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Remarks on the Lee-Zumino Summation Method*
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A method proposed recently by Lee and Zumino for calculating higher-order corrections to the S matrix in
nonpolynomial Geld theories is investigated. %hen applied to a perturbed harmonic oscillator, grave dif-
Gculties are encountered. The reason is found to lie not in the speciGc summation method, but in the behavior
of the perturbing potential at inGnity. In the more realistic Geld-theoretical case, it is shown that perturba-
tion theory gives anomalous values for the vacuum self-energy and the wave-function renormalization
constant under certain circumstances.

I. INTRODUCTION
' NVESTIGATION of the renormalizability of theories

- with nonpolynomial interaction Lagrangians' ' has
taken on new importance in light of the successes of
chiral symmetry. It is tempting to hope that the same
theories which give experimentally correct results for
lowest-order matrix elements might also be used to
calculate radiative coriections to them. 4

It is characteristic of many such theories that there
exists, in addition to the usual problems connected with
ultraviolet divergences, a conceptually different ques-
tion involving the summation of formally divergent
series. These series arise because, to a given process in
a particular order of perturbation theory, there corre-
sponds an infinite number of Feynman diagrams. It is
possible to sum such series in a variety of ways; a
particularly simple model has been investigated by Lee
and Zumino (LZ).' We shall not recapitulate their work
in detail, but rather point out those parts of it which
are of particular interest to us here.

Let us, with LZ, consider the interaction

They show that the correct analyticity properties for
the second-order regulated propagator are ensured if

Fos(&)= (o I TC&r(*)~i(o)3 I
o)

In particular,

F(s) = lim i e'&'* Fss(x) dt's

is real below threshold, and has the cut structure
implied by second-order unitarity. Since b is arbitrary,
however, the real part of F(s) is not well defined; it
does not affect unitarity in this order, but obviously
does enter in third and higher orders. In theory, then,
one should go on to calculate higher-order processes to
verify or disprove the unitarity of the formulation.
In practice, however, this seems to be forbiddingly
difficult.

To investigate the meaning of the LZ procedure,
therefore, we look either for simpler models on which it
can be tested, or further properties (aside from uni-
tarity), which the second-order amplitudes must
possess. In Sec. II, we adopt the erst strategy, and
investigate a perturbed harmonic oscillator. We find
that in this model, the LZ procedure fails miserably.
In addition, we note in Sec. III that it is possible to see
exactly why this happens and to conclude that it is
not just a failure of one particular summation method,
but of perturbation theory itself. In Sec. IV, we examine
the sign of the vacuum energy, and the size of the wave-
function renormalization constant Z. We find that they
are anomalous for certain values of the coupling
constants.

se *Ap~(x)z dz

1+(g+i e)'I t),pp (x))'z'

ie—*hp~(x)z dz
+ (-', —ib) (~ &)

, g+(g —i,)sI gp~(g)7szs'

where Ap~(x) =—Lhp (x,trt) —hp (cc,M) ), and b is an
arbitrary real number.
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II. PERTURBED OSCILLATOR MODEL

The LZ summation method is evidently in part a
prescription for calculating matrix elements as func-
tions of hp(x). We can therefore explore this part of
their program in the context of the simplest of all
field theories —the perturbed harmonic oscillator.
Because such models have propagators which are well
de6ned even in the limit where t~ ——t2, we can investigate
the behavior of matrix elements of equal-time products
of the interaction Hamiltonian; such matrix elements
must have certain properties if the Hamiltonian is
Hermitian.

The investigation of such "toy" models may provide
some insight into the structure of the far more complex
field theories in which we are ultimately interested.
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REMARKS ON THE LEE —ZUM I NO SUM MATION METHOD

Let us consider, therefore, a perturbed harmonic tion is to let
oscillator (HO) whose Hamiltonian is given formally by

e 'zd

H=HO+XU,

H p = -'(P'+(a'q')

V= .
q2n+i

.gn
$ —gq2 nm

(2 1)

(Pl U(0) U(P) lP) =(Pl P:q2~+i . .q2~+i.g~+" lP). (2.2)
)n nM

Taking (l n)} to be the usual HO basis states, it is
clear that the matrix elements (nz~ Ull) are all well
defined. Moreover, since (el Ulm)= ((ml Ule))*, U as
dehned is Hermitian. Let us therefore attempt to
calculate the diagonal matrix elements of U(0)U(0),
i.e., (el U le). Since U is a Hermitian operator, we
know that (Il U'le) must be positive semidefinite. We
shall now show, however, that a calculation via Wick's
theorem supplemented by the. LZ summation procedure
leads to values for these matrix elements which are
negative for certain ranges of the parameters M and g.

