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We study in detail the implications of the operator formulation of the droplet model. The picture of high-
energy scattering that emerges from this model attributes the interaction between two colliding particles
at high energies to an instantaneous, multiple exchange between two extended charge distributions. Thus the
study of charge correlation functions becomes the most important problem in the droplet model. We find
that in order for the elastic cross section to have a finite limit at infinite energy, the charge must be a con-
served one. In quantum electrodynamics the charge in question is the electric charge. In hadronic physics,
we conjecture, it is the baryonic charge. Various arguments for and implications of this hypothesis are pre-
sented. We study formal properties of the charge correlation functions that follow from microcausality,
T, C, P invariances, and charge conservation. Perturbation expansion of the correlation functions is studied,
and their cluster properties are deduced. A cluster expansion of the high-energy T matrix is developed, and
the exponentiation of the interaction potential in this scheme is noted. The operator droplet model is put to
the test of reproducing the high-energy limit of elastic scattering in quantum electrodynamics found by
Cheng and Wu in perturbation theory. We find that the droplet model reproduces exactly the results of
Cheng and Wu as to the impact factor. In fact, the “impact picture” of Cheng and Wu is completely equiva-
lent to the droplet model in the operator version. An appraisal is made of the possible limitation of the model.
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I. INTRODUCTION

OME time ago, Chou and Yang! proposed an
operator version of the droplet model which had
been developed by Yang and co-workers.? The proposal
was made at that time specifically to study diffractive
dissociation phenomena. As we shall discuss, however,
the operator formulation is necessary even for elastic
scattering in many instances, and, as Chou and Yang
have already pointed out,! the implications of the
g-number version of the model are not always identical
to those of the classical version even for elastic
scattering.

In the present paper, we shall_study in detail the
implications of the operator formulation of the droplet
model. The picture of high-energy scattering that
emerges from this study attributes the interaction
between two particles at high energies to an instan-
taneous, multiple exchange of quanta between two
extended charge distributions. Thus the study of a
charge distribution function and a hierarchy of charge
correlation functions within a particle becomes the most
important problem in the droplet model. We shall study
various properties of the relevant charge correlation
functions, such as their symmetry properties, reality
proper ties, and cluster properties.

We will find that in order for the high-energy limit of
the elastic scattering to be finite, the charge we referred
to above should be a conserved one (i.e., the time com-
ponent of a conserved current). In quantum electro-
dynamics (QED), the charge in question is, of course,
the electric charge; for hadronic interactions, we shall
tentatively identify this charge to be the one associated
with the baryon number conservation. We shall present

36; Research supported in part by AEC Contract No. AT (30-1)
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1T, T. Chou and C. N. Yang, Phys. Rev. 175, 1832 (1968).
2T, T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968), and
references cited therein.

various arguments for this suggestion and study some
of its implications, but a detailed analysis of the existing
data from this point of view is deferred to future
publications.

The operator droplet model, whose precise formula-
tion we shall present in the text, will be put to the test
of reproducing the high-energy limits of QED in per-
turbation theory found recently by Cheng and Wu.3*
We shall find, notwithstanding the earlier assertion by
Cheng and Wu® to the contrary, that the model gives
precisely the high-energy limits of elastic scattering in
QED found by these authors up to, say, the sixth order
in perturbation theory. The impact factor of Cheng and
Wu is essentially the Fourier transform of certain
charge correlation functions. It is perhaps worth
emphasizing that the agreement is not only in spirit, but
in details as well. In fact the “impact picture” of high-
energy elastic scattering of Cheng and Wu? is com-
pletely equivalent to the operator droplet model insofar
as QED in perturbation theory is concerned. This gives
us confidence in the soundness of the operator formula-
tion and in the ability of the model to handle various
relativistic quantum effects.

The plan of the paper is as follows.

In Sec. II, the physical motivation for the droplet
model is briefly reviewed, and the need for the operator
formulation is explained. The density operator in QED
is identified to be that of the electric charge. We present
here the speculation that the corresponding density
operator in hadronic physics is that of the baryonic
charge.

In Sec. III, the precise formulation of the operator
droplet model is presented. Charge correlation functions

3 H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969); 182,
1868 (1969); 182, 1873 (1969); 182, 1899 (1969).

4 H. Cheng and T. T. Wu, Phys. Rev. D 1, 459 (1970).

5 See the first-cited article of Ref. 3.
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are defined and the high-energy limit of the 7" matrix is
written out in terms of them.

