracy. The result for the electron-loop contribution to the electron moment is
i0.36+0.04l {n/nl'. The theoretical errors represent the accuracy oi the required seven-dimensional numeri-
cal integrations.

1. INTRODUCTION AND SUMMARY

'HE anomalous Inagnetic moments of the electron
and muon have played central roles in the testing

of the validity of quantum electrodynamics and the
search for possible differences in the basic properties
of the leptons. The increasing precision of present and
projected measurements of the g factor now promises a
confrontation with the predictions of theory through
sixth order in perturbation theory. In addition, the
muon moment can provide a fundamental sum-rule
limit on the electromagnetic coupling to the entire
spectrum of hadrons as well as a limit on the influence
of weak interactions on the lepton field. '

Unfortunately, the complete calculation of the sixth-
order radiative corrections to the lepton vertex—
especially those graphs which cannot be obtained from
insertions of second- or fourth-order corrections to the
photon and fermion propagators —is horrendous. There
are two central problems: (1) the reduction of matrix
elements with three loop integrations to Feynman
parametric form, and (2) the multidimensional integra-
tion of the resulting integrand.

In this paper we present a computation of the photon-
photon scattering subdiagram contribution to the sixth-
order magnetic moment of the electron and muon. In
order to avoid computational errors in the reduction
to parametric form we have carried out our calculation
in two different ways: One follows the standard Landau

* Work supported in part by the U. S. Atomic Energy Com-
mission and the U. S. Ofhce of Naval Research.

'-'.t NSF Predoctoral Fellow.
~~ For a review and references, see F.J.M. Farley, in Proceedings
of the First Meeting of the European Physical Society at Florence,
1969 (unpublished); S. J. Brodsky, in Proceedings of the Inter-
national Conference on Electron and Photon Interactions at High
Energies, Daresbury, 1969 (unpublished). See also Ref. 18.
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techniques outlined in the book of Bjorken and Drell, '
and the other is based on the method developed by
Nakanishi' and Kinoshita. ' We have calculated most
integrands, including all those that contribute to the
in(nz„/nz, ) term, by hand. In the end, all of the trace
algebra and substitutions were performed automatically
using RzDUcz, an algebraic computation program
developed by Hearn. ' For the practical solution to
the second problem we have resorted to numerical
integration using a novel program I originally developed
by G. Sheppey at CERN' and improved by one of us
(AID)j which on successive iterations improves the
Riemann integration grid through a random-variable
sampling technique. In the rest of this section we present
a comparison of theory and experiment and outline
the remainder of the paper.

The most recent CERN measurement of the anoma-
lous part of the muon g factor gives"

a. vt, = (116616&31)&&10 '.
The experimental error is about I jo of the (cr/Ir)s
term in the theoretical prediction. Thus, for a serious
confrontation of theory and experiment, the theoretical
result must be improved to an accuracy of order 10 "
or better, which requires knowledge of the o.' radiative

' J. D. Bjorken and S. D. Drell, I'elativistic QNantusn Fields
(McGraw-Hill, New York, 1965), Sec. 18.4.

3 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) I'7, 401 (1957).
4 T. Kinoshita, J. Math. Phys. 3, 650 (1962).
~ A. C. Hearn, Stanford University Report No. ITP-247

(unpublished); A. C. Hearn, in Interactive Systems for Experi-
mental A ppli ed Mathematics, edited by M. Klerer and J. Reinfelds
(Academic, New York, 1968).

6 We wish to thank Dr. G. R. Henry for bringing this program
to our attention.

7 J. Bailey, W. Bartl, G. Uon Bochmann, R. C. A. Brown,
F.J. M. Farley, H. Jostlein, E. Picasso, and R. W. Williams, Phys.
Letters 28B, 287 (1968).
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corrections, hadronic corrections, and possibly correc-
tions due to weak intermediate bosons.

The theoretical result for the muon g factor which
has been calculated previous to this work from standard
quantum electrodynamics is

-', (n/s)+0. 76578(n/s) '+3.00(n/s-) '. (1.2)

The fourth-order term has been evaluated analytically. '
The last term consists of two parts: One is the contribu-
tion to the lepton vertex which involves only one type
of lepton, and the other in which both leptons appear.
An estimate of the erst contribution based on the tech-
nique of sidewise dispersion relations gives 0.13(tr/s)'. '
A term L0.055(n/rr)'g not included in the above esti-
mate was obtained recently by an analytic calculation
of diagrams containing fourth-order vacuum polariza-
tion due to muon pairs. m (These mass-independent
contributions are of course common to the electron g
factor. ) The second part is obtained by insertion of
electron loops of fourth and second order into the virtual
photon lines of the second- and four-order electro-
magnetic vertices of the muon. " "This contribution
can be written in the form

— ln —1.114 ln 2.44

=2.82 — . 1.3

It was found that the coeKcients of the logarithmic
terms can be obtained simply by algebraic manipula-
tion of the renormalization constant Z3 and the muon
magnetic moment of the second and fourth orders. "
Several terms contributing to the nonlogarithmic
terms in (1.3) have been calculated directly. ""
Although some nonlogarithmic terms are still to be
evaluated, they are at least estimated in Ref. 13."The
error of this estimate will probably not exceed
+0.5 (n/s-) '."

H. H. Elend, Phys. Letters 20, 682 (1966);21, 720(E) (1966);
and private communication. See also H. Suura and E. H.
Wichmann, Phys. Rev. 105, 1930 (1957); A. Petermann, ibid.
105, 1931 {1957);Fortschr. Physik 6, 505 (1958).' S. D. Drell and H. R. Pagels, Phys. Rev. 140, 8397 {1965);
R. G. Parsons, ibid. 168, 1562 (1968)."J.A. Mignaco and E. Remiddi, Nuovo Cimento 60A, 519
(1969)."T.Kinoshita, Nuovo Cimento 51B, 140 (1967)."S.D. Drell and J. S. Trefil (unpublished). For a discussion of
their preliminary result, see S. D. Drell, in I'roceedint, s of the
Thirteenth International Conference on High-Energy Physi cs,
Berkeley, 1966 (University of California Press, Berkeley, 1966),
p. 93; S. D. Drell, in Particle Interactions at Hi gh Energies, edited
by T. W. Preist and L. L. J. Vick (Oliver and Boyd, Edinburgh,
1966).

'3T. Kinoshita, in Cargese Lectures in Physics {Gordon and
Breach, New York, 1968), Vol. 2, p. 209."B.E. Lautrup and E. deRafael, Phys. Rev. 1/4, 1835 {1968).

"For more discussion on this point, see Ref. 7 of our pre-
liminary report: J. Aldins, T. Kinoshita, S. J. Brodsky, and A. J.
Dufner, Phys. Rev. Letters 23, 441 (1969).

"An additional support of this estimate is given by the calcu-

The latest estimate of the contribution from strong
interactions (vacuum polarization due to hadrons) to
the muon g factor, based on the Orsay colliding-beam
data for e++e —+ p, to, and P resonances, is'r

its,s„„,——(6.5&0 5)X IO-s. (1.4)

If one uses the value"

o. ' = 137.03608+0.00026 (1.5)

which disagrees slightly (1.7 standard deviations)
with the experimental value (1.1). The error in-
terval in (1.6) reflects the uncertainty in the strong-
interaction contribution (0.5&&10 ), in the value of
cr/2s. (0.2&&10 s), and in the sixth-order correction
(1.3) (0.6)&10 '). lt does not take into account the
uncertainty in the magnitude of the vacuum-polariza-
tion contribution of higher-mass hadrons. " We have
also not included possible weak. -interaction corrections
to the muon moment, "which could be expected to be
of order 1&10 '.

Also not included in the above error estimate is the
contribution from the sixth-order diagrams containing
photon-photon scattering subdiagrams (Fig. 1). Of
course, this is because it has not been successfully cal-
culated or estimated thus far. Earlier attempts" ""
have been directed at finding out whether this contribu-
tion contains in(rtt„/m, ) terms or not. Unfortunately,
it is not easy to detect the presence or absence of
logarithmic terms without extensive calculations. In
fact, on the basis of general consideration of the mass
singularity, ' it can be shown that the individual
diagrams of Fig. 1 may contribute to the logarithmic
terms. On the other hand, these terms might cancel
each other when contributions from all six diagrams
are put together. Indeed, several arguments have been
put forward indicating such a cancellation. "However,
since none of these arguments has been free from loop-
holes, we have been convinced that this question cannot
be settled short of an all-out eQort. Once we decided to

lation of B. E. Lautrup and E. deRafael, CERN Report No.
TH 1042, 1969 (unpublished).