We begin by considering the matrix element
(pl U'lo):

(pl U2lp) =(-;+a)
o 1—(g+ie)'LVz'

+(s —~b)
e 'zA

ds, (2.6)
1—(g —jg)~g2s~

(-,'+ib) f(s) ds
0 1—(g+ie)hs

+(s —ib) f(s)
1—(g —i@)As

f(s)
0 1—gAZ

2'
f(1/~g) (2 7)

Ag

We therefore write (pl U'l0) = 4(A 00 bPOO),—with

e 'z

where 6 is an arbitrary real parameter.
It can be shown that with this definition, U has an

asymptotic series given by the right-hand side of
Eq. (2.3). The prescription 1/(x+ie) =orb(x)+P tells
us that

A formal application of Wick's theorem gives
A 00

——P dz)
1—g252z2

(2.8a)

(0 l
U2

l p) = g g2" (2m+1) ~Q'"+'(0)
n=o

(2.3) +00 e (~/~Q) (2.8b)

where

6(0)—= (0 l q (0)q (0) l 0)= 1/2o) .
A similar decomposition is made for all matrix elements;
in general, we will write'

Of course, the above sum is precisely that which we 6nd
in the corresponding field theory, but now A(0) is well
dehned. Let us therefore sum the series d la Sorel, as
prescribed by Lee and Zumino:

(el U'll) = D(A bB ) . (2—.8c)

Our investigation begins by considering the simplest
case, that for which b=o. We shall later relax this
condition. We then have

(Pl U2lP)= s—~ dz P g~~z»+ig»+i(P).
0 nM

(2.4)
ze 'l*

Aoo(x) = —z dz,
S 0 1 Z

(2.9)

for (g's'LV) (1, the series is summed to give
As/(1 —g'5's'), which we then continue to all values
of ghz. At this stage, then,

e dz.
g2+2z2

(2.5)

At it stands, the integral evidently diverges because of
the singularity on the real positive axis, if g is real.
The heart of the LZ procedure is to define the integral
for complex g, and then continue in a special way to real
g. In particular, we are told that the correct prescrip-

where x—=5g. A moment's thought shows that while the
integral is indeed positive for suKciently small x, it
becomes negative for large x; a simple numerical
integration shows that the sign changes at x0——1.05.
We conclude, then, that this simplest of all prescrip-
tions (i.e. , with b=p) gives nonsensical results for
X0(X.

' In what follows, we shall restrict ourselves to the case in which
b is the same for all matrix elements. Relaxing this requirement
introduces an infinite number of parameters into the model,
completely destroying its simplicity. We have in mind here the
applicability of the summation method to realistic field theories,
in which the necessity of introducing a new parameter each time
we add an external line to a diagram would severely curtail its
predictive ability.
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REMARKS ON THE LEE —ZUMINO SUMMATION METHOD

We begin by observing that there exists an extremely
simple method for normal ordering the operator q":

~qn ~ —H ((g)/qq)/(2(gl/2)n (3.1)

where II„ is the eth Hermite polynomial. This fact,
which is perhaps not as widely known as one might
expect, may be proved easily.

By Wick's theorem,

changed the order in divergent sums and integrals, the
above should be viewed with some scepticism, until
we have verified that V does indeed have the correct
matrix elements. This turns out to be the case, however;
we have relegated our proof of this assertion to
Appendix B.

