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A method proposed recently by Lee and Zumino for calculating higher-order corrections to the S matrix in
nonpolynomial field theories is investigated. When applied to a perturbed harmonic oscillator, grave dif-
ficulties are encountered. The reason is found to lie not in the specific summation method, but in the behavior
of the perturblng potential at infinity. In the more realistic field-theoretical case, it is shown that perturba-
tion theory gives anomalous values for the vacuum self-energy and the wave-function renormalization

constant under certain circumstances.

I. INTRODUCTION

NVESTIGATION of the renormalizability of theories
with nonpolynomial interaction Lagrangians'— has

taken on new importance in light of the successes of
chiral symmetry. It is tempting to hope that the same
theories which give experimentally correct results for
lowest-order matrix elements might also be used to
calculate radiative corrections to them.t

It is characteristic of many such theories that there
exists, in addition to the usual problems connected with
ultraviolet divergences, a conceptually different ques-
tion involving the summation of formally divergent
series. These series arise because, to a given process in
a particular order of perturbation theory, there corre-
sponds an infinite number of Feynman diagrams. It is
possible to sum such series in a variety of ways; a
particularly simple model has been investigated by Lee
and Zumino (LZ).> We shall not recapitulate their work
in detail, but rather point out those parts of it which
are of particular interest to us here.

Let us, with LZ, consider the interaction

Lr=N¢/(1—g¢?):.

They show that the correct analyticity properties for
the second-order regulated propagator are ensured if

Foo(x)E (01 T[£I<x)£l(0)] [ 0>
* e *ApR(x)z dz
= (3+ib
Gt )./; 1+ (g+ie)[Ap (x) P22
e “ApR(x)z dz
—ib , (11
)/o 1+ (g—ie)’[Ar® (x) P2 b

where ApE(x)=[Ar(x,m)—Apr(x,M)], and b is an
arbitrary real number.
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In particular,

F(s) =}{im i/e“"xFoo(x) d*x

is real below threshold, and has the cut structure
implied by second-order unitarity. Since 4 is arbitrary,
however, the real part of F(s) is not well defined; it
does not affect unitarity in this order, but obviously
does enter in third and higher orders. In theory, then,
one should go on to calculate higher-order processes to
verify or disprove the unitarity of the formulation.
In practice, however, this seems to be forbiddingly
difficult.

To investigate the meaning of the LZ procedure,
therefore, we look either for simpler models on which it
can be tested, or further properties (aside from uni-
tarity), which the second-order amplitudes must
possess. In Sec. II, we adopt the first strategy, and
investigate a perturbed harmonic oscillator. We find
that in this model, the LZ procedure fails miserably.
In addition, we note in Sec. ITT that it is possible to see
exactly why this happens and to conclude that it is
not just a failure of one particular summation method,
but of perturbation theory itself. In Sec. IV, we examine
the sign of the vacuum energy, and the size of the wave-
function renormalization constant Z. We find that they
are anomalous for certain values of the coupling
constants.

II. PERTURBED OSCILLATOR MODEL

The LZ summation method is evidently in part a
prescription for calculating matrix elements as func-
tions of Ap(x). We can therefore explore this part of
their program in the context of the simplest of all
field theories—the perturbed harmonic oscillator.
Because such models have propagators which are well
defined even in the limit where ¢;=1,, we can investigate
the behavior of matrix elements of equal-time products
of the interaction Hamiltonian; such matrix elements
must have certain properties if the Hamiltonian is
Hermitian.

The investigation of such ‘“toy” models may provide
some insight into the structure of the far more complex
field theories in which we are ultimately interested.
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1 REMARKS ON THE LEE-ZUMINO SUMMATION METHOD

Let us consider, therefore, a perturbed harmonic
oscillator (HO) whose Hamiltonian is given formally by

H=H0+)\U 5
Ho=}(p+og),

and

: 1= gnilign, (2.1)
1—gg* 0
Taking {|#)} to be the usual HO basis states, it is
clear that the matrix elements (m|U|n) are all well
defined. Moreover, since (#|U|m)= ({m|U|n))*, U as
defined is Hermitian. Let us therefore attempt to
calculate the diagonal matrix elements of U(0)U(0),
e., (n|U%|n). Since U is a Hermitian operator, we
know that (x| U?|n) must be positive semidefinite. We
shall now show, however, that a calculation via Wick’s
theorem supplemented by the L.Z summation procedure
leads to values for these matrix elements which are
negative for certain ranges of the parameters w and g.
We begin by considering the matrix element
0] U?]0):