"M. Gourdin and E. deRafael, Nucl. Phys. B10, 667 (1969).
See also T. Kinoshita and R. J. Oakes, Phys. Letters 25B, 143
(1967); J. E. Bowcock, Z. Physik 211, 400 (1968).

"This is the value of n ' derived by the adjustment of funda-
mental constants using no quantum-electrodynamics data, given
by B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev.
Mod. Phys. 41, 375 (1969).See also W. H. Parker, B.N. Taylor,
and D. N. Langenberg, Phys. Rev. Letters 18, 287 (1967).Recent
Qne-structure measurements in H and D and the hyper6ne split-
ting in H yield values of n consistent with (1.5).

'9 H. Terazawa, Progr. Theoret. Phys. (Kyoto) 39, 1326 (1968);
J. S. Bell and E. deRafael, Nucl. Phys. Bll, 611 (1969).

'0 R. A. Shafter, Phys. Rev. 135, B187 (1964);S.J.Brodsky and
J. D. Sullivan, ibid. 156, 1644 (1967); T. Burnett and M. J.
Levine, Phys. Letters 24B, 467 (1967).

H. Terazawa, Progr. Theoret. Phys. (Kyoto) 38, 863 (1967).

for the fine-structure constant, one obtains from (1.2)
and (1.4) the theoretical prediction

tt=(116 564&2) X10 '. (1.6)



ALDINS, BRODSKY, DUFNER, AND KINOSHITA

settle the question of logarithmic terms by an extensive
calculation, it was not much harder to evaluate the
Feynman integrals for the graphs of Fig. 1 exactly.

The result of our calculation of the contribution from
the three-photon exchange diagrams turns out to be
surprisingly large:

Aa, h g, = (18 4a. 1 1).(nj~)'
= (23 0+1 4) X 10 ' (1 7)

This leads us to a revised theoretical prediction

ag, ear = (116587~3)X10 '

a,„pg—ag„„=(29+34)X10 '
=250&290 ppm.

(1.8)

(1.9)

Thus the addition of the photon-photon scattering
contribution essentially eliminates the discrepancy
mentioned above. The theoretical error in (1.8) in-

cludes the uncertainty due to the numerical integration
of the contribution (1.7) (1.4X10 '). This error could
be reduced if necessary. Ke wish to emphasize that,
with the inclusion of the photon-photon scattering
contribution (1.7), all of the Feynman diagrams from
quantum electrodynamics which contribute to the dif-
ference of the muon and electron magnetic moments
through sixth order have been calculated or estimated. "

The largeness of the contribution (1.7) is closely
related to a logarithmic dependence on the muon and
electron mass ratio. In fact, in the limit of large m„/m,
the result (1.7) can be expressed in the form

Aa~h pq=t (6.4&0.1) in(m„/m, )+constj(n js)'. (1.10)

Thus earlier arguments" indicating a cancellation
among the diagrams of Fig. 1 for the logarithmic terms
are disproved.

Since no approximations are made in the reduction
of the Feynman integrals to parametric form, we can
also obtain the photon-photon scattering contribution
to the sixth-order anomalous magnetic moment of the
electron. Our result is

(Da,)pg ph = (0.36+0.04) (n/m. )'
= (0 45+0.05) X10 '

a, = —,'(n/vr) —0.32848(n/~) '+0.55(n/s) '. (1.12)

where the error limits represent the uncertainty in the
required numerical integrations in seven dimensions.
For completeness, the mass-independent contribution
(1.11) must be added into the muon result (1.8).

Combining (1.11) with the previously calculated or
estimated sixth-order contributions given in Refs. 9
and 10, the theoretical prediction for the electron
moment is

The last term is by no means the entire theoretical
result for the sixth-order coefficient, since second-order
vacuum polarization insertions into the fourth-order
vertex have not been calculated and, in addition, the
reliability of the estimate of Ref. 9 is not certain. Note
that the calculation of Mignaco and Remiddi" cor-
responds to the contribution of three- and four-particle
intermediate states in the sixth-order Feynman dia-
grams containing fourth-order vacuum polarization.
The fact that this contribution is not so small casts
some doubt on the validity of the two-particle approxi-
mation used in the dispersion-theoretical calculations.

The experimental value of the electron moment from
the Michigan group is"

(ae)e pt, =(1159549~30)X10 '

=-', (n/~) —0.32848(n/~) '

—(7.0m 2.4) (n/7r) ', (1.13)

where we have used the value of n from (1.5) and the
fourth-order theoretical prediction to obtain an experi-
mental determination of the sixth-order coefficient. It
will be interesting to see whether future experiments
and further development of the theoretical result will
confirm the indicated discrepancy of sign and magni-
tude of the sixth-order coeKcient.

In the next sections we discuss the calculation of the
results (1.7) and (1.11).In Sec. 2 we introduce a method
which enables us to extract the magnetic-moment
contribution of the diagrams of Fig. 1 automatically.
This leads us to the introduction of the set of four
modified Feynman diagrams shown in Fig. 2. There
are, of course, many ways of introducing the Feynman
parameters, and it is important to choose a method
which gives as simple a result as possible, as well as
exposing all the identities implicit in the formulas. Be-
cause of its simplicity and versatility, we shall use
the double parametric representation of Feynman
amplitudes introduced a few years ago. 4 Its applica-
tion to the diagrams of Fig. 2 is given in Sec. 3. In
Sec. 4 we carry out the trace calculations and other
simplifying operations and present the exact form of
the Feynman integrals using "currents" as auxiliary
variables, which is perhaps the most transparent and
economical way of writing down these integrals. In
Sec. 5 we discuss an alternative, more standard method
which we have also used to derive the Feynman
parametric integrals. The connections between the two
reduction methods is discussed, and an important
identity, readily utilized by RzDUcz, to simplify numer-
ator expressions with high powers of loop momenta is

~~ D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963);
A. Rich, Phys. Rev. Letters 20, 967 (1967); 20, 1221(E) (1968);
G. R. Henry and J. E. Silver, Phys. Rev. 180, 1262 (1969). )Note
added in proof. The preliminary result of a ne~ electron anomalous
magnetic-moment measurement by J. C. Wesley and A. Rich (un-
published) is a,= (1 159644+7) &&10 '= ,'(n/s) —0.32-848(n/s)'
+ (0.54a0.58) (n/gr) '.g
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given. In Sec. 6 we study the behavior of the Feynman
integrals in the limit where p= (4N./4N„)2 tends to zero.
The method of numerical integration used to evaluate
the integrals as well as the results of computation are
discussed in Sec. 7. Some properties of the functions A;
and 8;, are described in Appendix A. In Appendix B
we give the unsimplified output of REDUCE for graph
IV. Some formulas needed in Sec. 6 are given in Appen-
dix C.

2. EXTRACTION OF MAGNETIC-MOMENT TERM

According to the Feynman-Dyson rules, we can
write the contribution of the graphs of Fig. 1 in the
form"

&p'
I
~

I p,» = 2(2~)'~—'(p' p »——
(24r)'"

divergent for large p8, but the sum of all six terms is
convergent and well defined if it is properly regularized.
In the integral (2.2), each term may again diverge be-
cause of the photon-photon scattering subdiagrams. In
addition, each term may diverge logarithmically when
all three momenta Pl, P8, and P8 go to infinity simul-
taneously. Nevertheless, it is expected that cancella-
tion of ultraviolet divergences takes place, as in photon-
photon scattering, and that there will be no real diver-
gence problem as far as the magnetic-moment term of
(2.2) is concerned.

Although it is not difficult to show by direct calcula-
tion that this is in fact the case, it would be convenient
if the formula (2.2) could be rewritten so that the can-
cellation of ultraviolet divergences is manifestly evident
from the beginning. This can be achieved by making use
of the identity

where

2

a
II.,-(-p, p., p., -», (2.4)

gQp,

8Zp +zpap( Pl) P2y P8p»
X eM, (2.1)

(2~8popo') '"

3II=
(22r) 8

d4p d4p p
—

2p
—

2p
—2 which is easily obtained by differentiating the condition

of gauge invariance

X"Il....(—Pi, P, P8, -»u(P') V"(P —~,)-' ~"II~n~~( p4 p» p»»=o (2 5)

and II„„„is the polarization tensor of fourth rank
representing the photon-photon scattering

M = 4"6"u(p')M„„u(p), (2.6)
II...„(—p, , p„p„—Z) where

g2

Xy&(p8 448„) —'y' u(p), (2.2) with respect to 6I", regarding, e.g., 6, pl, and p8 as
independent variables.