In Sec. IV, we study formal properties of correlation
functions which can be deduced from such general
principles as charge commutation relation at equal
times, T', C, and P invariances, and charge conservation.
Perturbation treatment of the correlation function is
outlined here, and cluster properties of the correlation
functions are deduced. A cluster expansion of the T
matrix at high energies, analogous to that in statistical
mechanics,® is developed; in this connection we observe
the familiar exponentiation of the interaction potential
at high energies. In this section we also explain why the
density should be a conserved one in order for the elastic
scattering cross section to have a finite limit.

In Sec. IV, we compare the model with the high-
energy limits of elastic scattering in QED studied by
Cheng and Wu in perturbation theory. The impact
factor of the photon is studied in detail, and the
equivalence of the “impact picture” and the droplet
model is established.

In the concluding section, we shall appraise a possible
limjtation of the droplet model and say a few words
about the implication of the model on high-energy
collisions in"general.

II. DROPLET MODEL

To understand the motivation for the droplet model
of Chou and Yang,? let us consider the passage of light
through a medium containing scatterers in the eikonal
picture (i.e., in the approximation of assuming the
optical path to be a straight line). The amplitude at the
point 2 along the optical path which is characterized by
the impact parameter b satisfies the equation

d
a—z'\I/(b,Z) = —p(b,z)\I/(b,z) ) (21)

where p(b,z) is the local density of matter responsible
for absorption and dispersion (p is in general complex).
The transmission coefficient S(b) is given by

¥ (b, =) *
m =exp[—/iw dz p(b,Z):‘ (22)

and the T matrix for the scattering by

S(b)=

T(q)=—i / @2 e~ [S(b)—17. (2.3)

In analogy to this, Chou and Yang are led to postulate
that the high-energy limit of the elastic collision of two
hadrons 4 and B is given by

S(b)=exp[/d2x/d2y aA(x)aB(y)V(b—}—x—y):l, (2.4)

¢ See, for example, J. E. Mayer and M. G. Mayer, Statistical
Mechanics (Wiley, New York, 1940).

BENJAMIN W.

LEE 1

where o(x) is the two-dimensional density of “opaque-
ness’’2:

o(x) = / &z p(%,2), 2.5)

o(x,y,2) being a spherically symmetric distribution
function; V is a function of two-dimensional length
which is put in to represent an instantaneous, long-range
interaction among constituents of hadrons 4 and B.
The reason that a two-dimensional distribution is
relevant in the above formula is that, at high energies,
longitudinal distances suffer Lorentz contractions, so
the target appears as a disk to the projectile (and vice
versa).

Equation (2.4) is essentially classical in that o4 () is
a ¢c-number distribution. In order to discuss diffractive
dissociations, Chou and Yang! proposed a ¢g-number
version of Eq. (2.4). In the operator version of the
droplet model o4(x) is replaced by an operator. In
quantum electrodynamics, it is natural to identify p(x,2)
in Eq. (2.5) with the charge density operator:

o(x)=[:o dz jo(x, 2;t=0), 2.6)

Ju(@) =T (x)yu¥(x),

where ¥(x) is the electron field operator (in the Heisen-
berg picture). An operator transcription of Eq. (2.4) is
in any case necessary in order to discuss, for example,
Delbriick scattering: The charge distribution of a
photon is identically zero, ‘

a,(X)=0,

so the classical expression (2.4) cannot describe the
high-energy limit of Delbriick scattering correctly. In
quantum electrodynamics, V(b) in Eq. (2.3) comes
from Coulomb potential, so we assume

V(b)=62/ dt/ dz Dp®(b, z, t=0)
eiq b

d%q

(2—‘”)_2 Q+u?

where D p*(x) is the usual Feynman photon propagator
and p? is a fictitious photon mass.

The operator version of the droplet model will be
developed fully in Sec. ITI. Let it suffice to say for the
moment that we will be led in this model to describe
high-energy scattering in terms of instantaneous, two-
dimensional correlation functions of charge densities of
participating particles. Thus, the configuration space
description of particles in terms of charge densities
acquires a paramount importance. While our considera-
tion will be oriented primarily toward QED in this
paper, this aspect of the model may be generalized