OU©U(0)[0)=(0] Z igmttigntigen|0). (2.2)

A formal application of Wick’s theorem gives

©0|U2|0y= ii‘,o 2 ntDIAH0),  (2.3)

where
A(0)=1(0[¢(0)¢(0)]0)=1/2c.

Of course, the above sum is precisely that which we find
in the corresponding field theory, but now A(0) is well
defined. Let us therefore sum the series & la Borel, as
prescribed by Lee and Zumino:

(0] U2]0)= f e dn S @A (0);  (2.4)
0 n=0

for (g222A?)<1, the series is summed to give
Az/(1—g?A%?), which we then continue to all values
of gAz. At this stage, then,

*© Az
o U2|0)=/ — g,
0 1_g2A222

At it stands, the integral evidently diverges because of
the singularity on the real positive axis, if g is real.
The heart of the LZ procedure is to define the integral
for complex g, and then continue in a special way to real
g. In particular, we are told that the correct prescrip-

2.5)
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tion is to let
<010210>=<—;~+ib>fw-fm—dz
o 1—(g+ie)A%?
e %2
+(§—-zb)/ﬂ wdz, (2.6)

where b is an arbitrary real parameter.

It can be shown that with this definition, U has an
asymptotic series given by the right-hand side of
Eq. (2.3). The prescription 1/(x+i€)=14wd(x)+P tells
us that

o 1
(i) / I S

1—(gt+ie)Az
+(3—ib) / eyl
—p / fr— dz——f(l/Ag) @.7)

We therefore write (0] U2[0)= A(A 00— bBoo), with

0

e %z
Ag=P / —_—dz,
o 1—gA%?
WA
(Ag)?

A similar decomposition is made for all matrix elements;
in general, we will write$

(2.8a)

-BOO=

(2.8b)

| U?|n)=A(A nn—bBnn). (2.8¢)

Our investigation begins by considering the simplest
case, that for which 5=0. We shall later relax this
condition. We then have

Aoo(x)= ip/w

22

ze?l®

1—22

dz, (2.9)

where x=Ag. A moment’s thought shows that while the
integral is indeed positive for sufficiently small x, it
becomes negative for large x; a simple numerical
integration shows that the sign changes at xo=1.05.
We conclude, then, that this simplest of all prescrip-
tions (i.e., with #=0) gives nonsensical results for
Xo<X.

¢ In what follows, we shall restrict ourselves to the case in which
b is the same for all matrix elements. Relaxing this requirement
introduces an infinite number of parameters into the model,
completely destroying its simplicity. We have in mind here the
applicability of the summation method to realistic field theories,
in which the necessity of introducing a new parameter each time
we add an external line to a diagram would severely curtail its
predictive ability.
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[ Fre. 1. Impossible values of b(x). Shading indicates values
excluded by positivity requirements.

It is interesting to observe that precisely this prob-
lem would have arisen in a slightly different guise had
we attempted to calculate the second-order correction
to the ground-state energy in this model. The latter
should, simply by the Hermiticity of H and the vanish-
ing of the first-order correction, be negative. A direct
calculation, however, supplemented by the LZ summa-
tion technique, gives

o g2 (2141)!
AE®@ = —)2 -
=0 (20)271(214-1)
A2 z
=—— e (z; (2.10)
2w o 1—(g/2w)%*?

this is, of course, the integral encountered above.