Substituting (2.4) into (2.3), we obtain

d'P8 Trf&„(P8 448,) 'P„—(P& m,)—,

(24r) 4

Xp.(P,—m.)-'p„(P,—m,)-'

+ (five other terms) —(regularization terms) 7. (2.3)

~pe — d pld p8 pl p2 p8
(22r)'

X ll.p..(—pi) p2, p8, —&)

X~'(P m.)-'v'(P— m.)-'v —(2.7).
As usual, all momenta are restricted by the energy-
momentum conservation law at each vertex. As is well Now, when the differentiation with respect to A~ is
known, individual terms of II„„„arelogarithmically carried out explicitly in (2.7), 3I can be regarded as a

Pe

Fro. 1. Feynman diagrams containing sub-
diagrams of photon-photon scattering type.
The heavy, thin, and dotted lines represent
the muon, electron, and photon, respectively.
There are three more diagrams obtained by
reversing the direction of the electron loop.

P9

P) P~ P~

I

P P, P, P

P I P P

P P P P

IP )P lP
I 2

I i

P P P P

2' Qur metric and conventions are the same as that of Ref. 2. The Born current corresponds to M=I(P')c&y„u(P), P'=P+rl.
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pg ~1(

PIO',

I

IPI IP& ~ P&
Il

P P P P

t„P
!0

IP
I

P P

I

i Ir~
IP~I P~

P P

where I'= s(P+P') and we have omitted terms con-
taining d, in (2.8) according to our remark in the pre-
ceding paragraph. '4 Since 6"P„=O, the D and E terms
do not contribute to the magnetic moment. The C term
does not contribute either since 6"Ny„u=0 by current
conservation. The coefFicient 2 must be equal to zero
in order that (2.8) satisfy gauge invariance. Thus the
only contribution to the magnetic moment arises from
the 8 term and is equal to ha= —4m„B. In order to
project out the magnetic-moment term in (2.6), we
have only to multiply both sides of (2.8) by u(p)
X(y"y"-y"y&)u(p') and sum over initial and final
positive-energy spin states of the muon. Thus we
obtain"

—lim Tr((P+m„) (p~p gpss)—
48m„

X(P'+~„)M,.) . (2.9)

I,i

I

II 2
~ I

P P„

P I

IP~~1'

P P

Jj I

I
Pl P2 „ IP3

I I t

P P P P

sum of the modified Feynman diagrams shown in Fig. 2.
Since each diagram of Fig. 2 contains an electron loop
with five vertices, it is clear that no ultraviolet diverg-
ences arise from integrations over internal momenta.
Thus no diagram of Fig. 2 requires subtraction or
regularization any longer and each gives a well-defined
convergent contribution to the muon magnetic moment.
This means that each term can be evaluated separately
by a straightforward application of the technique of
Feynman parametrization.

Also, since 3f. in (2.6) is already proportional to LV,

we can put 6=0 in 3I„„after differentiation to obtain
the static magnetic moment. ' This simpli6es the cal-
culation considerably.

In order to extract the magnetic-moment term from
the second-rank tensor NAE„„N, we note that, because
of covariance under Lorentz transformations, it can be
expressed in the form

FIG. 2. Feynman diagrams obtained from those of Fig. 1 by
difFerentiation with respect to A. The crosses represent difFerenti-
ation vertices. The external momenta are routed so that 6 always
fIows through the middle photon line.

t (r +q)' —m'+iej —' (3.1)

where we have put P;=r;+q, , r, and q; representing
variable and fixed momenta. We choose r; and q; in
such a way that they satisfy the separate "momentum
conservation laws"

g&r;=0, P+q~+(external mornenta) =0 (3.2)

for each vertex, where + or —is chosen according as
r~+q; is incoming or outgoing. Other than that, they
are left indeterminate for the moment. If the ith line
is a fermion line, the corresponding propagator is ob-
tained by applying the operator

3. DOUBLE PARAMETRIC REPRESENTATION

In introducing Feynman parameters in (2.9), it is
important to choose them so that the result can be ex-
pressed in as simple a form as possible. Otherwise
problems of this complexity easily become unmanage-
able. We shall use the double parametric representation
of Feynman amplitudes, 4 probably one of the simplest
systematic methods. Further simplification is achieved
by a judicious choice of Feynman parameters common
to all graphs of Fig. 2, enabling us to express the de-
nominators of all integrands in identical form, and by
introducing (as is shown in Sec. 4) auxiliary parameters,
called "currents, " which simplify the form of numera-
tors enormously.

Let us first parametrize graph I, whose lines are
labeled as shown in Fig. 2. Ke shall write the propagator
for the ith internal boson line of mass m; as

&(P')~"&(P)= ~(P') L~a..+&(7.7. 7.7.)—
+~+I'y +DI"Ys+&I'I I' 3&(P) (2 8)

00

&D,+m, , with D,& =—
2-, dm;s, (3.3)

' From Eq. (2.4) alone it is not possible to exclude the possi-
bility that isjsh&lII„„„and hence M„„have a mild singularity
(less singular than 6 ') in the neighborhood of 6=0. However,
the analysis of mass singularity discussed in Ref. 4 shows that no
such singularity is possible insofar as es, /0. This is why we can
put 6=0 in 3f„„.

on (3.1), where the sign + or —should be chosen ac-

2' Alternatively, one can use general projection operators for the
muon form factors EI(q'), F2(g') and obtain (2.9) as a special case
for F2(0). See S. J. Brodsky and J. D. Sullivan, Ref. 20.
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cording as qi is in the direction of the arrow of the
fermion line or not.

Noting that the D operator (3.3) can be interchanged
with the integration over the momenta rj, r3, and r6
in (2.7) because this integral is absolutely convergent,
we can express the contribution of graph I to the
anomalous magnetic moment of the muon (2.9) as
follows".

3Ii3 6

U2(z) PV(x,s) —2.j4
' (3.10)

where n=nt+n2+ +n . The resulting expression
can be integrated easily with respect to the momenta r,
etc. , and the integral in (3.4) can be expressed in the
double parametric form

ai = — -~o~i
48m„(22r) 12

i=1, . .. , 10

d4rgd4rad'r6

((r,+q,)' —m,2+is)

where the discriminant U(s) is a homogeneous poly-
nomial of order 3 in z,"

V(x,s) =z.V.(x)+ +Z.V.(x)+z(x,s), (3.11)

where
(3 4)

~.=TrL(P+m, ) (v"v"—v"v")(P'+m. )
&&7 (D,+m„)~ (D,+m„)~ ) (3.5)

qa = Xiqi+ X4q4 v

V (x) = ximi'/x4m4' —xix4(qi —q4)'.

(3.8)

Expressions of the form (3.7) can be written down in
the same fashion for the chains P = (3,5) andy = (8,9,10).
Remaining lines form chains by themselves: ) =(7),.=(6), = (2)
P'.Now the integrand of (3.4) is a product of factors of
the form (3.7), which can be combined into a single
denominator using the formula

m (42, —1)!= (42 —1)!
a SLY

'b

8(i —si —. —s )zt"& 'dsi s "

(Z1441+S2442+ ' ' +smarm)
(3.9)

"This is actually the sum of contributions from two diagrams;
one is that of graph I of Fig. 2 and the other is that of a graph in
which the direction of the arrow of the electron loop is reversed.
Both contribute equally to (3.4)."For a general treatment pf double parametric representation,
see Ref. ~g

Iir =Tr(y„(Ds+m, )y, (Dr+m, )y, (Ds+m, )
&&v.(D2+m.)v.(D»+m )l. (3 6)

Before we carry out the ri integration, let us erst
collect all propagators whose integration momenta ri
are identical and can be expressed by a common
variable r . The set of all such propagators will be
called a chain o.. For instance, the lines 1 and 4 have the
same integration momentum r j = r4, and will constitute
the chain e. Making use of the Feynman parameters
xi and x4 with xi+x4 ——1, we shall combine the cor-
responding propagators into the form"

()
(n.—1)! (3 7)

L(r +q )'—V (x)+iej".

where n =2 is the number of lines in the chain o. and

dx(n) = b(1 xi x4)—dxid—x4,

—z(x,s) U(s) = spz, sx(z.+s„+s„)(qp
—q,+qx) '

+Zaz&siv(ZP+ZX+Zv) (qa q&+ qZ)

+saspsv(sr+Zx+sa)(qa qp qv)

+sxs„z.(s +sp+z„)(—qx+q„+q, )2

+Zazpzg a(qa qp qX+qa)

+saspsxsv(qa qy+ qx
—

qv)

+spsvs. s (qp qv+q. +—q )' (3 12)

ds= 8(1—z — —s„)dz(n) ds(1 ),
(3.13)

ds(n) = s ". 'ds dx(n), etc.