The behavior of V at infinity is extremely interesting.
Evidently,

:q::qn:=:qn+'+n. q" 't)

Thus, if the statement is true for /&e,

(3.2) V(q) &$(qr(g)'"/g] exp/(g(1/g'"Wq)'j (3.11)

as q~ ~~.
Up to normalization factors,

n H„1((g»2q) H„((g»2q)
q"+' = —— +q (3 3)

(2(gl/2) n—1 (2(gl/2) n

since:q:= q. Because

—222Hn ] (G7' q)+ 2(g' 2qHn(&g' 'q) = Hn+1 (Q)' 'q)

qn+1 —H (~1/qq)/ (2~1/2) n+1 (3.4)

Since the theorem is trivially true for m=0 and m=1,
it is true for all e.

I.et us therefore consider

,
H2/+1(~'"q)

V(q)=E g'
p (2&1/2)2l+1

(3.5)

It is by no means obvious that this series converges,
but we may once again apply the Borel trick, and
redefine V(q) as

V(q) =
Hq 1+1( / (gq))q

e tdt Q lt2l+—1 (3.6)
(2t+1) ) (2~1/2)21+1

The inner sum is now well defined, and not difficult
to evaluate. Letting

(m(A ~22)= e ""H (tg»'q)AH (tg'') dq (3.12)

« I
V'IO) = —— dsdt

4gx p

gx exp s t ——(s2+—t')—
4M

dqe "~

X(egt/2q(s+t) egt/tq(s —t) e
—g1/qq(s —t)+ —gt/tq(s+t)&

and we see that the matrix elements of V are finite.
Since V' goes like e2"&' for large q, on the other hand, its
matrix elements do rot exist. Hence conventional
perturbation theory„ i.e., the expansion of various
quantities in powers of the coupling constant X has no
validity at all in this case, because the perturbing poten-
tial is too singular at infinity. The situation is not
unsimilar to what happens when perturbation theory is
applied to r ' potentials.

It is amusing to observe that we can recover Eq. (2.5)
by using our representation of V, and making a patently
erroneous change in the order of integration.

Write

) 2l+1 H (~1/2q)

qst) =Z g'
2(g»2) (21+1)!

it is easy to show that

(3.7)
(oi vqio)= e

—t

g2+2]2

(3.13)

(3.14)

1df ~ 1
—

g——+g»2f =P — ', t — Ht (~-'/'q)
t dt ~~l!

=exp) —(g t2/4(g)+g»'tq)/, (3.8)

from which it follows that

f( t) = e '"""(e"""—e """)
2gl/2

and

(3.9)

V(q) = e '""" '(e""" eg'"'q)dt (3.10)—
2g1/2

Because of the cavalier fashion in which we have ex-

The case at hand is unfortunate in one respect:
Because V goes to —e"&' as q

—+ —~, the discrete
nature of the spectrum is completely destroyed. We
wish to stress, however, that this is not the crux of the
matter, as one sees when the interaction:), /(1 —gq'): is
analyzed. This latter form is equivalent to a potential
V'(q) which goes like e"q' as q-+ &~, and does, of
course, preserve the character of the simple harmonic-
oscillator spectrum. Nonetheless, one encounters here
precisely the same difficulties which were found
previously.

We are thus led to the conclusion that in these models,
at least, it is not summation methods which are wrong,
so much as the fact that perturbation theory itself is
completely useless. The infinities which Lee and
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IV. FIELD-THEORETICAL RESULTS

(a)
Fzo. 2. Contributions to Z(P).

Zumino get rid of are indeed spurious, since one can
construct interactions which lead to perfectly reason-
able, finite level shifts, but they are intrinsic to any
attempt to misapply perturbation theory. '

It might seem that the bad behavior at infinity is
merely a reflection of the fact that 1/(1 —gqP) has a
nonintegrable singularity on the real q axis. That this
is not the case may be readily seen by analytically
continuing our expansion for U to negative g; the
behavior at infinity is still the same.

Since the formal existence of higher-order terms in
perturbation theory depends crucially on the behavior
of the normal-ordered potential at infinity, it is inter-
esting to investigate several others. We list the results
in tabular form below:

Dominant term at ~

(1):(1-q)-'.(vW vi}-
(2):1n(1—q):
(3) .gag ~

(4):e &'.