=e%
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1 OPERATOR FORMULATION

readily to hadronic strong interactions. The analog of
the electric charge would be the baryonic charge; both
charges are conserved, so that many of the results we
shall obtain in QED (such as constancy of high-energy
cross sections) which follow from the conserved vector
interaction should also hold in strong interactions if the
density of “opaqueness” is identified with the baryonic
charge of the hadron. Furthermore, the selection rule
observed in hadronic diffraction scattering, i.e., no
exchange of internal quantum numbers, follows im-
mediately with this identification. We do not know
exactly what mediates the force between baryonic
charges, but presumably it is of very short range
[<(1BeV)™1], as the absence of any particle with the
vacuum quantum number in the energy range below
2 BeV may suggest. In any case, it is likely that the
observed diffraction peaks are not the reflection of the
“potential” V in Eq. (2.4), but rather the reflection of
an extended charge distribution inside the hadron. For
our considerations, what matters primarily is the
question “how is the baryonic charge distributed in a
hadron?” and not the question ‘“what carries the charge
within a hadron?” The second question and various
models for answering it (partons, quarks, etc.) are of
interest to us only insofar as they help us to answer the
first question.

III. OPERATOR FORMULATION

Let us first consider scattering of a particle (electron,
positron, or photon) in an external field. The operator
droplet model gives the high-energy limit of this ampli-
tude T'(p,q) as

T (p0) 256 —1)Pa~0)
~tim (¢ —3¥'| [ e

X[S() =11 (p+39)N), (3.1)
where N and A are helicity labels of the initial
and final particles. S(b) is obtained from Egs. (2.4),
(2.6), and (2.7) and the external-field approximation,
o3(X)=28(x):

S(b) =exp|ii)\/d2x a(x)F(b—l—x):l R 3.2

where

<7(X)=/°o Jo(x, 3; 1=0)dz, (3.3)

F(b)= f (2—1r)-2rﬂq b (3.4)

AN=—Z¢%.

2+”’
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Expanding the exponential (3.2), we obtain
i(2m)*s(p—p")0*(q—9) T (p,0)

(" B
fdzb 8_"1"hl:H [dzsz(b+X@):|
=1 p! =1

-3
SO [o(x)- o) | pHON).

X lim ((p’— 3.5)
p->0

An important property of the matrix element appearing

in Eq. (3.4) is its behavior under translation (we shall

omit helicity labels when they are not essential):

@' —34q]0(x1) - - -0(xn) [ P+3Q)
=X p' —3q|o(X1+2)o(Xo+2) - - -0 (Xn+2) [p+3Q).

(3.6)

We now define the quantity (o(X1)-:-o(X.)) by the

Fourier transform:

03— ootz =l [ o

X' —3)N |o(x1) - - - o(Xn) | @+FDN) .

Equation (3.7) can be inverted: By virtue of Eq. (3.6),
we may write

3.7

@2m)é(p—p' No(xit2z)- - o(x0t2))
d*qg
=lim [ ——e 0 xp'—iq|o(x1) - - o(%a) P30
p—>0 (27I')2
Therefore,

lim (' =3O\ [o(x1) - - -0 (xa) [ (PHFDN)

~@rystp—1) [ s en

X{o(x14+2) - - -o(Xn+2Z) )arr.

Substituting Eq. (3.8) into Eq. (3.5), we obtain, after
some manipulation, the desired formula:

w (ix)n<ﬂ /deiF(b—I—Xi))

n=1 pu! \i=1

X{o(x1) -

In order for the formula (3.9) to be meaningful, the
right-hand side of Eq. (3.7) must have a finite limit.
T(p,9) in Eq. (3.9) will then be independent of p, the
incident energy, and the elastic cross section

3.8)

iT(P,q)=/d2be &

o(X)wn.  (3.9)

. do
lim — ~ l T(P)q) I 2
p>o Jy

will have a finite limit.
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Equation (3.9) can be generalized to the case of elastic
scattering 4(p+3q, \)+B(—p—3q,n) = A(p—3q, \)
+B(—p+3q, #):

@)"

3 lim TAB(p,q) =2 / Pbeiady
P>

n n!

X{o(x1) - -0 (Xn) ant

X{o(y1) - - - o (¥n))—p—u"X ()52, (3.10)
where sp is the spin of the particle B, and
2a6(p—p")(o(X1) - - - (Xa) A

~tim [0 ~a,2)lo(x):+-o(x)
X[4(p+3q,N). (3.11)

In deriving Eq. (3.10) we have made use of the fact
that the initial and final states of particle B are given by’

(=)z=#Be 72| B(p=£3q, up))
=(—)»#PY|B(p=£3q, u5))
=n5(—)*5#P|B(p=£3q, —uz))

=773(—-)8Bpe_”"3|8(p:|:%q7 _':uB>>7 ]773| =1
where ¥ =Pe~"/2 P being the parity operator, and the
fact that

PeimTig(X) eI P-1=¢(x).