Substituting (3.10) into (3.4), we finally obtain

0.' dz
Aaz —— —— Ii pPg (3.14)

256m„ U'(z) LV(x,s) —lej'
Advantages in adopting this parametrization are

twofold: (1) The discriminant U(s) is determined com-
pletely by the topological structure of the chain diagram
and not by individual lines. Since all six graphs have
the same chain structure, U(z) is common to all graphs
if we name the chains in an appropriate manner. (2)
The denominator function V(x,s) takes the most com-
pact and explicit form for this parametrization. The
formula for e(x,s) will be much more lengthy than (3.12)
for any other way of parametrization. In addition, if
we introduce chains in the other graphs so that they
have the same chain structure as graph I—for instance,
n= (1,4), P= (3,5), y= (8,9), X= (7), p= (6,10), 1 = (2)
for graph IV—we find that not only U(z) but also
e(x,z) given by (3.12) )and hence V(x,s)j are identical
with those of graph I, the only differences between dif-
ferent graphs being contained in the explicit expressions
for q, V (x), and ds(n) given by (3.8) and (3.13). As
is shown later, even these di6erences disappear in the
end.

Thus, at least formally, the contributions Aazz,

haz~q, and Aaqg to the muon magnetic moment from
the remaining graphs can be expressed by the formula

» See Ref. 4, formula (2.18), for an explicit form of this U(s).
A form more convenient for our purpose is given later by formula
(4.&8).
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(3.14) if only we replace Fz by

F„=TrLp„(Do+m, )p, (D7+ m, )y.(Ds+m. )
Xy.(D9+m.)V,(Dip+ m.)j, (3.»)

Fizz = Tr—py„(Ds+ m, )y, (D7+m,)y„(Do+m, )
X~,(D,+m.)v.(D.+m.)j, (3 16)

Fz v= TrLy. (DIp+m, )y„(Ds+m, )y9(D7+m, )
Xy, (Ds+m, )y„(D9+m,)j. (3.17)

The factor —1 in F~~~ arises because 6" Rows in the
opposite direction around the electron loop relative to
the other three graphs.

4. TRACES AND D OPERATIONS

Our next task is to perform the trace calculation
and determine the effect of D operations explicitly.

The trace calculation for graph I is simplified con-
siderably if one notes that Fz can be written as

we write Iiz~ as

Fz v =Fiv'= Trh.V,V,D7V.V.3
X(—DsDzp+m )( DsDg+m )j2Ds„TI fp„p&p&(D7+m )p (Dg+m )j
X (—D DsIo+m, ')+2Ds„TrLy„(Dzo+m. )
Xy„(D7+m )p J $( DsD9+m. ')+4Ds„Ds
XTrpy„(DIo+m )yp(D7+m )y (D9+m )j

+ (vanishing terms), (4.8)

and apply formulas similar to (4.3).
It is also convenient to write Fp coming from the

muon lines as

Fo=2m, TrL(p"v'D v +p v"D v')(Ph "v" vv")—
+(v"v"—v"v")P)7+m. Trav"D»'»v

&«ub"~ v~")+b-"~" v~")P)j -(49)
This is obtained using the identities resulting from the
mass-shell condition p'= m„g:

(4.1)Fz (—DgDi——o+m, ')Fz'+remainder, (p+m„)y'(D4+m„) = (p+m„)(y"DI+2p"),
(Do+ma)v'(A+ms) = (Dsv'+2p ) (P+mp)

(4.10)

Fz' Trfp„(D,——+m,)y, (D7+m,)y.y„(D m.)y,j, (—4.2)
where we have made use of the equations

where the remainder consists of terms which are either
symmetric in p and s or proportional to D8—D9 and
Dg —Dyp and thus give vanishing contribution to Aaz.
Furthermore, we have"

DI=D4 p, Ds=D—, p, —(4.11)

which follow from (A3).
In order to carry out the D operation explicitly, it is

convenient to introduce the functions
ds 1 ds

(—DgDI 9+m. ')
U'9U4 3 (fjgUs)

, (4 3)

ds'(y) = s its &oosdoogo(1 —xs —xg) ~ (4.4)

where ds' has the same form as ds defined by (3.13)
except that ds(y) is replaced by

1 8V

2&i~a ~qip,

g2 P'

g"&a=
2x;s x,sp Bq;"Bq,"

(4.12)

(4.13)

(o.
FoFz'

768m„4.

Using (4.1) and (4.3), we can therefore simplify (3.14) where the lines i and j belong to the chains n and p,
to respectively. Then it is easy to see that the result of

ds' applying D operators on 1/U", n being a sufliciently
Aag = (45) large positive integer, can be expressed in terms of

Q's and 8's as follows:

In the same fashion, Aaz~ and Aa~~z can be expressed
in the form (4.5) if we replace Fz' by

FII = TrEV.viv(Ds —m, )'y„'r, (D7+m, )y, (Ds+m, )j (4.6)

Dsp
Vn Vn

gI-&'i

2(n —1) UU"—'P'n

'= —T Lv.(D+ .)v.v.(D — .)
Xy,v.(Do+ m, )j, (4.7) D D D». .

Vn
and interpret ds' somewhat differently. In the case of
Aa~~, we do not obtain too much simpli6cation. But

2(n —1)'9¹Nakanishi, Progr. Theoret. Phys. (Kyoto) Suppl. 18v 1
(1961).

Q'.Q7 Q»

v"

QipgvZ7jj iv+QivgivZ73ik+Q»givv73ij

(4.14)
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where
(4.22)p = (vvv, /vvv„)

'

Ss S5 S6 S7 S8 O'P8 )&=847—846= sg 5

57 S1+S4)(S6+SZ+S8)+S6S8y

858 856 s2 s6 sv 8&= ~48— 47= 58—

gg ppA endix
rais:

'v

to write oWearenow rea y

(4.23)

THE 'TRI BU TIONRING CONSCATTE

g4

N PHOTON

g3= Sp+3 y

PHOTo

gy ~2 v7

3fz, ———4
dsp

sgAIA6AVAg+
U't/V'

A784g)+2AI(AZBgg+A gBgv)]3A A 846+As(Ag847+A784g~8 7 8 46
O'W'

Mzb ———3

sg(284v868+848867), 4.24)
UW

1
sgA IA 6A gApA g+-

U4t/V3
1 8857) +A1A 8(A 8867+4AZBgg)]8 +2AIA6(AVB;g+SAgS8 A 6A73 8 45

U4$'

857 —2 6 47 58 8, (4 2&)857 2A6(847858 48—48 57—+3A8(845867+&846857 —2 6 47 58l(856878+5857868) 8 45S8 1
O4W

3fz, ——4p sgA 1(A I+A 7) —pUS"
8 +384v —384s),~8 48

UH/'
(4.26)

3fz~= p

~zza

(4.27)(2A 7
—3A g)84;—2A I(5857

—856S8 2A7—

6 8
— A6AZ(858 —3848

O'W'

( —
6

— -«iAVA8(856 —846A —Ag)AgAZAg+ — —ss~6 7 6

(4.28)+28588sv+8468vg —
47 sg~6 56 78

2 Uat/V
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dsg
A A gA g(2A 6847+A 7

—sgLA 6A vA 45
2

1'
s,A,A6AgA7Ag+

U4lV' UR'

A 687g —2A 7866)3(A 2A6 +2A 6A 7856)

(856+8468 o 6)+
+A (58"7866+8588 )+

A 6856+

+28 856)3A (8 8„—8458vg)+
p4W

dsg
A )+.A, (A6 —Av+s pAi(A6 —Av-MII0=2P

p~ 3

p

2

dsp
8 +8 385v—+3 (4.30)Sgt 846 847 —

46
Ug72

A A, (A, —3Av+Ag)Mlld=p U283" '

P

(4.32)

4.31)3A 6(847 848)jr-dS6
A A )8„—A i(5857 —8"sgg(3A 6—

U'2@72

III —Dali r

ds
)( AA+ AA)Mr Vrr

Ugpr7

d ' (B„S,Sg)(S6846+S7857) '
U3lV

(4.33)

MI Vb si+s, )A, +sgA 6)jdsg
A (8 A,+.„s,Av)+(svA7

p4W'

+3

(4.35)

)((

)A —s Ag) j 4.34)
dsg

8 A 8,6) —sgsv867((s'[S6848 6 67
U48'

d&o

Sg(846+S7Sg) rMIVc P
U Pj'2

(4.36)MIVa=P
dip

—s4sv(sg sg) '
UH'
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and rewrite (5.1) as

5=7! 8(1—Q Z5)dzi . dz.x d'lid'l2d'l2 Ii(p)/ FIG. 3. Diagram indicating the
labeling of loop momenta l1, l2,
and lq.