(1/1'(v)](~/I) (2~q) "e" '
—e~(&—q) P/2~q

exp (—1/4co +q)
2(1—1/cu) '"e p"&'" " &j (ao)1)

Interestingly, the last two forms are sufficiently well
behaved at infinity so that matrix elements of the form
(e~ (:U:)'~m) will always exist. Field theories based on
interactions such as (3) have been investigated by
Volkov. '

We conclude this section by remarking that the diffi-
culties encountered above are evidently due to the fact
that our interactions are normal ordered. Although it
carries polynomials into polynomials of the same degree,
normal ordering drastically alters functions with any
singularities in the finite plane. This suggests that
nonpolynomial models which are rot normal ordered
might be of interest in the full field-theoretical case.
In such models, however, there exist problems owing to
the necessity of contracting fields at the same point in
space-time, and questions relating to the fashion in
which the theory is regulated become very delicate. "

' In the light of this remark, the reader may wonder why such
pains were taken in Sec. II to demonstrate the lack of positive
definiteness implied by the I.Z method. This misses the point,
however, for the following reason. The summation method can
be regarded as a set of rules for calculating matrix elements of the
square of a perturbation potential. We could, in theory, find that
potential, given the matrix elements of its square. The results of
Sec. III tell us that what we would find in that case could not
possibly be U(q}. The results of Sec. II, however, tell us that what
we would find would be non-Hermitian, and therefore of no
physical interest.

M. K. Volkov, Commun. &Math. Phys. /, 289 (1968).' H. M. Fried, Phys. Rev. 174, 1725 (1968).

We shall now discuss several anomalies which exist
in the field-theoretical model. The first concerns the
sign of the vacuum energy and the second the magnitude
of the wave-function renormalization constant Z.

It is easy to show that if the bare vacuum expectation
value of the interaction Hamiltonian vanishes, then
the energy density shift of the vacuum must be negative;
let us therefore investigate the second-order perturba-
tion-theory level shift predicted by Lee and Zumino.
We utilize the expression of Gell-Mann and Low":

ink (p)/W. )(0~ U (~, —m) ~0)
d E=lim, (4.1)' 2 (0~5.(0)

where n is defined via H =H p+Xe ~I'~Hr. Assuming that
perturbation theory is applicable, we discover
AE= —-'X'F(0), where

F (p') —=i d's e'v'*(0
~ T(Zr($)Zr(0))

~
0). (4.2)

F(0) in this model has the ambiguous real part alluded
to earlier; let us evaluate it with b=0. Using Eq. (12)
of LZ, we have, with a reglloted propagator,

s/s. ~(r)
F(0) =2m' r'dr F e *— ds. (4.3)

p p 1 gpspL+R (r)$2

(r) is positive definite, and behaves like —(1/g~')
&&(M' —m') lnr for small r, where M is the regulator
mass. It is clear then that for suKciently large g, F(0)
will be negative, and the vacuum energy density will be
positive. This result may be shown to persist as M ~ ~.

While it is clear that this result in itself is not par-
ticularly serious (since by choosing an appropriate
nonzero b, we can restore the correct sign of the vacuum
energy density), it does place some restriction on the
allowed values of the "arbitrary" parameter b. More
importantly, however, we recall that anomalous signs
in low-order matrix elements of the harmonic-oscillator
model portended the collapse of the entire theory. The
same may be true here.

The second anomaly which we shall explore concerns
the magnitude of Z—we shall see that under certain
circumstances, this can exceed unity.

To second order in X, Z=1+X'Z'(m'), where Z(p') is
the self-mass insertion in second order. There are two
types of terms which contribute to Z(p') Lcf. Figs. 2(a)
and 2(b)j.The first class, however, does not depend on
p', and we need only calculate those from Fig. 2(b):

Z(p') = i e'"' d'pe P e '—ds (4.4)
1 +gpgpsp

1 M. Gell-Mann and F. I.ow, Phys. Rev. 84, 350 (1951).
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Pcf. Eq. (A6)j. Regulating and making the usual
contour rotation, we find

Zpng(s) = — r'dr Il (s' r)
sl/2

XI' e ' ds. (4.5)
1—g2s2DR2 (r)

(s s2) +2g2s2

Z(p) = i e—"*d4x I' e '— ds+1
1++2g2s2

Because I„(24) (22rN) '"e for large 24, our integral
diverges as it stands. We can, however, evaluate it by
returning to Eq. (4.4), which we rewrite as