Here again, the right-hand side of Eq. (3.11) must be
finite in order for the elastic cross section to reach a
finite limit as p — . As we shall see in detail later, the
limit of Eq. (3.11) exists if ¢(x) is the two-dimensional
projection of a conserved charge density (i.e., the time
component of a conserved vector current). In the follow-
ing we shall assume o(x) to be of the form

a(x)=/ dz jo(x, z; 1=0)
with 8#7,(x)=0.

IV. CORRELATION FUNCTIONS

In the droplet model, the high-energy limit of elastic
scattering is expressed in terms of correlation functions
of the form of Eq. (3.11). In this section we will study
some formal properties of these correlation functions.

7M. Jacob and G. C. Wick, Am. J. Phys. 7, 404 (1959).
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A. Symmetry

The correlation function {(a(x1)- - -o(Xn))ar is a

symmetric function of its arguments xy, ..., x,. (4.1)
This is so because ¢(x) and ¢(y) commute:
Lo(x),0(y)]1=0. (4.2)

Equation (4.2), in turn, follows from the commutativity
of charge densities at equal times.

B. Reality

For the purpose of this discussion it is convenient to
define single-particle states which are eigenstates of
combined TP operation. Recalling that, according to
Jacob-Wick convention,”

TP [pa)‘>=n(_)8ﬁ)\lp: _>\> )

where 7 is a phase factor and s is the spin of the particle,
we define

Ip; [N )= 12|, W +(=)p, =N, )
Ip; I\ =)=GA2LIp, V= (=) p, =M.

Both are eigenstates of 7P with the eigenvalue 7 (note
that T is antiunitary). Denoting A= collectively by c,
we define

271'5(?—?')<0'(X1) .. 'O'(Xn)>c’c

4.3)

= / q(pt3g, ¢ o(x1)- - -o(x)[p—14, ©).

The property
TP jo(x)(TP)™ =+ jo(—2)

implies

[(o(x1)- - -o(Xn))ero I =(o(—%1) " - - 0(—%n))erc. (4.5)

C. Charge Conservation
The quantity
/d%c a(x)=/d3x Jo(x;1=0)=Q
is the charge operator. Therefore,
/dzx(a(x)a(xl)- - o(Xa))A
=Qualo(x1)- - -o(xn))*, (4.6)

where Q4 is the charge of the particle 4. In particular,
for neutral particles we have

/d%c (6(x)o(x1)- - -0(X.))A=0 (4 neutral). (4.7)
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The remaining properties of correlation functions
which we shall discuss are intuitively plausible, but I do
not know of any general proofs. They have, however,
been verified in perturbation theory and we shall
indicate arguments for them based on perturbation
theory. First, a few words about perturbative con-
construction of the correlation function are in order. In
perturbation theory we may write® (in the following, T
means the time-ordered product, disregarding dis-
connected vacuum-to-vacuum diagrams)

210(p—p') (o (x1) - - -0 (Xn) )4
d%q
(2m)*

><T<ao(x1)- - o(Xn) exp[—i /, Z dtH I(t):D

X[A@@—39™),

(4@ +39)™|

=lim
P—)@

4.8)
where, in QED,

O’(](X)Z/ dz Vin(%,2; 0)y0¥in(X,3; 0) (4.9)

and H(f) is the interaction Hamiltonian in which field
operators are replaced by their “in”-fields. Since oo(X:)’s
refer to time /=0, Eq. (4.8) may be written more
conveniently as

tin [ 404 @-+a)"|

x[T exp(—i/ow dt H,(z)>:]ao(x1) « e oo(Xn) |

X[T exp(—iﬁi d/'HI(t’)>:||A(p——%q)i“). (4.10)

The perturbation expansion is obtained, in the usual
manner, if we expand the time-ordered exponentials in
Eq. (4.10) and made use of the Dyson-Wick contraction
theorem. The integrations over space-time can be done
most easily in the following manner: First do integra-
tions over the third space coordinates, z’s (longitudinal
to p), thereby obtaining 6 functions expressing conserva-
tion of longitudinal momenta; then perform integrations
over time [o*dt and [_0d¢ implied in Eq. (4.10).
There results a product of energy denominators of the
form of (E,—E;)~!, where E, is the energy of an
intermediate state and

E=[p*+GO*+ma®]"
~p+(1/2p)[(39)*+ma®] as p—eo,
8 See, for example, J. D. Bjorken and S. Drell, Relativistic