If we choose the kj such that

L Z z (p™')j' (53)
I ! 2! !5

I

4 5

8

Q z,k,vb„=0, r= 1,2,3
j=l

(5 4) we may rewrite (5.8) as

(zl+z2+z4+Z6)kl z2k2 z6ka — Z4P )

z2kl+ (Z2+z2+Z5+z7)k6 zvk6 z5P &

—zeki —zvk6+ (Z6+zv+zs) ka= 0
then the denominator in (5.3) has no k l cross terms: (5.10)

g s, (P72 m, 2) = D—+ Q —U, „ l„ l„. , (5.5)
The solution kl is given by

D= P z, (m,'—kP) (5 6)

S4 —82

ki= (p/U) —Z5 Z2+Z2+Z5+zv
0 —S7

= (p/U)41= Qt

S6
—S7

Z6+ Z7+ Z6

(5.11)
8

Urr' = P zjvijrvijr' .
j=l

(5 7) where Ai is given by (A7) and U by

U(z) = det(U„, ), (5.12)

The fixed momenta ki, . . . , k, are subject to (6—1)
linearly independent equations (momentum conserva-
tion at each vertex, or Kirchhoff's first law) and three
equations (5.4) (Kirchhoff's second law). Thus these
momenta are completely and uniquely determined as
functions of external momenta and Feynman pararne-
ters. Since Q, 's defined by (4.12) also satisfy the same
set of equations as is shown in Appendix A, and since
the solution is unique, k; must be identical with Q, .
Note that, although q; defined by (3.1) and k; defined

by (5.2) look quite similar, they are in fact entirely
different. The former does not satisfy Kirchhoff's
second law, while the latter does. The former is a con-
stant vector independent of Feynman parameter s,
while the latter is a function of s.

Although k; is identical with Q; and is thus given
explicitly in Appendix A, it will be instructive to see
how they may be determined directly by the KirchhoG's
laws. Let us first write down the second law (5.4)
explicitly:

or, more explicitly, by (4.18). Other k s can be deter-

mined in the same fashion, con6rrning

(5.13)k, =(A,/U)p=Q, , j=1,2, . . . ,8.

Substituting these k, 's in D of (5.6), we also obtain

(5.14)D= V= m„2W/U,

where V is given by (3.11) and W is defined by (4.21).
Now, when the substitution (5.2) is made in the

integral (5.1), and averaging over the direction of p
is made, the integrand F(P1, . . . ,P6) becomes a poly-

nomial in l„. We are now ready to carry out the integra-
tion over -ll, l2, and l3. The basic integration over loop
momenta is

7! d4lid4l2d412/$ D+ Q U„ l, —l;$6

= i67r6 — . (5.15)
U2D2ziki+Z2k2+Z4k4 —Z6k6= 0,

z2k2 —Z2k2 —Z5k5+zvkv= 0,
Z6k 6+zvk7+ zak6 ——0.

(5.8)
Integrands of (5.1) containing extra denominator
factors P22 —m52 can be integrated using parametric
differentiation of (5.15) with respect to m2 . Similarly,
integrands of (5.1) which contain numerator factors

l,"l~ can be integrated" using parametric diGerentiation

Making use of the first law (four-momentum conserva-
tion),

k5 ——k2+ p,k4= ki+ p,
k2 -—k4 —kg -—kl —k3,

klan k7 ——k8 —k3,

(5.g) ' Note that explicit dependence on the direction of the external
four-vectors can always be removed by tensor methods as in (2.8)
and (2.9).
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with respect to the V„„.. For example,

8! (l; .lb)d4/id4/2d4/2/[ D—+Q U„„l„ /„j'

which holds for symmetric matrices U„„=V„„. To
prove this, let us first assume that Urr is not symmetric

and all its elements are independent, and show that

3 8—7! d4lid'lid'lb/
s, s'=1 ~Uss'

[ D+—g U,„l, l„j'

a ~1
'g jsgks' AZ 7l

7e3 6

D' s, e' SU„(U' U'D
(5.16)

O'U BU
U =~ah~cd ~ad~eh y

~ab=
BU,bBUcg BUb

holds for such a V. We start from the identity

Q U,;8„=/s,,U.

(5.20)

(5.21)

We have de6ned

Uss' Vss' fol s s
=2V„ for sos'

and
(5.17)

BU
8 „=p rl,qb;B„=p q, ,gb, —. (5.18)

Notice that 8„ is the signed cofactor of U„ in U.
Consequently 8„/U is the inverse of the matrix U„.
Again the calculation of 8;I, given here agrees with that
of Appendix A in terms of s~, . . ., s8.

In addition to quadratic terms, numerators with up
to six powers of loop momenta l„appear in the computa-
tion of graph IV. An important identity for reducing the
required higher-order derivatives is

O'U
BabBcd 2 BacBbd 2 BadB bc s (5 ~ 19)

BU,bBU,g

Differentiating both sides with respect to U,b, we obtain

8„8,b+Q U,, . =8,,8,b.
BU bBU„.

(5.22)

BV,;
2=& ».b+2 ~ b»'

BU, b

(5.23)

We note that Eqs. (5.19) and' (5.20) hold for matrices of

any finite dimension n&2. We also note that (5.19)
is equivalent to (A26).

As a consequence of (5.19), we readily find

Multiplication by 8;& on both sides and summation

over 2 then yields (5.20). The proof of (5.19) for the

symmetric case is the same except that

9I

and

d4/, d4/2d4/2 (l, lb)(l, ld)

[ D+Q U„„./„ /„]"—

i3X'
I gbsa' ster ldr' (48abBcd+BadBbc+BacBbd) (5.24)D'-- aU aU ~ U D2U

9l d4/id'/2d'/2 (la lb)(l. ld)(l. lf)/[ —D+P U„./„ l,.j"
i3~' 1

= —2 Z Z n-~b"n-nd"n. mfc
BU„BU„„,BU,. U'

tjl3

+28..8b.Bdf+28.J3b.Bdf) (5 25)

—i''
(gBabBcdB sf+ 28abBcf Bed+28abBceBdf+28acB bdBef+28adB bcBef+28aeBbfBcd+28afB beBcd

USD
+28adBbeBcf+28aeBbdBcf+28acBbfBde+28afBbcBde+28adBbfBce j28afBbdBce

In our calculation of Aa for the graphs of Fig. 2,
REDUcz, after it performed the traces and index con-
tractions, made substitutions including (5.24) and
(5.25) to complete the reduction to parametric form.
The result agrees exactly with Eqs. (4.24)—(4.36). The
final form given for Mz~ is obtained after algebraic re-
duction using the Kirchho6's laws given in Appendix A.

6. LOGARITHMIC TERMS

We shall now study the behavior of Du in the limit
where p=(fN, /fib„)2 tends to zero. For this purpose we

note that the denominator function H/ is positive every-
where within the domain of integration as is seen from

(4.21) and (4.23). Therefore any singularity which the
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integrals (4.24)—(4.36) may have at p= 0 can come only
from the domain of integration in the neighborhood of
the boundary de6ned by

Z4=0, s5=0. (6.1)

According to the general analysis of mass singularity, 4

this singularity at s4=Z5=0 is associated with the
vanishing of photon and electron masses. The formula
(4.21) also shows that W vanishes at

find that

SyS3S6+46
Mzv, =-,'~(lnp) dso"— +.

U' 8+ 1/2
(6.8)

Mz +Mzz +Mzzz.

spLszsz —sp(sp+sv) j=-,'zr(inp) dsp" . + (6.7)
U g 3/2

z6 —s7 —ss —0. (6 2)
wllel e

However, this takes place because U vanishes there
and not because V vanishes. Thus it is associated with
the singularity at large virtual momentum of the elec-
tron loop" and does not lead to any singularity at p =0.