We expect that examination of the other diagonal
matrix elements will lead to other conditions on the
allowed values of x, and this is indeed the case; un-
fortunately, however, we have been able to find no
simple way of calculating the general diagonal elements
and have, therefore, contented ourselves with the
calculation of {n|U?|n) for =0, 1, 2, and 3. Explicit
expressions for these matrix elements are given in
Appendix A. The reader will notice that their algebraic
complexity grows rapidly with U. Given these expres-
sions, however, it is not difficult to evaluate them

STEPHEN FELS 1

numerically. We then find that in every case there is an
%, such that if x,<w, (| U|n)<0. We list x,:

Xo= 1.05 , X1= 039, x2=0.24, X3g= 0.14.
Observe that x, decreases rather rapidly with #. Since
the summation method with 4=0 only makes sense if
0<x<x, for all n, it is not an unreasonable conjecture
that the only allowed value for « is 0; the trivial case
in which U= :¢: is the only one which does not violate
the positive-semidefinite requirements on the diagonal
matrix elements.

When we go on to consider the more general case in
which 520, the situation is necessarily more compli-
cated. We shall see, however, that in this case, too,
certain large ranges of b can be shown to lead to negative
matrix elements for =0, 1, 2, 3.

Recalling Eq. (2.8c), let us define

bn ()= A nn(%)/Brn(2).

If, for a given x, Ban(x) is positive, then 5>5, makes
Unn?(x) negative, while if Ban.(x) is negative, 6<ba
implies that U,.2(x) is negative. By considering a
single matrix element, therefore, one can no longer rule
out any values of x since, by suitable choice of &, one
can always make that element positive. All that we can
do for a single matrix element is rule out certain ranges
of b as a function of x. But the fact that the same b
must give positive results for ¢/l #» means that for a
given x, there will be an infinite number of conditions
on b, which may be mutually inconsistent. In Fig. 1
we show the forbidden values of 4 as a function of «
which arise from #»=0, 1, 2, and 3.7 It will be noticed
that for x>0.3 there is no value of 5 allowed by all four
matrix elements. The additional freedom provided by
allowing nonzero 4 has really not changed the situation
at all—the summation method has been shown to fail
if £>0.3. Once again, it is not unreasonable to con-
jecture that as we go to larger #, the range of x which
gives a sensible result will contract to the point x=0.
As before, the complexity of matrix elements for large
U has prevented us from verifying that this is indeed
the case. Nonetheless, there evidently are difficulties
which arise in the LZ summation method, and it is
important to gain a deeper understanding of precisely
where the problem lies. It is to this task that we now
turn.

III. INTERACTION POTENTIAL

It has already been pointed out that the matrix
elements U, are all well defined. It should be possible,
therefore, to find an explicit expression U(g,p) which
gives rise to Unn; by so doing, we might gain a more
profound understanding of the structure of the theory.

"For the sake of clarity, we have only shown the region
0<x<1.5, but examination of the numerical results show that
there is no allowed value of b for x>1.5.
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We begin by observing that there exists an extremely
simple method for normal ordering the operator ¢”:

g i=Ha(w'?q)/ (2017)", 3.1)

where H, is the nth Hermite polynomial. This fact,
which is perhaps not as widely known as one might
" expect, may be proved easily.
By Wick’s theorem,

igni=gvttibaugrhAL (3.2)
Thus, if the statement is true for I<#,
n Hy1(w'?q) H,(w'q)
grtli=— — (3.3)

q
20 (2w!2)n1 w2y’

since :g:=g¢. Because
— Zan—l w1/2g)_|_ 2w1/2an<w1/2q) = Hﬂ+1 wl/Zq) ,

we find
:qn+1 :=Hn+1 (w1/2q)/(2wl /2) n+1 . (3.4)
Since the theorem is trivially true for =0 and n=1,
it is true for all .
Let us therefore consider

o Haup('9)

. 3.5
Vo= (3.5)
It is by no means obvious that this series converges,
but we may once again apply the Borel trick, and
redefine V (g) as

(@)
—tdt Z g4 2l+1_._ﬂi~__q_ (3.6)

Vip= / = (21+1)! (2w 1/2)2H—1

The inner sum is now well defined, and not difficult
to evaluate. Letting

w5 =t e
1= - )
fah=2¢ 2w1/2) @1)!
it is easy to show that
1df w 1 g\
== (%) | men
) =0l \w
=exp[ — (¢#/4w)+g1q],  (3.8)
from which it follows that
flg)= —1—6 gﬂl4w(eyl/2tq_e—al/25q) 3.9)
)= :
and | e
= —gt2/dw—t ( pgl/2tq __ ,—gl/2t
V(g ng'/o e (en**ta—e—a*ta)dt.  (3.10)

Because of the cavalier fashion in which we have ex-
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changed the order in divergent sums and integrals, the
above should be viewed with some scepticism, until
we have verified that V' does indeed have the correct
matrix elements. This turns out to be the case, however;
we have relegated our proof of this assertion to
Appendix B.

