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get the following expression for the two-body amplitude: reduces to solving the one-body Klein-Gordon equation
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Let us observe that
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dt D~P(xs —x,—est) =-
4ir lxs —xil

Using the time independence of this result and perform-
ing the translation xi~ xi+xs, we can factor out
p(qip)e'&i *s. The integral over xs gives finally 5(pip)
)&6(') (qi —qs) =6'4) (qt —q&), since g&' 0. Therefore the
two-body amplitude, in the limit m2 large, is propor-
tional to the scattering amplitude of the first particle
in the static field, AP(xt) = (es/4ir)(1/lxil), produced
by the second particle in its rest frame. If we are
interested in finding the bound states, the problem

eye2 1
pi' — —(pi)' —mt' &=0.

4~ lx, l

For spin- —,
' particles the same argument can be

repeated. In this case, it leads to the Dirac amplitude
of the light particle in the Ceulomb field produced by
the heavy one. But another effect can be included here,
if one regards the magnetic moment of the heavy
particle as a nonvanishing static property. Then, in
addition to the Coulomb field, the heavy particle
produces a magnetic field responsible for the hyperfine
splitting of the Dirac levels. We then have to add an
extra term in the potential equal to (es/2ms)osl'"P„„',
where we can even replace e&/2nz& by the actual magnetic
moment trs=(es/2m. )(1+x). In the same spirit as
above, we have to neglect the noncommutativity of
the spin matrices and set a-20" 0 as if the operators
were replaced by their mean values. Following the
previous recipe, we 6nd that particle one moves in a
static field with four-potential given by

e2 0'2

Ap(xi) =, A(xi) =ps cu»*,
4~I»l
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We propose a parameter-free regularization of the one-loop planar unitary dual diagram, very similar to
the renormalization in quantum 6eld theory, compatible with duality, Regge behavior, unitarity, and
crossing symmetry.

I. INTRODUCTION

ECENTLY, there have been several attempts' '
to put the Veneziano model on the same footing

as quantum electrodynamics, by considering the A"-

point functions as tree diagrams of the theory. This
leads to a finite result when factorization problems are
neglected. ' However, when factorization is taken into
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account, the one-loop diagram exhibits an exponential
divergence due to the large degeneracy of levels. ' '

It would then seem that a renormalization procedure
would need an infinite number of subtractions, and
thus an infinite number of parameters. However, we
show that in the case of the one-loop diagram, the
divergent part of the new trajectory, n, +g'Z(n&), is
independent of t and can be removed by a single sub-
traction. This can be extended to the amplitude itself
and one finds that the subtraction of a crossing-
symmetric, Regge-behaved, dual amplitude, having
only single and double poles in the external variables
s and t, is enough to make it finite. We then find that
the renormalized amplitude still Reggeiaes at s ~ —~.
We have extended this to the case of the one-loop
diagram with S external legs.
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Our regularization technique is very different from
any procedure using finite cutoffs, which essentially
amounts to the subtraction of an entire function of s
and 3.

Because we subtract a sum of poles and double poles,
our process is rather similar to the renormalization of
second-order diagrams in field theory. So, one may hope
that the higher-order diagrams can be made finite by
the counter terms thus defined.

lnx1 lnxs
Ti(xi,xz,x„x4)= exp

lnm

(1—xi")(1—xp") (x2"+x4")

n(1 —w")

T2($1 $2 $3 $4) Ti($2 $1 $4 x')

&s =&0 g 1 2 ~

(3)

F(-.,- ) =g (--.)- D.(--.)1'(-- )~(- )+I'(-- )P(t)

II. FORMAL REGGEIZATION OF SECOND-ORDER e '", T1, and T2 are well-behaved functions when z —+ 1.
FOUR-POINT FUNCTION AT s —+ —~ When s~ —ppp, F(n„n,) Reggeizes and one finds,

neglecting terms of order 42, —' ' lns,We start with the second-order four-point function
as computed in Refs. I and 2:

1

F(pi, pz, pp)P4) = —zg' d'13 dxidxzdxpd$4
0

where

Cv "P*p3
+exp »1' in(, 1=—w~)

Vp(Z) = II (1—Z'")
n=l

'M=X1X2X3X4&

)&$1 &"'~ ' x4 &""& 'g (1—x;) 'qp 4(gw)

where
g'~- -(t)1(-- -)(-- )---&"