Quantum Fields (McGraw-Hill, New York, 1965), Chap. 17,
pp. 174-184.
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ma being the mass of the particle 4; now take the limit
p—oo. Under this limiting process only a subset of
terms survives and has finite limits. If o(x) referred to
a scalar density, no term would survive; if o(x) referred
to a component of a tensor or a nonconserved vector the
limit would not exist.? The terms that are nonvanishing
in Eq. (4.10) can be represented in terms of the “impact
diagrams” of Cheng and Wu.* Impact diagrams are
time-ordered diagrams in which time runs from left to
right and in which there are no vertices at which
particles are created out of (or, annihilated into)
vacuum. The vertices at xy, . . ., X, must be on electron
or positron lines and cannot create or annihilate an
electron pair. The terms which do not correspond to any
of impact diagrams have energy denominators which are
in general of order of p and make vanishing contribu-
tions to Eq. (4.10).

D. Separation of Positive and Negative Charges

The electron field operator ¥(x, t=0), x=(x,y,2), in
the Heisenberg picture can be decomposed as

vz [ nl5)

X[b(D,5)u(p,5)e? *+d1(p,s)e(p,s)e ],

where b(p,s) and d(p,s) are annihilation operators, %(p,s)
and o(p,s) are the usual spinors, and E=(p2+m?) /2
We shall write

dSP m 1/2 ]
Y (x,0)=2 /— <—“) b(p,s)u(p,s)e® ',
<) ene ,

E
\IJ(—>(x0)=2/ @b (ﬁ)lﬂd]‘(p s)o(p,s)e ®*
) - (27‘_)3/2 E y ) .

We now assert that
C{CITERY6 )
=Y ¥ X (e"(xX)o™(x) - 0™ (Xa)),

1=+ 9=+ in=x%

(4.11)

where

ai(x)=/ dz T B (x,3; 0)yo¥ ¥ (x,2; 0),

i.e., ot (¢7) is the charge operator for electrons (posi-

9 The statement here is related to that of S. J. Chang and
S. Ma [Phys. Rev. Letters 22, 1334 (1969)] that the eikonal phase
vanishes for a scalar exchange, has a finite limit for a vector ex-
change, and diverges for an exchange of J>2. In this connection,
it is well to recall that the photon impact factor of Cheng and Wu
(Ref. 3) is finite, precisely because the gauge invariance assures
thé cancellation of divergent parts. The case of an exactly or
approximately conserved axial-vector current has not been
studied.
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trons). In perturbation theory, Eq. (4.11) is true
because terms in o(x) other than ¢*, such as terms
containing bd or b'd’, make vanishing contributions to
Eq. (4.10).

The expression (4.10) may be written as

lim /dzq 2 2@ )™

XT exp(—i/ dt~H1(t))|ai">

0
X{aim|oo(x1)- - o0o(Xn) |/ )"t |
0 ;
xtesp(~i[ am)l -1,
where the summations are over a complete set of “in”
states, @ and «’. The matrix element
(@™ oo(X1) - - - 00(Xn) |0/i)

‘may again be interpreted as

(@™ oo(X1) - + - oo(Xa) |0/

ST T (o))
X{oa? | oo(X2) |@a™) -« - {an1| oo (Xa) [/ ).  (4.12)

We are interested in the case in which a number £ of
a(x)’s act on the same particle which carries a positive
fraction <1 of the incoming longitudinal momentum
#. In such a case the term on the right-hand side of
Eq. (4.12) will have a factor

s fon o fon-

X(T(Fp+) [ovt (1) | p1)
X(T@0) ov(x:) | 7(ps)
X -+ +(e¥ (1) | ov* (i) | €7 (Bp+1))
= () 2w (Bp —B'D)e ) 2103 = 2) (e —Xs)
Yoo 52(xk_1_xk)
= () lim (D) o () | (3p-+1)

Xo6¥(X1—Xq) - - 0*(Xp1—Xi). (4.13)

BENJAMIN W. LEE 1

E. Cluster Property

From the above observation we infer

(ot(x1)- - o (Xn)o™ (¥) - - -0 (¥m))

=% ¥ 0T IT 8 —x)]

N) (M) =1 j>1
M
XL (=) 11 (51 —y,)]
k=1 i>1

XrE D@ x5 g, Wy, D) (4,14)

where the summation 3 () is over all possible partitions
of m ordered points X;- - -X, into IV nonempty sets .S,
S2, .., SV 1<KN<#n; x;W, =1, ..., n; are the points
in the set SY I=1, ..., N; > 11" n;=n. The product
II/ is over all sets among S%, S% ..., S¥ which have
more than one element. Similarly for >, y:®, and
IT+. The irreducible correlation function

T(X]‘ XN Y1t 'YM)

corresponds to the impact diagram in which the
vertices at X;- - - Xy act on IV distinct electron lines, and
the vertices at y;- - -y act on M distinct positron lines.