The behavior of V' at infinity is extremely interesting.
Evidently,

V(g)~=[(mw)'/g] explw(l/g"#F¢)*] (3.11)

as ¢g— .
Up to normalization factors,

(m|4 |”>=fﬂqzﬂm(w”zq)flﬂn(wm) dg, (3.12)

and we see that the matrix elements of V are finite.
Since V2 goes like €22 for large g, on the other hand, its
matrix elements do mot exist. Hence conventional
perturbation theory, i.e., the expansion of wvarious
quantities in powers of the coupling constant A has no
validity at all in this case, because the perturbing poten-
tial is too singular at infinity. The situation is not
unsimilar to what happens when perturbation theory is
applied to 2 potentials.

It is amusing to observe that we can recover Eq. (2.5)
by using our representation of V, and making a patently
erroneous change in the order of integration.

Write

(0] 72]0)= ;1;(;0)/ /

4
Xexp[—s—t— ~—-(s2+t2)}/ dg e
4o

—o0

0

dsdt

X{erPalstt) —go'Pa(s=t) _g= 9 (s=t) | g Pa(stn)} |

(3.13)
Then

% tA
0] V2]0)= / ¢ —di. (3.14)
o 1—gA2p

The case at hand is unfortunate in one respect:
Because V goes to —e? as ¢— —oo, the discrete
nature of the spectrum is completely destroyed. We
wish to stress, however, that this is not the crux of the
matter, as one sees when the interaction \/(1—gg?):is
analyzed. This latter form is equivalent to a potential
V’(g) which goes like e#¢* as ¢— ==, and does, of
course, preserve the character of the simple harmonic-
oscillator spectrum. Nonetheless, one encounters here
precisely the same difficulties which were found
previously.

We are thus led to the conclusion that in these models,
at least, it is not summation methods which are wrong,
so much as the fact that perturbation theory itself is
completely useless. The infinities which Lee and
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(a)

F16. 2. Contributions to Z(p).

(b)

Zumino get rid of are indeed spurious, since one can
construct interactions which lead to perfectly reason-
able, finite level shifts, but they are intrinsic to any
attempt to misapply perturbation theory.

It might seem that the bad behavior at infinity is
merely a reflection of the fact that 1/(1—gg¢?) has a
nonintegrable singularity on the real ¢ axis. That this
is not the case may be readily seen by analytically
continuing our expansion for V to negative g; the
behavior at infinity is still the same.

Since the formal existence of higher-order terms in
perturbation theory depends crucially on the behavior
of the normal-ordered potential at infinity, it is inter-
esting to investigate several others. We list the results
in tabular form below:

U(g): Dominant term at o
@) :A—g™: (v=—n) [1/T () 1 /w) 2wg)?ect?
@) dn(l—g): — o0 /20g
3) :e*a: exp(—1/4w=tyq)
(4) e 2(1—1/w) 12g /B0 (>1)

Interestingly, the last two forms are sufficiently well
behaved at infinity so that matrix elements of the form
{n| (:U:)!|m) will always exist. Field theories based on
interactions such as (3) have been investigated by
Volkov.?

We conclude this section by remarking that the diffi-
culties encountered above are evidently due to the fact
that our interactions are normal ordered. Although it
carries polynomials into polynomials of the same degree,
normal ordering drastically alters functions with any
singularities in the finite plane. This suggests that
nonpolynomial models which are zof normal ordered
might be of interest in the full field-theoretical case.
In such models, however, there exist problems owing to
the necessity of contracting fields at the same point in
space-time, and questions relating to the fashion in
which the theory is regulated become very delicate.’