42,„(t)=n, +g'Z(42, ) +O(g')

is the new trajectory,

l3--(t) =1+g'P(t)+O(g')

is the new residue,

—I"'(—42,)Z(n, )]+O(n, p-'lns) . (5)

This is the term in g4 of the expansion in powers of g2 of

C;;=X1 Xi if j=4

=Xj'+1' ' Xi

n(h2) =42P —
—2,h2.

if i)j,
=(x, x;)(x,~, x4) if i& j&3

Z(n, ) =42r2
dx2dx4

($2$4)
—

P—(1 $ )- (1 $4)—
ln'x2x4

)(eaphl~p —4($ X )1/2 aery&(Z2, $4)

&(8(2—e —x2 —$4), (6)

F(n„n,) =4przg4

1 4 q
—4

gdxx —"—'(1 —x) ' e "T—
i=1 ln2z

When all the relations found by Fubini and Veneziano
are taken into account (Ref. 3), one finds the same
expression except for an extra (1—w) factor. This
alteration has no consequences for the rest of this paper.

Expression (1) diverges near w —+ 1 as exp[ 3'pr2/

(1—w) $. We introduce the temporary cutoff 8(4—4—xi
—x2 —xp —x4). This cutoff, as already noticed, does not
change the imaginary part and preserves Reggeization
ats —+ —~ ~

After Wick rotation and integration over de, one
flIlds

lnx2 lnx4 2$2 $4 +$2 +$4
hi —— +2 P

and
lnx2x4 n(1 —x2 x4")

P(t) has a similar expression.
Z(n, ) is also exponentially divergent near xpx4 1,

and we study the properties of this integral in Sec. III.

2x2"x4"—x2"—x4" lnx2 lnx4
H($2, $4) =2 P—

n(1 —$2"$4") 1nx2x4

n(x2" +$4") 1
+»l 2 — (l)

k n=l 1 —$2 $4 }n$2$4

where
&& T,— '8(4 —e $1 $9 $3—x4), (2)

1 ln'xi
h(x;) = — lnw —Q

2 lnz

III. REGULARIZATION OF X(n, )

e~" "4) is given in terms of T1 and T2 by

82 a2 —1

II (. , ) T2 ' (8)

n 'b

—Sw"+x "+w"/x "

n(1 —w ) Using the theory of elliptic functions, it is shown in the
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Appendix that T~ can be written

sin(~ lnx~/1nw) sin(~ lnx4/lnw)
~1

sin(7r inxixg/1nw) sin(~ lnxix4/lnw)

L1—2q'" cos(27r inx2/inw)+q4"][1 —2q'" cos(2~ lnx4/lnw)+q4"]xrr- (9)
n=l Li —2g'" cos(2~ lnxix2/1nw)+q'"]$1 —2q'" cos(2ir 1nxix4/lnw)+g4"]

where q=e' "~"".Notice that the infinite product is
equal to 1 up to a null asymptotic expansion in 1—w.
More precisely, it is equal to 1+0(e ' "o "i) near
+~1. By computing e~~*'*4&, one finds that the sines
drop out and that e~&*'*4'=1+0(e ' "" "*4i) near
x2x 4—1~

Thus, the divergent part of Z(n&) is independent of t

when e —&0. Moreover, a single subtraction is enough
to make Z(n&) finite.

Z(n&) appears as the renormalization of the leading
trajectory. Since the scalar external particles belong to
it and are stable, we demand that their mass be the
physical mass. Thus, we subtract the divergent quantity
Z(0).

Since
10

go (x2x4)'i'I e 'H~"'4i —1]=0~ exp
E 31—xx4 )

Z(«) —Z(0) is now given by a convergent integral for &

below threshold. Above threshold, it can be shown by
using standard techniques that Z(n, )—Z(0) has branch
points for every two-particle threshold and pseudo-
threshold. 4

All this regularization supposes that there is only one
stable particle in the theory, or equivalently, that the
intercept no of the leading trajectory is not too negative.
If there were more than one stable particle, we would
have to add new parameters in the theory from the
beginning, for instance by adding satellites, in order to
fit the renormalized values of the masses of stable
particles with their physical values.

(3) F FR—eggeizes at s —+ —aa.
(4) Z(n&) =Z(0) so that F Fbe—haves like g4( —n, ) &

Xln( —n, ) I'(—n, )LZ(n, ) —Z(0)] when s —+ —aa.