It is important to note that Eq. (4.14) is a definition
and at the same time a theorem. It is a definition for the
irreducible correlation function 7(X;- - - Xx; ¥1- - *¥ar); it
is a theorem for other lower-order irreducible correlation
functions which are coefficients of products of 6
functions.

In terms of the irreducible correlation functions,
Eq. (3.9) can be written as

lim 4T )—/d% e—u-bzz(—)M
p>e b= N M NIM!

x[IT d2x£f+<xi+b>1[f]’: / dzyff-(yi+b):|

=1
Xr(X1 Xy ¥1 - yu), (4.15)

where
Fa(X) =R _1 | (4.16)

In QED, Eq. (4.16) is the familar exponentiation of the
Coulomb potential.’® The derivation of Eq. (4.15) from
Egs. (3.9) and (4.14) may appear tedious, but involves
merely an exercise in combinatorics.

For two-body elastic scattering, Eq. (3.10) may be
written as

ety [oven B R R SR )i o)1 o) )

XA (Xe XN V1o oY) T B (210« 2215 01

. 'O)K)S(Xl' XN V1Y Z1ec cZL; @10 (:)K]b)

(.17)

10 For recent discussions, see H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969); S. J. Chang and S. Ma, ¢bid. 22, 1334
(1969); H. D. 1. Abarbanel and C. Itzykson, zbid. 23, 53 (1969); H. Cheng and T. T. Wu, Ref. 4.
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The factor S({x}; {y}; {2z}; {@}|Db) is defined as follows:

S({x}; {y}; {z}; {@} |b)
=TI f+&i—zi+b)[] f-(xi—wi+D)
X1/ (yi—ze+0)] 1 (yi—ei+Db),

where the summation is over all possible products of
the form on the right-hand side of Eq. (4.18) satisfying
(a) and (b): (a) Any particular factor fi(x;—zx+b),
f-(xi—ortb), f(yj—zi+b), or f1(y;—e:i+b) appears
at most once in the product. (b) Each x;, y;, Zk, and o
appears af least once in the arguments of factors f,, f_
in the product. Each factor f or f_ may be represented
by a line connecting a point in the set

(4.18)

aE{X1' . 'XN)yl' . .yM}

to a point in the set
BE {Zl' cZL,@1° '(ﬂ)K} .

The summation in Eq. (4.18) is over all diagrams in
which every point e¢&a is connected to at least one
point &R, and every point d&f is connected to at
least one point ¢&ea, and in which no pair (a,b), e&a,
b&p is connected by more than one line.

The Glauber theory of nuclear diffraction scattering!
is obtained if we identify F(x) in Eq. (4.16) with a
suitable two-nucleon potential, ¢+(x) with the two-
dimensionally projected nucleon density, and if we set

(X1 Xn; V1o yu)=0 for M>1

in Egs. (4.15) and (4.17). We shall not elaborate on this
subject further in this paper, since the results are
readily available in the literature.

The properties of the correlation function

(o(x1) - - - o(xn))
we have discussed imply the following.
() 7(x1---XN;¥1---Yu) is symmetric in ii,
i=1,...,N,and iny;, j=1,..., M. (4.19)
(i) 7({x},{y}) is a real function in the sense that
[ro(x} Ay I =roc({=x}{=¥}), (4.20)

where ¢ and ¢’ label combination of helicity states
which are TP eigenstates.

(iii) [ t4(z,%y- - XN V1 c - Yar)
—|—TA(x1. < XN ZY1- - .YM)]
=(Qa—N+M)r4(X1 - Xy; Y1 *Va1)

where Q4 is the charge of the particle 4. Equation
(4.21) follows from Eq. (4.6).

(4.21)

1 R. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Britten and L. G. Dunham (Interscience, New York, 1961).
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V. IMPACT FACTORS—DELBRUCK SCATTERING

In this section we wish to demonstrate that the con-
siderations on the operator droplet model of the previous
sections produce the high-energy limit of QED in
perturbation theory found by Cheng and Wu. We have
already seen that the perturbative construction of the
correlation functions leads naturally to the concept of
the impact diagrams introduced by Cheng and Wu, and
that the cluster property of the correlation functions
leads to the exponentiation of the Coulomb potential in
high-energy scattering. We need further to show that
the droplet model gives the high-energy limit for elastic
scattering which agrees exactly with that found in
perturbation theory. This will be done by establishing
the connection between the correlation functions of the
droplet model and the impact factors of Cheng and Wu.

