
EXACTLY SOLUBLE MODEL OF RELATI VI ST I C

Everything but the Born term vanishes now, because
the negative-norm contributions cancel all positive-
norm contributions. The same mechanism is responsible
for making all the vacuum expectation values (20) equal
to zero.

Note added iver proof Af.ter this article was submitted
for publication, I learned that the same model had
been discovered by V. Glaser, in 1958 Aeeual Inter-
national Coe~ereece oe IIigh-Energy Physics at CERE,
edited by B. Ferretti (CERN, Geneva, 1958), p. 130.
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It is shown that an approximate summation of the "crossed-ladder" Feynman diagrams for the scattering
of two charged particles leads to the formula s =mP+mP+2ra&m2L1+Z'o'/(a —e,)'j '"for the squared mass
of bound states. This formula neglects radiative corrections. It includes recoil effects properly, and reduces
in the limit of one infinite mass to the corresponding spectrum of a relativistic particle in a static Coulomb
potential, In the particular case of positronium, its expansion in powers of n coincides up to order o4 with
the singlet energy levels. In an appendix we investigate some properties (gauge invariance, static limit) of
this series of graphs.

I. INTRODUCTION

HE derivation of a reliable and systematic
procedure to find the bound-state energies in

relativistic theories remains a difficult task. ' There
does not seem to be any better definition than to look
for poles in Green's functions. For long-range interac-
tions, such as those encountered in quantum electro-
dynamics, a fortunate circumstance permits an interest-
ing approximation to the scattering amplitude near the
forward direction. It provides, therefore, in this case
a procedure to calculate energy levels. Through short
and elementary calculations, one obtains a compact
formula for the bound states which incorporates the

proper relativistic recoil effects for arbitrary mass
ratios. Furthermore, this formula reduces, in the limit

of one large mass, to the known spectra for the Klein-
Gordon or Dirac equation in a Coulomb potential.

It remains a task for the future to develop a system-

atic perturbation theory in order to incorporate radia-

tive corrections as well as some magnetic effects due
to spin.

The idea of the present investigation relies on the
remark that the eikonal or classical approximation
gives a very accurate description of Coulomb nonrela-
tivistic scattering at small angles. The amplitude
computed in this way has poles in the energy variable
which coincide with the known energy levels for the
hydrogenlike atoms. This is also true for the one-body
relativistic equations in the same potential up to
centrifugal barrier shifts (short-range effects) to be
discussed below. It is then tempting to investigate the
generalization of this behavior in the relativistic two-
body case. Recently it has been noted that the eikonal
asymptotic behavior is recovered as an approximate
summation of the "crossed-ladder" Feynman diagrams.
This set of diagrams, which does not include radiative
corrections of the self-interaction type, presents, how-
ever, a number of attractive features in contrast, say,
with the ladder diagrams (see Fig. 1): (i) Gauge

p+q /2

FIG. 1. Energy-momentum con-
servation implies q1 ——g~. g

P2+q+2 P2-q2l2

+» + 'w +".
i I

' H. A. Bethe and E. E. Salpeter, Quantunz 3llechanics of One- and Tzvo-Electron Atoms (Springer, Berlin, 1957).
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invariance is maintained at all stages. (ii) Proper
behavior is obtained when one of the charged particles
is very heavy. In this limit one recovers the perturbation
expansion pertaining to the one-body relativistic
amplitude in an external field. ' (iii) The eikonal limit
is obtained for large energies as already mentioned. '
An appendix is devoted to a discussion of points (i)
and (ii). The price to be paid is, however, that we are
unable to produce a "useful" equation which generates
the corresponding four-point Green's function. We
only know a formal equation in terms of functional
derivatives or we can write a Feynman path integral
with a two-time Lagrangian in the kernel, reminiscent of
the classical formulation of relativistic electrodynamics
without self-interactions. The basic difficulty is that in
the mth order of perturbation theory we have e.' terms,
which, in the general case, do not recombine into a
manageable expression. We are thus prevented from
writing a recursive equation of the Bethe-Salpeter
type with a simple kernel.