Notice that in expression (9) the poles and the double
poles in the s channel arise from the behavior of the
sines when x~ ——1 or x4——1, whereas the infinite product
gives rise to the cut when m —& 0.

We are thus led to define a function F(n„n,) by Eq.
(2) except that Ti and T2 are replaced by

sin(m lnx~/1nw) sin(~ lnx4/lnw)
T] (10)

sin(m lnxix2/lnw) sin(m 1nxix4/lnw)

T2 = Ti(x2,xi,x4,x3) .

I' —F is evidently finite when e~ 0, because near m=1

T T 0(e4m ~/ Inw)

F has poles and double poles located like those of Ii.
T& and T2 have the following property:

T2 —1 T]

From the set of variables x;, we change to the set x~,
x3, s2, and s4, definied by'

sin(-,'m lnx2/lnw) sin(-,'-n. lnxix2x3/lnw)
32=

sin(2~ 1nx~xi/Inw) sin(27r lnx~x3/1nw)

sin Pir lnx4/lnw) sin(-', n- lnx3x4xi/lnw)
84

sin(air lnxix4/lnw) sin(avr lnxqx4/inw)

so that
0(s,&1, 0&s4&1

IV. RENORMALIZATION OF
AMPLITUDE E(n, )n, )

and
T]= s4sg ) T2= 1 sgs4 ~

Following the guidelines of the usual Feynman graphs
renormalization, we look for a function F(n„' n~)

obeying the following conditions:

(1) F F is finite for the —cutoff e going to zero.
(2) F is crossing symmetric and in each channel can

be written as a sum of single and double poles, the
residues at the poles being polynomials in the other
variable.

' For t ~ —~ one can show that Z (o,~) behaves like (—t)' ' Up
to logarithmic factors. Compare with

e' (e" '* 1)dx=(1/a—)I'(—b/a)( —i)" for a)b)0.

By expanding in powers of s& and s4, and integrating
over s2 and s4, we find that F is of the form

1 1 I'(n(+m+1)
F(n.,n ) =a'

~,i, c&0 ri+p n. I+q n,—e!I'(n—)+1)
1

dx~dx4 J,(x2,x4) . (12)

This shows that F has the very structure of a counter-

' This change is somewhat similar to the one defined by Eq.
(3.7) in Ref. 1.
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term in the usual renormalization theory. As for P
itself, the same change of variables casts it into the
form

F(n„a,) =g'
~,u, e&0 B+P—iia 1'i+q —Q!8

xF-(~ P,ql~i), (~3)

where P (n„p,q~a, ) is a polynomial of degree e in n, ,
whose coeflicients are functions of P, q, and n„and
have unitarity cuts in the n, plane.

One can check that F Reggeizes for s —+ —~,' and
that the equality Z(n, ) =Z(0) is verified.

Notice that F is not uniquely determined by con-
ditions (1)—(4). One can always add to F a finite dual
function, behaving like (—n, ) &

—'. Although we could
not prove it, it seems very lik.ely that it amounts to a
change on the Born term. One encounters a similar
problem in Lagrangian field theory for the definition
of counterterms.

V. REGULARIZATION OF
N-POINT FUNCTION

We integrate first the expression of Fi '(Pi, ,P+)
over d'k. We express then the P,P, in terms of the
variables 7

We have seen in the case Ã= 4 that T~——1—Tl, this
can be generalized, and the T;, satisfy the general
equation of duality:

r, s

1&p&i, i&q& j, i&r& j, j &s&lV 1. (—17)

This can be shown from the fact that

sin(m lnx.;/lnw) sin(vr Inx;+i/lnw)
1 —T"=—u

sin(m lnx, +i x,+i/llaw) sin(ir lnx; x,/lnw)

and that

~y, q ~p, q+1
' ~'Is, q+r

sin(ir lnx„+i x,/lnw) sin(ir Inx~ x,+„+i/Inw)

sin(ir lnx„x,/Inw) sin(ir lnx„+i x,+„+i/liiw)

The T,, can be expressed in terms of the IV—3 T,, (2&j
(N —2) by the usual formulas. To see the poles and
double poles in the n& „channel, we write, as previously,
T&,„——sis2 and we choose two other independent
variables I i, t i.