We shall therefore examine the behavior of our
integrals in the neighborhood of Z4=Z5=0. It is then
easy to see by counting the power of Z4 and s5 in the
numerators and denominators that the integrals 3fz b,
3fz 3fz g I =I II III, IV, are all convergent as
p ~ 0, and only the integrals SIz „I'= I, II, III, IV,
may have a logarithmic singularity in p. In order to
determine the coefficients of lnp in these integrals, we
may carry out the integration with respect to Z4 and s5
over a small domain in the neighborhood of s4——s5 ——0.
For this purpose let us consider the integral

ds4ds 5

7

o&.4+.5&~
(6 3)

where W is given by (4.21) and E is a small fixed positive
number satisfying p«E&(1 such that the terms of order
(s4+sp) in W can be ignored. The integration in (6.3)
can be easily performed, giving

p&.41.5&x

where
= —~p(inp)G+(nonlogarithmic terms), (6.4)

G =G(ap, bp, cp)

(6.5)

~o =aobo+aoco+boco = (sp+sz+ss) &o, (6.6)

and ap, bp cp are a, b, c defined by (4.23) evaluated at
s4 ——sp ——0. Similarly, 17o is U of (4.18) evaluated at
s4 ——so=0. Differentiating both sides of (6.4) with
respect to ap, bp, and cp,we can obtain further relations
of the type (6.4). They are given in Appendix C.

We may now express the A s in terms of S4, S5 and
the 8; s as given by (A16) in the integrals (4.24),
(4.28), and (4.33), and carry out the s4 and sp integra-
tions with the help of formulas (6.4) and (C1)—(C5).
After a straightforward but lengthy calculation, we

ds,"—=b(i-sz-s, -sp-sp-sz-sp)
Xdszdspdspdspdszdsp. (6.9)

In deriving (6.7) and (6.8), we have made extensive
use of the "KirchhoQ's laws" discussed in Appendix A,
the identity

ap bp cp
tan —' +tan ' +tan —' ~=-', zr, (6.10)

QAp y~hpl

as well as the synnnetry of the integrals in (6.7) and
(6.8) under the transformations

(i)

(ii)

(iii)

sy ~ ssq

S2~ S3,

Sy~ S2,

Z6+-+ S7, s2, Z8 unchanged,

S6 ~ ZS p sl s7 unchanged,

Z7 ~ Z8, Z3, se Unch. allged.

Clearly the leading term of (6.8) is positive definite
since 8« is negative everywhere. On the other hand,
the leading term of (6.7) has both positive and negative
contributions and its sign cannot be determined by
inspection. However, in view of the fact that the pairs
(sz,sz) and (sp, sp) are more or less equivalent according
to the symmetry (iii), it is plausible that (6.7) is also
positive. This is in fact confirmed in Sec. 7 by numerical
integration.

V'. NUMERICAL INTEGRATION

It is obviously beyond our capability to evaluate the
sevenfold integrals (4.24)—(4.36) analytically. We have
therefore resorted to the method of numerical integra-
tion. This was greatly facilitated by the availability of
a multiple integration program written by G. Sheppey, 6

which could be readily modified to suit our need.
We are primarily interested in the values of da at

p=(1/207)' (muon moment) and p=1 (electron mo-
ment). However, in view of the results of Sec. 6, we are
also interested in examining numerically the functional
dependence of Aa on p.

Sheppey's program is essentially a simple Riemann
summation combined with a sampling technique which
produces an ef6cient grid by successive approximations.
At the start of the iteration process the domain of
integration is divided up into a number of hypercubes
by the user's specification of the number and size of the
integration intervals along each axis. (Initial specifzca-
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independently by histograms). Weights (8';) for each
iteration are calculated as

(7 3)

which gives the most probable (weighted mean) value
of the integral:

y) 28—

24—

20—
E

4 l6—
E

l2—

a+=()8.4 + I. I) ns/7r~

~ae= io&8+O.O4) Q~/7rs

l00 l02 loo l06 i08

(mp /me)

FIG. 4. Anomalous magnetic-moment contribution Aa as a
function of X=log&oip ) =logio(ooo„/m, )'.

tion can be somewhat arbitrary because on successive
iterations the program will automatically readjust all
interval sizes based on the relative errors it associates
with each. ) Two points x„' and x„' are selected at
random within each hypercube n as points for the
evaluation of the integrands —rather than choosing the
central value. The arithmetic average of the two values
is used for the Riemann sum estimate

I=K 2Lf(&-')+f(&-') j~l'- (7 1)

Upon completion of such an iteration, those cubes which
are found to contain the greatest relative variance are
reduced in size along each edge in proportion to that
dimension's contribution to the error, and the process
then cycles through another iteration based on this
new set of intervals.

The successive iterated values of the integral Ii
and error 0.;, i =1, 2, . . ., E, are accumulated under the
assumption that they are normally distributed (verified

where Dt/' is the nth hypercube volume. A variance
for each cube is defined as the square of one-half the
difference between the random estimates of the inte-
grand value. The associated error for the Riemann sum
is the square root of the sum of all variances multiplied
by 1.82 to give a 91% confidence level:

f(*-')-f(~-') '
~'=(1 g2)' Z — (~I' )' (7 2)

I=+ I,W,/ g W;, (7 4)

with a standard deviation

(7.5)

Ii= ~ 7 7 ) &i = 2 ~ ) (7.6)

with 2, 4, 2, 22, 25, 2, and 6 intervals along the seven
axes, respectively. "We have found that largest num-

"The variable s's was eliminated beforehand using the 8 func-
tion.

The result of each iteration Ii was found in practice to
overlap with I within the error o; more than 90% of the
time.

The integration package was tested on many multi-
dimensional integrals, some of which were five-dimen-
sional parametric forms similar to the function analyzed
in this paper, but with known analytic solution. Full
confidence in the utility of the program was obtained
before it was applied to the problem at hand.

In applying this program to our problem, we in-
structed REDUcE to punch out the result of trace calcula-
tion and D operations described in Sec. 4 in a zoRTRAN-

compatible form so that it can be directly fed into the
integration program. The integrand takes the form of a
ratio of polynomials times a 0 function and is well
behaved everywhere in the domain of integration for
p) 0.

In Fig. 4 we show the anomalous magnetic-moment
contribution Aa arising from the graphs of Fig.
divided by (n/or)' as a function of

X= log to(p ') = log to(m„/m. ) '.
The error bars indicate a better than 91% confidence
interval. Typical points required 10 min of computa-
tion time on the SLAC IBM 360/91, after an initial
30 min had been used to obtain a distribution of the
50 000 hypercubes which would be approximately
valid for all X.

The result (1.7) for the special case p=(1/207)'
represents the result of more extensive effort and was
obtained after about 30 iterations (about one per
minute) with up to 90000 hypercubes. Results con-
sistent with (1.7) were also obtained with grids con-
strained to have a minimum of five points per axis.
But results with smallest 0-i were those on which no
such constraints were imposed. A typical result for an
iteration is Lapart from the factor (a/or)'j
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ber of points are concentrated along the s4 and s5 axes,
which is not surprising in view of consideration of
Sec. 6.

A convergent value for p =1 proved much more dif-
Gcult to obtain, partly because the integrand is not
peaked in any particular regions of the variable space
and partly because the 8-function constraint on the
variables occurs where the integrand is not small. The
latter problem could be avoided and eliminated by a
change of variables

sp ——(1—si —S6—. . Z,—)n7,
z6 (1 si Z2 ' s5)n6 y

S] Q'] )

which turns the integral into the form

his assistance in its use. One of us (TK) would like to
thank Dr. K. C. Wali for the kind hospitality at Ar-
gonne National Laboratory, Dr. S. D. Drell for the kind
hospitality at the Stanford Linear Accelerator Center,
and Dr. R. R. Rau for the kind hospitality at Brook-
haven National Laboratory, where part of this work
was done. Two of us (SJB and AJD) wish to thank Dr.
S. D. Drell for his suggestions and encouragement.

P &Q,"=—P &(external currents), (A1)

APPENDIX A: KIRCHHOFF'S LAWS
FOR A; AND Bg

The quantity Q)' defined by (4.12) satisfies the
"Kirchhoff's laws, " namely, the sum of "currents
Q,&" entering any vertex 4) is conserved:

0 0

dna f(s) (1—si) (1—si —z6)

X(1-si-S6- -Z6). (7.8)

where + or —is chosen. according as Q; is incoining or
outgoing, and the sum of "voltage drops" around any
closed loop C is zero

It was also found convenient to switch s2 and 2'8. Using
this form and 600000 hypercubes, the integral gave
consistent results with small error in a 1-h run (five
iterations) on the IBM 360/91. The two best individual
iterations gave

I,=0.34, 0-,=0.06,
I;=0.37, 0-;=0.09.