Consider first the elastic scattering of an electron in
an external field. In the approximation of retaining only
the term with N=1, ¥ =0 in Eq. (4.18), we obtain

lim iTe(p,q)g/dzb e—i‘l‘b/d?x f+x@4Db)mac(x;), (5.1) -
p->0
where

2rd(p—p ) Taa(x;)
=lim f d*g (e (' +39, )|
>§/aj«mmonr@—%mx»

=/dz et —pz |im

p->0

d¥q

Xerx(e=(p'+3q, M) | jo(0) [e-(P—3q,N)).  (5.2)
Therefore, we obtain
dq . 1
i (X’)*/ @) Qa)
X[F1(g?) — (i/m)Fa(g®) - DX Inn, (5.3)

which expresses the correlation function 7(x;) in terms
of form factors F; and F,. If we define the Fourier
transform of fy

[P
fu= [ S,

we obtain
lim i7(p) = (21) (@
X[F1(g®) —(i/m)Fa(g?) - (HXQ) .

Next let us consider the elastic scattering of a photon
in an external potential. To order «, only the irreducible
correlation functions with ¥ <1, M <1 are nonzero, so

(5.4)
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that Eq. (4.18) becomes

lim 577 (p,q)~ / @ e
p>0

X / d’x / d*y[ = fo(x+b) f~(y+b)7(x; ¥y)

+8*(x—y)7(x;) f+(x+b)
—0*(x—y)7(;y) /-(y+b) .
Making use of the relations
(x;)=—7(%),

as follows from the charge conjugation properties
Cot(x)C'= —¢=(x) and C|y)=—|v), and

S+ @)+ f-x)=—f(x)/[-(x),

we rewrite Eq. (5.5) in the form

(5.5)

lim iT7(p,q) = — / 4% e~
P>

% / & fo(x+b) / &y [ G+ o (xy), (56)

where
D (x,y) = (X,y) +82x—y)nn7(x;) . (5.7)

The configuration “impact factor” I(x,y) satisfies the
condition

/d2x I)\’K‘Y(X7Y> =0 )
(5.8)
/dzy L (x,y)=0,

because, according to Eq. (4.24),

/d% ' (XY) =naGy) = —mn(y3),

fdzy na(XY) =—nna(X;).

We note further that, to order «,
L (%,y) = (X)o= (¥)a "+t (®) ot (¥) .

We now define the Fourier transform of 7(x,y):
Tmﬁ(q,r)=/d2X gia-X

X / PV ¢ ¥ (K1Y, X—3Y),  (5.10)

BENJAMIN W. LEE 1

d%q
(2m)?

d%
(2m)?

X il x—irr/2) Y7 (q ).

or
-’wx’(X,Y)=/

We assert that Ina7(q,r) is (perhaps to within a
numerical factor) exactly the impact factor of Cheng
and Wu. First, the scattering amplitude (5.6) is written
in momentum space as

lim 273,\"(p,q)
p—>0

d¥ : )
__ / . 7)2f+<r+;q>f_(—r+%q>h,ﬂ(q,r), 5.11)

which agrees with the result of Cheng and Wu as to the
dependence of the high-energy amplitude on the impact
factor. We note further that

Iin(g,39) = / d’ e'* / d?y T (x,y)

=0

b

owing to the second of Egs. (5.8). The first and the
second of Egs. (5.8) imply
L (g, £39)=0, (5.12)

which are consequences of charge conservation. To
show in detail that Ty\?(q,r) we defined is identical
with the quantity Cheng and Wu computed, we begin
by substituting Eq. (5.9) into Eq. (5.10) and recalling
Eq. (3.7):

@m)s(p—p ) In7(g,r)

d2X 6{q~X/d2Y eir-de2q/

Xy @' =34, \) [t X+3Y)o (X —2Y)
+ot(X+3Y)ot (X—5Y) [v(0+324, V)

Making use of the translational invariance of the
matrix element, we obtain ’

(2m)s(p—p") a7 (g,1)

=lim
p-—>00

(5.13)

—lim [ % e/ —39, V)| o (2)e(—4)

p>o

+ot(3z)ot(—32) v (p+3q, V). (5.14)
If we now apply Eq. (4.10) and the discussion following
it in Sec. IV to the right-hand side of Eq. (5.14), the
result to order « is precisely that of Cheng and Wu com-
puted in terms of impact diagrams:
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Ii( ,f)“'a/
! (
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gy 4 IE@O=ENITEDN), (E)=1DF), (5.15)
: 1; [ oeC0a 4280 —8)pip ~10°00) T~ 3000 T Lo+ 1) T
o —[550*+28(1-8) (b~ 00) L@~ QP +m L@+ QP +mT 1), (5.16)

where m is the electron mass and Q=2%r+3(1—28)q.