Nevertheless, from the example of one-body dynamics
it is not totally unrealistic to expect that the eikonal
approximation might lead at all energies but for very
small angles to an amplitude whose poles are close to
the correct answer. Using our method we have to face
the problem of infrared divergences. These divergences
dominate the behavior at small angles, once an infinite
phase is extracted from the amplitude in analogy with
the nonrelativistic case. Since infrared divergences are
correctly treated in this eikonal approximation, this is
another way of understanding why one can expect to
obtain a reasonable result using the present method.

In the absence of a good equation, we cannot at
present derive a systematic procedure to compute
radiative corrections. In general it is hard to include
short-range effects. This is why we have to devote
special attention to the n'/r' terms induced by the
minimal coupling of photons, which are responsible for
the breaking of the O(4) degeneracy of the spectrum.

In order to introduce our procedure, let us first
present briefiy a derivation for the nonrelativistic
potential problem.

II. NONRELATIVISTIC HYDROGEN ATOM

The Coulomb scattering amplitude will be studied
as the limit of the Yukawa amplitude corresponding to
the potential

V (r) = Zne &"/r,—n =—e'/4~

when p goes to zero. It will, of course, be necessary in
this limit to factorize an infinite phase, which turns

'One of us (C.I.) learned. this at SLAC from S. Brodsky and
L. Brown (private communication), who attributed this remark
to D. R. Yennie.

'For an elementary trea'tment, see, for instance, H. D. I.
Abarbanel and C. Itzykson, Phys. Rev. Letters 23, 53 (1969).

out to be

c=0.577 (Euler's constant) (2)

where p is the particle momentum.
We can proceed in two different ways. We can first

study the p =0 limit of the forward amplitude. This will
allow us to justify the use of an approximation for
small-angle scattering, which turns out to be the
eikonal approximation.

The amplitude T„(E,cos8) is, for fixed 8, an analytic
function of E in a cut plane. The right-hand cut
extends from 0 to +~; on the negative real axis there
is a pole at —(Ii'/4m) (1—cos8) and a cut which starts
at —(p'/m) (1—cos8) Lm=—(m,m„)/(m, +,m, )7. We
look for an approximate T which has, in the limit
@=0, the correct poles of the Coulomb problem. In
order to avoid in the approximation the effect of the
left-hand singularities, we notice that they are removed
to —~ in the forward direction (cos8 = 1).

Let us then study the behavior as p —+ 0 of
T„(E,cos8=1). The iith-order Born approximation for
T(E,1) is given by

p2 ) 1 Zn
T'"' E=,1 = —— 2m " '

2m i Ii' 2ir'

X d'qi d'g 8"'(qi+ +Il )

~ ~ ~ (3)
2p(a+" +e--)+u(q. + +a.-)'—~

'p
Tv—a/2~i+a/2

7e

d'b

(2m)'

im +"
Xe' i'b exp —— U((b'+s')'")ds —1 . (4)

T'"'(E) diverges like p ', and the coefFicient of Ii ' is
obtained by setting p =0 in the integrand. This has the '

eRect of replacing the propagator L(p+Il)' —p' —ie7 '
by (2p Il —ie) '. When this replacement is made, it is
very easy to calculate the scattering amplitude to all
orders, not only in the forward direction, but also for
small-angle scattering. The most elementary way, if
not the shortest, is to solve the Lippmann-Schwinger
integral equation with this linearized propagator.
The corresponding solution is simply the eikonal
approximation:
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For V(r) = —Zne I""/r—
, this gives

p
Tp—q/2-+ p+ q/2

m

d'b

(2s.)'

2'LPBZA
&&e'p' exp Kp(44b) —1, (5)

where

Kp(s) —= ~
—z eosh+d p

(2s.)'

2'Ms'
&& exp — Ep(b) —1 . (6)

Using the asymptotic expansion of Ep(b) in the vicinity
of b=0,

OO

Ep(b) = —Jp(ib) ln(-', b)+ P f(m+1) (-',b), (7)
m=O (m!)'

one finds tha, t T(p'/2m, 1) is a meromorphic function
of p with poles at

or
imzn/p„=+r4 (r4& 1)

E =p„'/2m = —mz'n'/2r4',

(8a)

(8b)

which are the correct bound-state energies of the
Coulomb problem.