We may either try to work with interactions which are
not normal ordered, or retain the normal ordering and
look for methods of approximation which do not involve
an expansion in the coupling constant. Perhaps such
approaches might lead to further progress. It would be
pleasant to find that nonpolynomial Lagrangians are
more than concise mnemonics for approximate calcula-
tion of strong-interaction processes.
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APPENDIX A
=—i e'&' d4xE e '

The evaluation of the diagonal matrix element
(n ~

U'~ 24) is simple in principle but algebraically compli-
Lgg2(s2 —s4) cated in practice. We will illustrate how things work for

X ds —(22r)'9'(p)& (46) (1~ U ~1), and simply list the results for the other+~ g s matrix elements. First we write

we find, then, that for s/0

4x'
r'dr I1 (sU2r)

~R2(r)g2(s4 s3)
XI' e ' ds

g2s2+R2 (r)

2~2y2g2

Zl'eg —~ r'dr I 2 (I4r)6R'(r)

XI'
e '(s' —s')

ds.
1 g62sR2—2 (r)

Once again, we observe that for sufficiently large g,
the iterated integral becomes negative, giving us a Z
which exceeds unity. Now it is well known that for local
field theories, 0&Z& 1; on the other hand, models such
as the one under consideration have been shown to be
nonlocal, ' so that our result is perhaps not completely
surprising. Nonetheless, it is rather disturbing, in light
of the conventional interpretation of Z as the prob-
ability for finding the bare particle in the physical one.
As before, by admitting nonzero values of b, we can
always arrange things so that 0&Z&1; thus we again
have only succeeded in placing restrictions on the
allowed values of the arbitrary parameter in the model.

(1
~

U2
~
1)—P (1 (

q2ln+1 ~ q2.n+1 ~

( 1)g + (A1)

Wick's theorem may be used to write:g'::g&': as a sum
of terms of the form:q'+' 21:5'. lt is clear that when this
is done, the above matrix element will have contribu-
tions from two sets of terms: (1) those in which all
q's have been contracted, and (2) those which have
all but two q's contracted.

Looking at the first type of term, we see that we have
simply

P (1
~

1)g2n&2n+1(224+1) t

m=0

00 (22r4+1)!
(1

~

.q2 ~

~
1)g g2n+lgm+n (A2)

which of course is just what we found for (0~ U2~0).
Turning to the terms with two uncontracted q's, we

observe that they arise in two different ways: (a) Both
uncontracted q's come from the same normal product,
and (b) one q comes from each.

The contribution from (a) is

V. CONCLUSION AND OUTLOOK

While our results suggest that the Lee-Zumino
procedure is somewhat suspect, they do not leave com-
pletely groundless the hope that nonpolynomial
theories may provide a complete description of hadronic
physics. The harmonic-oscillator model suggests two
possible ways of bypassing the difhculties encountered.

(1
~

.q2 ~

~
1) Q +2n+lg2n+1(2++3) t

n=o
(A3)

The over-all factor of 2 comes from the fact that we
may select the uncontracted q's from either of the
normal products.

This term, therefore, gives
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where

f„(x)—=
g j~~ne

de
0

(A»)

( )+2f (x)+2xfs( )1
—11~—

(A11)XI( 2x, ,s

(1I:v':I» e
—gSsdS Q (ggS)sn+\

this becoIHesUsing the Sorel me o,

slITiP ]er byuation is
npi . 3

we display those w"(2IO'I2);
ues w«lltI t"App] ylng the same techn I

(1 I:vs:I1)
Ages

e ds.
1—32g2S2

(AS)

b which givesKe nex ot look at term ( ), 2x 6x')f4+—2x'f»l~22(x)= —3 l22 = —f +4fs+(3x' —2x)fs+( x—

+2n 2n(2n+ 1)2(2n)!(1I:v':I1» "g

Since

e '
1—kg 2'

'" '"I:(2 +2) —(2 +1)'j= (1 I:v': I1& 2 ~'"g'"
n=p

-"/*') (-4+4/ ),Bss(x) = qre- x

ss = — 6f2+ (—66x+16x')fsAss(x) = —5,
24*—12*')f,+ (—16x'+60xs)f,

16 3 x'
I (16/3)x —40x jf,+(16 3, „

32 x'+32/3x') .
(A6)

0

(2l) .'n!

l!l!(n —l)!