8 In the light of this remark, the reader may wonder why such
pains were taken in Sec. IT to demonstrate the lack of positive
definiteness implied by the LZ method. This misses the point,
however, for the following reason. The summation method can
be regarded as a set of rules for calculating matrix elements of the
square of a perturbation potential. We could, in theory, find that
potential, given the matrix elements of its square. The results of
Sec. IIT tell us that what we would find in that case could not
possibly be V' (g). The results of Sec. IT, however, tell us that what
we would find would be non-Hermitian, and therefore of no
phy51cal interest.

M. K. Volkov, Commun.fMath. Phys. 7, 289 (1968).

WH M. Fried, Phys Rev. 174, 1725 (1968)
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IV. FIELD-THEORETICAL RESULTS

We shall now discuss several anomalies which exist
in the field-theoretical model. The first concerns the
sign of the vacuum energy and the second the magnitude
of the wave-function renormalization constant Z.

It is easy to show that if the bare vacuum expectation
value of the interaction Hamiltonian vanishes, then
the energy density shift of the vacuum must be negative;
let us therefore investigate the second-order perturba-
tion-theory level shift predicted by Lee and Zumino.
We utilize the expression of Gell-Mann and Low!:

ik (8/N) (0| Uqa(0, —)|0)

AE=lim , (4.1)
02 (0[S0
where a is defined via H = Ho+\e~!*| Hy. Assuming that
perturbation theory is applicable, we discover
AE=—4NF(0), where

F(p)=i / d 6= (0| (1) 22(0)|0).  (4.2)

F(0) in this model has the ambiguous real part alluded
to earlier; let us evaluate it with 5=0. Using Eq. (12)
of LZ, we have, with a regulated propagator,

AR
F0)=2x*[ r%drP
0= / / 1- g‘L’z?[AR(r)]2

AE(r) is positive definite, and behaves like — (1/8x2)
X (M?*—m?) Inr for small », where M is the regulator
mass. It is clear then that for sufficiently large g, F(0)
will be negative, and the vacuum energy density will be
positive. This result may be shown to persist as M — oo

While it is clear that this result in itself is not par-
ticularly serious (since by choosing an appropriate
nonzero b, we can restore the correct sign of the vacuum
energy density), it does place some restriction on the
allowed values of the ‘“arbitrary” parameter . More
importantly, however, we recall that anomalous signs
in low-order matrix elements of the harmonic-oscillator -
model portended the collapse of the entire theory. The
same may be true here.

The second anomaly which we shall explore concerns
the magnitude of Z—we shall see that under certain
circumstances, this can exceed unity.

To second order in A, Z= 14 22" (m?), where Z(p?) is
the self-mass insertion in second order. There are two
types of terms which contribute to = (p2) [cf. Figs. 2(a)
and 2(b)]. The first class, however, does not depend on
p% and we need only calculate those from Fig. 2(b):

“.3)

0

. 2z
(Y= —i/‘e”"”d“x P/ ¢ ————dz
0 1+g2A222

11 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

(4.4)
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[cf. Eq. (A6)]. Regulating and making the usual
contour rotation, we find

472
Dreg(s)=— — /. 72dr I1(s"r)
S 0

0

22—z
XP / e E—— (3.
0 1—g%2AR%(r)

Because I,(u)~ (2ru)'?2¢* for large u, our integral
diverges as it stands. We can, however, evaluate it by
returning to Eq. (4.4), which we rewrite as

‘ ® (3—2) A2
2(p)= —i/e”’"d“x[P/ e‘z——*——dz—l—l:l
0 1_|_A2g222

=—i/ei”'”d4x P/e“z

A2g2 (23 —_ 24)

4.5)

——————dz— (2m)%84(p); (4.6)
14-A%22
we find, then, that for s5£0
472 r*
Zreg(s)=— —/ 7dr I,(s'%r)
si2/,
© AROEE—F)
XP / e 8 T @)
0 1—g*2?AR%(r)
and
2miNg? [
Zreg==1— / r3dr To(ur)Ag?(r)
u? 0
e (3 —2%)
XP/ —dz. (4.8)
o 1—g%2AR%(r)

Once again, we observe that for sufficiently large g,
the iterated integral becomes negative, giving us a Z
which exceeds unity. Now it is well known that for local
field theories, 0<Z<1; on the other hand, models such
as the one under consideration have been shown to be
nonlocal,® so that our result is perhaps not completely
surprising. Nonetheless, it is rather disturbing, in light
of the conventional interpretation of Z as the prob-
ability for finding the bare particle in the physical one.
As before, by admitting nonzero values of 5, we can
always arrange things so that 0<Z<1; thus we again
have only succeeded in placing restrictions on the
allowed values of the arbitrary parameter in the model.