However, the amplitude given by Eq. (5) has a
nonuniform behavior as p, and q2 go to zero. If we first
let p, tend to zero, we expect to get an almost correct
expression for the Coulomb amplitude. For fixed q'
the behavior in p, is different and can be entirely
absorbed into the phase factor given by (2). The
proper Coulomb amplitude is then simply

d'b
e4q b (pb) 2imnzjp-

(2vr)'
(9a)

which, after integration, reads

Zn 1 4PP -'&-~ r{1—iZ m/P)
T.=— (9b)

2m' q' q' I'(1+iZnm/p)

Expression (9) would be the exact Coulomb amplitudes
if E were p'/2m, instead of (p'+4q')/2m.

'

lf we keep
in mind this replacement [namely, p is taken as
(2mE)'i'7, (9a) is then a very simple expansion of T,
in terms of impact parameters b. The poles are again
given by„, (8).

In the forward direction the result behaves, as expected,
like p

—'.
1i "bdb

III. KLEIN-GORDON AND DIRAC EQUATIONS
FOR COULOMB POTENTIAL

Some new features appear for a relativistic particle
in a Coulomb potential. For a spinless particle in a
potential V(r), the Klein-Gordon equation reads

(Po' m')—4 = (P'+2PoV V')—4.
The term V'=Z'n'/r' induces simply a shift on the
eigenvalues of the angular momentum operator L2.
If we forget this term for a moment, the eikonal
approximation will now give

E„=m(1+Z'n'/r4') —"'.
But in a given partial wave i, we know that I=r4'+(+1,
e'&0; to take into account the effect of t/'2, we replace
i by X, the solution of X(X+1)=l(t+1)—Z'n'. It gives
then the correct Klein-Gordon spectrum

E„,i ——m[1+Z'n'/(m —pi) '7-'~'
(10)

« =i+ p
—[(i+p)' —Z'n'7"'

For a Dirac particle, the same analysis can be
repeated; there are both V2 and magnetic terms, whose
combined effect is to replace in (10) / by j and e& by e, .
This is most easily performed by squaring the Dirac
equation in the form (p four dimensional)

[(p eA)' m'+—,'eoI'"F—„„]$=-0,
and using a diagonal representation for o-&". One then
recognizes that the extra terms —', eo-&"P„„are equal to
io".E, where the electric field E behaves again like 1/r'.
Hence the previous treatment of such terms applies
after the diagonalization of a 2&(2 matrix.

IV. QUANTUM ELECTRODYNAMICS

%e first consider two scalar charged particles of
masses m~ and m2, exchanging a vector boson of mass
p —&0.

If we write the contribution for an eth-order ladder
diagram in the forward direction, we find again that in
the limit p —+ 0, this diagram diverges like 1/44 . The
coefficient is obtained by replacing the propagators
1/[(p+q)' m,'+i p7 by—1/(2p q+ip) Ho. wever, . in
the same order, there are other diagrams which behave
like 1/p'; in particular, this is true of the crossed
ladders, obtained by crossing the photon lines in e.'
different ways.

These diagrams are generated by the following
expression (see Fig. 1):

b"'(qi —
qp) (Pi+ lqi, P2 —lqp l

T
l Pi

(2s)4

—pqi, Pp+ pqp) =&(Pi+pqil T(A 4) IPi —pqi)

x(pp —-', qpl T(Ap) l pp+-;qp)
A I=A 2=0



BREZIN, ITZYKSON, AND ZINN —JUSTIN

The symbol E stands for and P2=(P", —p),

'I p I (Pi'+P') d2b

E =exp d xyd sg
u;(~,)

XD~"(x,—x2) . (12)
5A 2"(X2)

Xe" b exp

(22r)'

»(Pi P2)«&O(/tabb) —1 . (15)
I p I (p:+p ')

The photon propagator in an arbitrary gauge is After the factorization of an "infinite" phase, we 6nd
again poles for

D~"(x) =— d4q

(22r)' q'+i e

i«(P1 P2)