(7.9)

The cumulative result is given by (1.11).All other runs
including those without the change of variables (7.7)
overlapped with this result. On the best run the grid
chosen had 583 200 cubes consisting of 12, 45, 4, 6, 3, 3,
and 5 intervals along each of the axes Q] A7."

As was shown in Sec. 6, the analytic dependence
of the photon-photon scattering contribution on
p= (446,/444„)' for small p is of the form

6a(p) = (n/ir)6LCi lnp+C67, p&(1. (7.10)

The coefFicient Ci as given by (6.7) and (6.8) was
numerically integrated over a five-dimensional space,
glvlng

(7.11)C = —3.19&0.04,

ACKNOWLEDGMENTS

We are greatly in debt to Dr. A. C. Hearn for pro-
viding his algebraic computation program REDUcE and

"The variable z2 was eliminated using the 8 function, and the
variables n&, . . ., nz were de6ned by (7.7), in which z& was re-
placed by zs.

and the result (1.10). As a consistency check we have
also integrated (6.7) and (6.8) separately. They gave
approximately equal contributions and their sum agreed
with the above result. The result (7.11) for Ci is not
inconsistent with a linear fit to the points of Fig. 4
for small p.

P q,cx,s.Q,~=O, (A2)

where the Feynman parameter x,s is regarded as the
"resistance" of the line i of chain n, and g;q is the pro-
jection (+1, —1) of q; along C.

The first law (A1) follows from

( P %D,") d4rid446d4r6~ L(r +q )' —4)4 '7

qi(c) qi(c)+'Qicq (A4)

where q;t~) represents q; belonging to the closed loop C
and q~ is an arbitrary constant 4-vector common to all
lines of the loop C.4 This invariance leads us to

(~=0, (A5)

which is equivalent to (A2) as is easily seen from the
definition (4.12).

In our problem, in which the only external current is
p" (since 6=0), all internal currents are proportional
to p&. Thus the proportionality coefFicients A, defined by

(A6)

may themselves be regarded as currents satisfying the
Kirchhoff's laws. In this appendix we shall write down

[P &(r,"+q;")7d'rid'r6d'r6/

gL(r;+q;)' —444 7, (A3)

where q, are fixed momenta satisfying (3.2). The second
law (A2) is a consequence of the fact that V(x,s) is
invariant under the simultaneous transformation of
all q;(g)
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the explicit forms of A; and 8;; and show that these
functions of s in fact satisfy the Kirchhoff's laws.

I.et us 6rst calculate A s for graph I from the defini-
tions (4.12) and (A6). Although they are functions of
Sls ~ ~ ~ Zips~, it is sufficient for our purpose to write
them down for the case

xg=xlp=0. (A7)

Then, in terms of the new z variables defined by (4.17),
they can be written down as follows:

A1 z4t (zs+z5)(z6+z7+z8)+zvzs j
—(Z4+Zs) t Z2(Z6+Zv+ZS)+Z6ZVj,

A2 ——z4t (zs+zs)(zs+zv+zs)+zvzs)
+Z5L(Z1+Z4) (Z6+Z7+Zs)+Z6Z8j y

A s = —Z5$(Z1+Z4) (Zs+Zv+Zs)+Zsss)

(Z4+Zs)LZ2(Z6+Zv+Zs)+Zssvl y

(AS)
A s =z4fzs(zs+zv)+ (zv+zs) (zs+zs) )

+zsLzszs —zv(z1+z4) j,
Av=zst zs(zs+zs)+(zs+zs)(z1+z4)7

+Z4(Z2Z8 —Zs(Zs+Zs) j,
As z4Lzs(zs+zs+zs+zv)+zszvj

Z5t ZV(Z1+Z2+Z4+Zs)+Zsssj .

We have not written down A4, A5, Ag, and Alp ex-
plicitly since they are easily obtained from others
making use of the current conservation at external
vertices (i.e., vertices to which at least one external line
is attached):

From (4.13), (3.11), and (3.12) we see that B,; are
second derivatives of V, which is quadratic in the q;,
with respect to the q;. Since the derivatives are taken
before the q, are fixed, 8;; cannot depend on the ex-
ternal momenta or their routing, but only on the
topological structure of the graph. In order to And
further properties of B,; let us note that Q,& can be
expressed as a linear combination of 8;;:

10

UQ,'= —P q, ~x,z.,B,;, 2=1, 2, . . . , 10
j=l

(A13)

q4 ——qs ——p, all other q's=0 (A14)

in (A13), which is consistent with (3.2), we obtain

UQ "=(—Z4B4 —Z5B5 )p". (A15)

Since 6=0 for this choice of q;, we may use (A6) to get

A; = Z4B4; Z5B5;. — — (A16)

Substituting (A16) into (A9) or (A15) into (Al) for
external vertices, and taking (A12) into account, we

get equations involving diagonal 8;;:

where 0,; is the chain to which the line j belongs. The
q; are arbitrary constant momenta subject only to the
4-momentum conservation law (3.2); we need not
restrict ourselves to Q, l' proportional to p". This equa-
tion follows from definitions (4.12), (4.13), and the
fact that V(x,z) is quadratic in q;. If we choose

A4 —A1= U,
Ag —A3= U, (A9)

B14—B44= U/Z4,

Bss—Bss= U/zs.
(A17)

A1+As —A10=0,

As+As —Av= 0,
As —A4+A 5=0,
As+Av —As ——0.

(A10)

The second Kirchhoff's law can be similarly checked:

Z6A6+Z7A7+Z8A8 0,
Z1A1+Z2A2+Z4A4 —Z6A6= 0,
z2A 2

—zsA 6
—zsA 5+zvA 7——0.

Next we shall examine B;; defined by (4.13). Since
8;; is symmetric in i and j, there are 55 8;,'s altogether.
However, they are related to each other by various
identities. For instance, it is obvious from the definition
(4.13) that

+1i ~4i

83;=85i
~8i ~gi +lpi

~89 ~8,10 ~9,10 ~

if i~ 1 or 4,
if i~3 or 5,
if i~8, 9, or j0, (A12)

Ag=A10=28 .
It is now easy to check the current conservation at
internal vertices:

Relaxing condition (A7) and choosing diferent q; and
external momenta consistent with (3.2), we get equa-
tions similar to (A15). Substituting these into (A1) for
external vertices and using (A12), we get the general
relation

B,, B;;=U/z, x;, — (A18)

where lines i and j belong to the same chain o.;.
Similarly, substitution of (A16) into (A10) and of

expressions like (A15) into (A1) for internal vertices
yields

B14+B64 B101

B2;+Bs;—Bv; =0,
B2; B4,+Bs;=0, —
Bs,+Bv; Bs;=0, —

(A19)

if none of the 8,, are diagonal. Otherwise we need a
slight modification —for instance,

B22+B26 B27 U/Z2 ~ (A20)

These relations may be regarded as KirchhoQ's first
law for Bg.

In order to obtain the second law for 8;;, we sub-
stitute (A16) into (A11) and expressions like (A15)
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into (A2). Again using xs= xis ——0, we find

S68si+ S?87i+S&8&i

Si81;+S282;+Z484,—Z686, ——0,
S282;—s&83;—S585'+sv87, =0.

(A21)

p, =o for i= j.,2,3
for i=4,5

for i=6,7,8. (A25)

Suppose we express W and 3; in (A24) in terms of 8,,
and s'4 and s5. Then, comparing the coef6cients of s4
and s5 in the resulting expression and using the Kirch-

Finally, we give some 8;; explicitly in terms of new s
va.riables defined by (4.17) which corresponds to putting
Ã9 X]p Oe

845 Z2(S6+SV+S&)+ZSZ7 y

846 S8(S2+Z3+S5+S7) S7(S3+Ss) )

847 S6(Z3+S5) S2S8 y

848 S6(S2+S3+Zs+S?)+S2SV yt

856 S7(S1+S4) S2Z8 y

(A22)
857 S&(Sl+S2+S4+S6) Z6(S1+S4) &

858 S7(S1+Z2+S4+S6)+Z2S6 y

867 Z2(S1+Zs+S4+S5+Z&)+(Si+Z4)(S8+Ss) y

868 (Zl+ S4) (Z2+ S3+S5+Z7) +S2(Z&+Zs) )

878 (Ss+Ss) (Sl+S2+S4+Z6)+S2(Z1+Z4) ~

Other formulas of great use can be derived from the
observation that, aside from the term

P s ( P x,v?3„2),
a igrv6

the denominator function V(x,z) can be regarded as the
"power" burned up in the network. ' This leads us to a
set of equations"

—Q,'+??sf?=BV/6IS;, i=1,2, . . . ,8 (A23)

where Q, is defined by (4.12). With the help of (A6) and
(4.20) this can be transformed into

A;2= W(BU/Bz~) —U(BIV/Bz~)+p, U', (A24)
vvh ere

hoff's law (A19) repeatedly, we can write down an
enormous number of formulas quadratic in 8; s. Some
of them are shown below:

~46~57 ~47~56 ~8 U p

848856 846858 S7U1

&47&58—&48&57= &6O,

~45~67 ~47~56 ~48~67 ~47~68

~58~ 67 ~56~78 ~67~88 ~68~78

848878 847888 858868 856888
=84,8„'—84,8„=s,U, (A26)

~66 ~88 ~68~68 ~48~68 ~46~88

(S2+Ss+S5+Z?) U

~77 ~88 ~78~78 ~58~78 ~57~88
= (Zi+Z2+Z4+Zs) U,

866 878 867868 (S8+Ss)U
y

866 858 856868 (Z2+Sv) U 1

where 8; is the polynomial part of 8,; which may also
be written as BU/Bz, . We note that (A26) is equivalent
to the result (5.19).