V. CONCLUSION AND OUTLOOK

While our results suggest that the Lee-Zumino
procedure is somewhat suspect, they do not leave com-
pletely groundless the hope that nonpolynomial
theories may provide a complete description of hadronic
physics. The harmonic-oscillator model suggests two
possible ways of bypassing the difficulties encountered.
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We may either try to work with interactions which are
not normal ordered, or retain the normal ordering and
look for methods of approximation which do not involve
an expansion in the coupling constant. Perhaps such
approaches might lead to further progress. It would be
pleasant to find that nonpolynomial Lagrangians are
more than concise mnemonics for approximate calcula-
tion of strong-interaction processes.
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APPENDIX A

The evaluation of the diagonal matrix element
(n| U?|n) is simple in principle but algebraically compli-
cated in practice. We will illustrate how things work for
(1] U?|1), and simply list the results for the other
matrix elements. First we write

A1) =X (1] gttt Dgme, (A1)

Wick’s theorem may be used to write :¢%::¢7: as a sum
of terms of the form :g**7-21:Al Tt is clear that when this
is done, the above matrix element will have contribu-
tions from two sets of terms: (1) those in which all
¢’s have been contracted, and (2) those which have
all but two ¢’s contracted.

Looking at the first type of term, we see that we have
simply

2 (1[1)gat (2n+-1)!,
n=0

which of course is just what we found for (0| U2|0).
Turning to the terms with two uncontracted ¢’s, we
observe that they arise in two different ways: (a) Both
uncontracted ¢’s come from the same normal product,
and (b) one g comes from each.
The contribution from (a) is

2m~+1)!
DI

2 Z <1| :q2;I 1>6m‘n+1A2n+lgm+n

The over-all factor of 2 comes from the fact that we
may select the uncontracted ¢’s from either of the
normal products.

This term, therefore, gives

1] :q%:| 1) i AZnHlg2ntl (94 331,

n=0

(A3)
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vox o— |, -

F16. 3. Contributions to (1|U?|1) (top line) and
to (2| U?|2) (bottom line).

+2X

Using the Borel method, this becomes

1] :g%:| 1) / e 22z Y, (Agz)intt (A4)
0 n=0
or
Ulle/w A (43)
Qe e EA———a3.
q 0 1_A2g2z2
We next look at term (b), which gives
A]:@:[1) 3 Atngin(2n+1)(2n)!
n=0
—(t]q|1) T Amgel 2n42)1- (2n+1)1]
n=0
gy [ e (46)
=(1] :¢?%: e 3.
q ) /0 1—A2g2g?
Since
(ol s ) = (A7)
n| ¥ n)y= ———
1 N (n—1)!
12| Yy=A| e*——ro
aji=a [ o
X (z+2Ag22+222—22)dz, (A8)
letting x=gA, and setting
. e—z/x
ba(,2) =—,
(1+42)amt
we obtain
Alv=af ()
0
1
+2h2(x,2)+ 2k (%,2) }I—dz . (A9)
—z

The LZ prescription for treating the singularities is, as
shown in the text,

qup/w —-27rb/6(z—1).

(A10)
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We conclude, therefore, that

<1 [ U2, 1>=A(A11—b311)

= A[[—]ﬂ (@) 42 f2(x)+2xf3(x) ]—27b

6—1/:: 26—1/2:
x(— + )] (Al1)

242 x3
where
fa(x) ! fwe_z/xzn (A12)
()= ——P dz. Al12
xn+l 0 1__22

Systematic evaluation is made somewhat simpler by
the use of Feynman graphs for various terms. In Fig. 3
we display those which contribute to (1]|U?|1) and
(2| U2|2).