After development in powers of sl", slq and integration
ovel sl S2 Ii I2 we get

Then
(P2'+ +Pi)'

+oo l N=2F' i= P P Q dT T "'—'(I T) '—
(P' P )=4-g rrd, n T„-- I ml r, s=P i=1' igy

XFir(x,)8(1V e —Q x,), (14)—

where F~(x,) is independent of the n,,
We call T,, the conjugate variable to the trajectory

. n, , One finds (see the Appendix) that

x(0~ v(p,-,)T, ,~,&" v(p„+,) ~
&~})

f, (i i(Ti,)
X

(M+r ni„)(M+s n„)— —

x(fm) i U(P„+i)Ti,„ i U(P, ) ~0). (18)

T;=8

0, —— 0, ——.15

The sum is taken over the occupation number basis,
and M is defined by H

~
(m) )= M

~
(m) ).

The residue f„,,&» is independent of the external
variables o.;,;.

VI. CONCLUSION

Keeping only the sines in the expansion of Ol, we
define F, i~&(pi p&) by (14) with T,, replaced by

sin(ir lnx, +i x,/lnw) sin(ir lnx," x,+i/Inw)
T,, = . (16)

sin(ir Inx,+i x,+i/Inw) sin(ir Inx,' x,/Inw)

J i(N& —Fi&N) is evidently finite for e~o. Let us look
now at the factorization properties of Pi&N).

We have shown that, by a procedure very similar to
the renormalization in quantum field theory, the
2V-point one-loop amplitude can be made convergent.
The renormalized amplitude satisfies perturbative
unitarity, duality, and Regge behavior. The next step
is to study the possibility of the renormalization of the
nonplanar diagrams and of the E-loop diagrams. This
problem is under investigation.

Whether the renormalized amplitude Reggeizes in any direc-
tion of the complex s plane except the positive real axis is still an
open question, because of the singularities of 0 functions one could
encounter when distorting the integration contour over x~ and x3.' Chan Hong-Mo and Tsou Sheung Tsun, Phys. Letters 28B,
485 (1969).

APPENDIX: COMPUTATION OF T,,
We compute here the conjugate variable to the

trajectory
=Qp ——
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The notations are those of Tannery and Mollc (Ref. 8).
The identities

p'p'+ = '—
, '++~"', + +-+,'+ '+—, — (i»), (19)

On the other hand,

Q) 7L

A; = exp — — =qp
n rr(1 —w")

pipi+2 rri, i+2+iri, i+1+iii+1,i+2 )

piper = rri, i+i &o

show that the integration over d4k gives

(20) so that

(21) gi(v;, I r) v'»
I=Q 2—irrZ, ,

gi'(0
I
r)

d 4k —~ (Il:2)—& —ct (Il:+~Ã-I)k xy x+

lnx; lnx, ~g=exp
lnm

where f depends only of x, and no.
We now compute

I=exp —P Cap-
ri(1 —w")

We note first that for i& j, C,;C,,= w, so that

where qp has dropped out owing to momentum con-
servation. Applying the identities (19)—(21), one finds
that this can be rewritten

gi(v, ;Ir)gi(v, i,,+il r) Z,,Z; i,;yi
g(x'),

'&& -gi(v', ~+il r)gi(v Li Ir)—.,i+i

where g depends only on the x; and on O.p.

We apply now the transformation formula obtained
by the theory of the elliptic functions:

(i "' v 1
g, (vl.)=el- e '-~"~ lg, ——— .

T r

C~p+C;,"
A,,=g exp — ——= (1—x,+i x,)

n rr(1 —w")

( w

xII I
1——— (1—"-'+,).

x„~, x,

From Pol. II, p. 250, xxix (1) in Ref. 8,

One finds then that the conjugate factor to o,;,, is

t' lnx. ; lnx;+i (v,, 1 v, i,;+i 1
expl — gil ——— gi

lnw

v, &.~i 1 v; i, & 1)
g,

'

g,
-' —-I . (24)

T 7 r 7

where

gi(v'i
I
r)

g;;= —2imZ;;qp'
gi'(Ol r)

(22) Collecting the term coming from the integration over
d'k, we find that the conjugate variable to the tra-
jectory o.;; is

q, =g(1—q'"), q=gw, Z;, =(x, i x,)'",
v,,= (1/2i7r) lnx, +i x, , r = (1/2iir) lnw,

gi(v) =2qoq'te sinvrr P (1—2q'" cos2vir+q'"). (23)
n=1 0 ——— g, ———— 25

8 J. Tannery and J. Molk, Elements de 4 Theoric des Fonctions
Elli pkeqiies (Gauthier-Villars, Paris, 1893). Using (23), we then prove (9).