S

g2g2g2

(A7)
APPENDIX 3

the matrixwe shall prove that thIn this appendix we s a
elements of

U'= Q g
t .qs t+2 ~

L=p

AS) equal those oofX (s+2hgs2a '+2s' —2s)/is, (

= 5 and settingletting x=gh, a
V—=—

2g1!2

—g&/2tq(gt Ol
—(g ts/stt) t (egt/st q e 2)Ot——

we obtain

(1I U'I1) =&

h. (x,s =

(—h, (x,s)

e first writeThe proo is by induction. W

U-=&gt( I:v'"':I ),

s ds. (A9)2h, (x,s)+2xhs(x, s)} l ~ 2 ~ ~ 21+1 ~: ".
UIm) =Q g'(nI:g::q(n:t, . m— (B2)

the singularities is, asion for treating eThe LZ prescription
shown in the text,

Now

so

'= (a' —2ata+ a")/( —2o&),~ ~

f g-—2~& g(s —1). 1 n 2

1)gl/2( 2
I } (g3)X(+2I—2 ( I+I:~
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By Wick's theorem, however,

~q2 ~ .q2/+). ~ .q2/+4 .+2(2iq 1) .q24+) .(]/2~)
+ (2l+1) (2l):q" '.(1/2pp)' (84)

It is not diS.cult to see that

One then veri6es that

from which it follows that

dg
(813)

P (n [:q"+':
)
/n)g' = -(U„„—(n ( q ~

m)),
l=p g

(83) q'h =~q —
g '"&[g ' —(2p)) 'fh &(2gp) '+-g'p) ')

00

—E (23+1)(w~:q"+':~m)g'= — 24—U. +U„), (84)
CO &=0 co dg

X —hying +
dg dg

Using this, one shows that

(1/2p))' P (2l)(2l+1)(n~:q2( '.
~
n4)g'

t=p

1 d' d
2g' U„+7g'—U„+3gU„ i. (87)

2~' dg' dg

Putting all of this together, we find

[(n+1)(n+2)]"U„+p „—[——n (n —1)]'/'U„,

+(2p)g ')q„—(2ppg '+2+3gpp ' —2n)U„

d2
—(4g+7g'p) ')—U„—2g'(p ' U„„. (BS)

dg dg

Turning now to the matrix elements of V, we first
observe that

e ~&'V(q)H„H dq

= —4p)g 'q„„+(4p)g '+6+6gp) ')V„

+(Sg+14g'p) ')—V. +4g'(d ' V„„(815)
cog . dg

and that

[(n+1)(n+2)j'"V. ,+. [n——(n— 1)j)—/2V. , „
+(2p)g ')q„—(2p)g '+2+3gpp ' —2n)V„

d d2
—(4g+7g'(p ')—V„„—2g'(d —' V„. (816)

dg dg

Zn This will be recognized as the recursion relation satis6ed
by U

It only remains, therefore, to show that Vyp= Uyp.

(Notice that U „=V „=0if n=nz+2i. )
n(I U)p= (1 ( q(0)=i/(2(p)'". Now

4-(q)—= (qln)= H-( "q) e-p( —l g'), (»)

with N„= [2"n!(4) /pp)' "]'".Since

we have

On the one ha
+2 ((p) /2q) —4pt)q2H (p)) /2q) 4n (n 1)H 2 ((p) /2q)

(810) i
V — (~/~) )/2

00

—e
—(4/g~/4) (&4/4~) (et 4 —

e 44)dt (817)—
2g

e ""V(q)H„H„q'dqz( ")
E„X

To evaluate the integral, we note that we may write

—4n(n —1) (N /N 2) V„2, (811).
In the above expression, we may change the order of
integration and make a trivial change of variable to get

a

V(q) = — exI [—(t'/4~) —(t/g'") j(e"—e ")dt
2g p

= (1/2g) [h+(q) —h-(q)]

4 00
Z

Vqp= —(24)) '' e """tdt
g 0

(812) It follows, then, that V„=U

Z

e &'dq = . (81S)
(2pp)i/2