It is instructive to study the impact factor in the
configuration space. After some calculation, the spin-
nonflip impact factor I7(x,y) turns out to be

]'y(x’ Y) = T‘Y(X; Y)+52(X"Y)TV(X;),
(x; ¥)~ / d88 LB+ (1—B)y]
0

X{(1=28+26)[VKo(m|x—y|) T
—Ko(m|x—y|)VKo(m|x—y])}

m(x;)=—77(; X)

~ /0 1 dﬁ{ (1—26+262)[VK0<%IX1 )]

—K0<%IXI>V2K0<%IXI)}, (5.17)

where K,(2) is the usual, modified Bessel function. The
8 function in Eq. (5.16) expresses the center-of-mass
effect that the electron and positron (virtual) must be
found in opposite directions along a line passing through
the center of the photon. Equations (5.16) and (5.17)
tell us that the radius of the photon as seen by an external
electromagnetic field is 1/2m,.

The foregoing example is instructive in that this
provides us with a guide in understanding the mecha-
nism of scattering of hadrons like pions which are
neutral in baryonic charge. As we have stated in Sec. II,
our view is that the hadronic diffraction scattering
proceeds much the same way as the diffraction scatter-
ing in QED with the baryonic charge playing the role
of the electric charge. In this picture, the high-energy
interaction of pions is due to the polarizability of
positive and negative baryonic charges. A phenomeno-
logical analysis along this line of thought is in progress.

" VI. CONCLUSION

One may say that all we have done is to take the
operator formulation of the droplet model seriously, and
work out some consequences of the model. We have in
particular found that the model gives the high-energy
limit of elastic scattering which agrees exactly with that
found in perturbation theory of QED.

But that would be losing the perspective. I hope that
what we have done is to lay the foundation of a theory
of high-energy scattering of hadrons formulated in con-
figuration space in terms of correlations of charge
densities. We do not know what is in store for this
theory, but we must find out by looking at its pre-
dictions as to elastic scattering, diffractive dissociations,
multipion emissions, etc., and testing the unitarity
aspect of the theory. We are gratified to know that this
theory passed one test—that of QED. ,

We must end this paper with a critical appraisal of
the possible limitation of the droplet model. First, we
recall that Cheng and Wu!? found certain higher-order
diagrams (eighth order and higher) to have the s(lns)",
n2>1, behavior at high energies. The absorptive parts
of these diagrams are typically those, or similar to
those diagrams discussed in the multiperipheral model.
The droplet model is incapable of describing the pro-
cesses described by the multiperipheral model.’® Since
the s(lns)* behavior is not allowed by the Froissart-
Martin bound, these diagrams must sum up in some
sensible manner in order not to violate this bound. When
they are summed, the effects of these diagrams may or
may not dominate over the effects described adequately
by the droplet model.

If these multiperipheral graphs in some generalized
sense are more important at high energies, then the
secondaries in high-energy collisions are produced
through ‘“‘pionization,” and the droplet model will be
inadequate to describe high-energy elastic scattering.
On the other hand, if the sum of multiperipheral graphs
actually has a slower rate of growth at high energies
than those described by the droplet model (or the
impact picture of Cheng and Wu), then the secondaries
in high-energy collisions may best be looked at as
fragmentations of the target and the projectile. That
the latter possibility prevails is a basic premise of the
droplet model.

2 H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).

13 In the sense that such diagrams as are usually discussed in the
multiperipheral model give rise to divergences in the momentum-
space correlation functions (or impact factors), indicating that
such Feynman diagrams have the asymptotic behavior s(Ins),
n>1. This is not to say that some suitable modification of the
method discussed in this paper would not be able to overcome the
difficulty associated with the presence of a logarithmic factor in
the asymptotic behavior of the full amplitude. However, we have
not considered such matters in detail in the present paper. I am
indebted to Dr. T. T. Chou and Dr. R. Suitor for a discussion on
this point.