Formulas such as (A11), (A21), and (A26) are ex-
tremely useful in simplifying the numerators of Feyn-
man integrals. Although the usefulness of Kirchhoff's
laws for the study of analytic properties of Feynman
integrals (which are derived from the properties of
denominators of the integrands) is well known, it
appears that their use in the simpli6cation of Feynman
integrals has not been emphasized thus far.

It will be obvious that the above results are also
applicable to other graphs of Fig. 2 if we interpret A9,
4 ~p, 89;, and B~p, ; in an appropriate fashion.

APPENDIX B: UNSIMPLIFIED INTEGRANDS
FOR GRAPH IV

For the benelt of readers who wish to check our cal-
culations, we give here the unsimplified output of
REDUcE for graph IU. Simplification of these integrands
with the help of the identities given in Appendix A leads
us to the formulas (4.33)—(4.36). As is defined in (A26),
8; is the polynomial part of 8,, and is equal to BU/Bs;

dSp
S6S&L+1+6(868878 867888 )+43+7(866 888 868 )j

O4W'

dip
+ LS6(+1+6867 ~3~7866 ) Ss+ 3~7888 j+

O'W'

dsc
A3AZ

O'W'

dso
Z6S&L848(867868 866 878)+847(866 8&8 868 )+5846(867888 868878)+3857(868 866 888 )U48'

dso
+3856(868878—BsvB&s')+385s(Bsv868 866'Bvs) j+ LS6(3857866 +3856867 847866 5846867)

2 O'8'
dip

+Ss(3857888'+385&878—847888'+84&878) j+— (847—3857) . (81)
2 O'W
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Az(BSS Bss 8)+A {B+66' —Bs?B683
(&0

A [A (B B78 B67B88 )+
1

JI.IIi vb =
2

$6&sf
U5W'

B5—8B66 )j

1 d~o

[A A (A,B„—AzB66)+ (A B56—A B46)j=ps Ag 5
U4$'

A B )+A,A, (AsB48+A?B58)jgs[—A yA 8(»B"
U'4WS

/g
dso

B Bss~ —B58B66 78)gsgs(3A 1 56 67
U5$"

dsp
—A,A SA 7+

U3$" 22

4B6?B68 B66 B78)3—/(B,B» +2BSSB78)+

)+B {B+ 4BB ~ ~„+.2B47(856B88+A,[B (B B ~
—B""

B66 BB566)81—B46(2B56BSS+B "8 '" Bss(

Bsv }+B, Bsz)+2B4vA, [B (B 'Bz' B" "
56+B45B66 )jA {2B B 6+B4"'B")

(&0
B B +A s{2B4?B66+

B„B,)+A vA 8(B"B"
8 8

B„B„')+A6A 8(BSSB67

A A (B„B,, B,s 58))

+A?[A SA7(B58B68

A A (B SB68—B48B66)+A A (B SB6? B46B78)++A, [A 6»(B46BS'

1

2

—A B45)
U'SW

I)+(B Bso—B56BSS
dso

B +78)+(BSSB68-~6~8[(B48 "
U2P"

+P „„(„—)j
U t/t'/ 2

U48'

2B4?B58)jd~p BB+BB)+ A 7(B45B8s 4B +58)—A s(B45B?"+qs[3A ?B58B?8
U'4''

A,+»+A)( " "-s~s((A6Nova= P U38"

8+68— 58 66B ')+(Bs&78

(g4)
dso

B )+ps(A?B58 —ASB48)~ 'B46—A 7 56
U28"

B +68)+(B48B67 B46-+A, [(B 7768 B46B88 )+{

DERIVED pROM (64APPE~DIX C: Fo
.

g ghe su%« '~~e ha~e omitteel e~&th 7-esPect to 45~Di6erentiating both sides o
vre obtain further relations:

S4 dg4485

8"
84S5dS'g(&5

(5+c)G)+
420 a+c

= —(—1+«)+
4~p

(C1)

(C2)
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z4 ds4ds5 S4 S5 dS4dS5 lnp
-[3c—(tzzp+3c') G]+

166p'
(C5)

lnp c(56v+3c')
3a+—c)'G)+ .

, (Cz)
166p' (a+c) '

The domain of integration is 0(st+st&A in all cases.
Similar formulas for the integrals

S4 S5dS4dS5 s5 ds4ds5 S4S5 dZ4dS5 z5 ds4ds5

lnp 26p+3c—+3c($+c)G +. (C4) are obtained from (C1), (C4), and (C3) by interchang-
16ho' zt+c ing a and b.
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Bootstrap Conditions from the Veneziano Representation*
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A set of self-consistency conditions for ratios of hadron-hadron-hadron coupling constants is derived from
the Veneziano model for scattering amplitudes and some simple assumptions. This set includes the crossing-
matrix condition of the static meson-baryon model and the condition that the absence of resonances in exotic
states implies a cancellation from Regge trajectories of opposite signatures. For simplicity, the spins of the
external mesons and baryons are neglected. The conditions require that the particles correspond to repre-
sentations of a Lie group, and that only certain sets of representations are allowed. The relation to previous
bootstrap models is discussed. An illustrative solution corresponding to SU(3) is obtained.

I. INTRODUCTION

" "N recent years, several dynamical models of hadrons
& - have been based on various analyticity and crossing
properties of hadron-hadron scattering amplitudes.
Examples are the meson-nucleon static model, super-
convergence relations, Regge-pole Inodels, and the
Veneziano model. The addition of the bootstrap hy-
pothesis to the first three of these models has led to addi-
tional predictions, many of which are in approximate
agreement with experiment. The main purpose of this
paper is to obtain a set of bootstrap conditions from the
Veneziano model, a set that includes the more success-
ful conditions of earlier models.

Our definition of bootstrap includes two parts: (i)
The subtraction constants or background terms are

sufficiently small in number so that the dynamical equa-
tions determine' the physical masses and interaction
constants in terms of a very small set of external param-
eters; (ii) a complete set of two-hadron —+ two-hadron
amplitudes should be considered, and the set of internal
particles should be the same as the set of external
particles. Two comments must be made concerning these
points. First, statement (i) is an assumption that certain
conceivable terms are negligible. Thus, at least in pres-
ent models, the bootstrap is not implied by crossing

*Supported in part by the U. S.. Atomic Energy Commission.

and general analyticity requirements. It must be judged
by its theoretical simplicity and the success of its pre-
dictions. Second, in any bootstrap model, it is reasonable
to begin by considering amplitudes in which the lightest
hadrons are external. In such a erst approximation to a
"complete" model, statement (ii) requires only that
the set of virtual particles consists of the external
particles plus heavier particles.

In Sec. II we review briefly the most successful boot-
strap conditions of the static meson-nucleon model and
of the combination of Regge theory with duality. Con-
sistency conditions are derived from an idealized
Veneziano model (with the spins of external particles
treated like internal quantum numbers) in Sec. III.
The conditions are summarized in Sec. III C. The fact
that a solution must involve a Lie-group symmetry is
discussed in Sec. IV, while Sec. V contains an illustrative
solution involving SU(3). The exact treatment of
particle spin leads to a more complicated model, which
will be discussed in a future paper.

II. BOOTSTRAP CONDITIONS OF
PREVIOUS MODELS

The simplest type of conceivable hadron spectrum in
a Reggeized model contains only a Gnite number of
Regge trajectories. The experimental hadron data are
consistent with such a, spectrum. In such a model,