Applying the same techniques, we find the following
results:

A () = =3 fit+4fot Ba*—2x) fs+ (20— 622) fu+24f5,
Bas(x) = (we =/ a%) (—4+4/x)
Ass () = — 5 16 fot (—662+1642) f
+ (240 —1242) fi- (— 168246025 fs
+L(16/3)a?—40x] fo+ (16/3)a? f,
Bas(x) = (re0/a2) (11— 12 /w432 /a2+-32/34%) .

APPENDIX B

In this appendix we shall prove that the matrix
elements of

UEi ghig?t:
1=0
equal those of
1 00
V= —— | e (@tho)—t(ga'tta— =o'/ ta)qy,
2g1/2 0

The proof is by induction. We first write

Um:g, gin q¥*:|m), (B1)
(a5 Ulm)=E ginl ssg®ilm). (B)
Now
g% := (a*—2a%a+a'?)/(—2w),
S0 :
(n] :q?:=— (1/2){[ (n+1) (n+2) 2
X (n+2| —2n(n|+[n(n—1)]"*n—2|}. (B3)
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By Wick’s theorem, however,

Pt i= g8 4-2(214-1) 1?11 (1/2w)
+ (214-1)(21) :¢?1:(1/2w)2.
It is not difficult to see that

(B4)
‘o 1
2 nf gttt mgt= ;(Unm—<nlqlfn>), (BS)

1 = 17 d
=2 QD (n| @ mygt= _<2g;Unm+ Unm): (B6)

w =0 w g

and

(1/2w)2;; Q1) (204-1) (n] :?: | m)g!

1 a? d
= _—_<2g3—Unm+7g2

—U pm+3 Unm) . (B7)
202\ dg? dg §

Putting all of this together, we find
Lo+ (+2) P Unam=—[n(n—1)1"Un-s,m
+ 2og ) gun— Ruwg ' +24-3gwt—2n)U ..

d a?
— (4g+ 7820 ) —Un—2g%0""—Upm. (B8)
dg dg?

Turning now to the matrix elements of V, we first
observe that

va@)=(alm)= ;—Hnwzq) exp(—dog), (BY)

with N,=[2"n!(z/w)!2]/2. Since
H oy yo(0'2g) = 4wg?H n(w'?g) — 4n(n—1)H ns(w' ) ,

(B10)
we have
Na 4w «
Vn+2,m= — —i(m—n)/ e—quI/(q)Hnqu2dq
n+2 . NnNm —o0
—4n(n—1)(Np/Nn2)Vaam. (B11)

To evaluate the integral, we note that we may write

1 o0
V@)= [ el /40~ @/en e
28J0

=(1/29) [y (9) —h-(9)]. (B12)

2377
One then verifies that
d
qhy= $li<g‘”2+g3’ zw‘ld—>hi (@, (B13)
4

from which it follows that

s = Fg—g [ — Qo) Thask (g3

d 3 2d2 h ( 1 )
X —hytgw—h, . B14
dg dg
Using this, one shows that
mrde (°
/ eV (@) H H ndg
NnNm —o0
= —4wg qnm+ (dwg4-6+6g0)V um
d a?
+ (8g+14g%w )~V um+4g%w—V,m  (B15)
dg dg*

and that
[(71«"‘}‘1) (n+2):|1/2Vn+2,m = [n (’ﬂ—" 1)]1/2 Vn_g,m
+ (20g ™) gun— (208 +2+3g0™ —21) V o

d 2
— g+ 7% )V p—2g%0"—V . (B16)
dg dg?
This will be recognized as the recursion relation satisfied

by Unm.

It only remains, therefore, to show that Vo= Uny,.
(Notice that Unn=Van=0 if n=m+24.)

On the one hand, U= (1]|¢|0)=1/(2w)!2. Now

00

i
Vie= 72"(('0/‘”)1/2'/‘ e—wq22gw1/2dq

“1
X / —e WP @1s0) (gta—g—ta)df,  (B17)
0 2g

In the above expression, we may change the order of
integration and make a trivial change of variable to get

o0 0

,L' -
Vie= ~(2m) 5 / e—wlﬂtdt/ eetdg= (B18)
g 0 0

(20)12 ’

It follows, then, that Van=Unmn.