I p I (P '+P2')

Xe'"Lg""+q"~"(q)+~"(q)q"+q"q"f(q) j (13)

Finally, the one-particle amplitude reads

(P'I T(A) IP)

=(p'IT exp i 'U(X 2Pr, P—)dr 'U(X,P)Ip), (14)

where T is the time-ordering symbol. The conjugate
operators I' and X satisfy the commutation relations
$X„,P.j=ig„„and 'U(X,P) = et A (—X)P+PA (X)j+e'
XA2(X). Note that in Eq. (11) the states refer to
particles on their mass shells, i.e.,

(P~+ 'q~)'= (P*—'-q')'=m"-

The same formalism applies to spin-~ particles, provided
one adds to 'U(X,P) the magnetic term 2eo""P„„(X)
and that the external states are meant to include Dirac
projectors on positive energies. It can be checked tha, t
these rules for spinor electrodynamics are equivalent
to the usual Feynman rules. They allow one to treat
on a similar footing spin-0 and spin-2 particles.

The amplitude (11) is, in fact, gauge invariant —i.e.,

it is independent of the arbitrary functions n/'(q) and

f(q) which enter into the definition of the photon
propagator (13). The proof given in the Appendix is
modeled on an argument presented by Feynman in
Ref. 4. Hence, we can set 22" (q) and f(q) equal to zero
in (13).

Unfortunately we do not know how to proceed with
the exact evaluation of (11).But in analogy with the
previous two cases, we expect a reliable result for small
scattering angles from the linearization of the Green's
functions. This simply amounts to replacing the
operator P by the c number 2(p+p') in the matrix
element (14).'

The result is very similar to the nonrelativistic one;
there are only kinematical modifications. It gives for
the amplitude T in the center-of-mass frame, Pi ——(Pi//, p)

4 R. P. Feynman, Phys. Rev. "l6, 769 (1949).

E„= lim (s„—m22)/2m2 mi (1+——g2e/2/N2) 1/2—
m2~'o

This is just the result of the Klein-Gordon or Dirac
equations if, as discussed above, we replace n by n —e, .
If we make the same ansatz in (17), we finally get the
simple and compact formula

ml +m2 +2mlm2I 1+@2122/(/2 e.)2$—1/2 (18)

The same calculation can be done for two spin-2
particles. The result is again given by (17). This is
not surprising, since the spin-Aip amplitude vanishes
in the forward direction, and the approximation assumes
essentially that at each step there is almost exclusively
forward scattering. Therefore, spin eGects are lost in
this approximation.

Let us now expand formula (18) in powers of n up
to terms in n . It gives for the binding energy

8„,=sU' —m~ —ns2

Z cP 5$Jm2

2B mi+m2

Z Q 5$iBSg mlm2

Sn' mi+m2 (m +m )'J
Z4n4 mJm2

rP mi+m2 2j+1
+ (19)

The Grst term is the nonrelativistic binding energy.
The second term is a displacement of all the levels with
same principal quantum number. It contains a relativ-
istic correction to the relative mass of the two particles
which is multiplied by the dimensionless quantity
3 —mim2/(mi+m2)'. The third term is the fine-structure
splitting. In the particular, case of positronium, m~=m2

Defining, as usual, s= (pi'+P2')', we get

2
I p I gs =

I s —(mi —m2) 27' 2Ls —(m, +m, )2j»2

2(pi p2) =s—mi' —m, '.
Finally, Eq. (16) gives

sn m12+m22+2mlm2(1+@2~2/222) —1/2 /2) 1 (1 7)

Let us examine the limit of (17) when m2 —+ +~.
Defining E„=(s„)'/' —m2, we have
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=m, Z=1, Eq. (19) reads

n:oP 1i mo.4

+
4m' 64 e4

mo.4

+ (20)
2tH(2 j+1)

which turns out to be the correct expression in this
order of the bound-state energies of the singlet states
s=0, j=l.5

It must be admitted that the replacement e ~ e—e,
in (18) may seem a bit artificial. However, we can
partially understand this substitution by the following
remark: If we use the eikonal approximation for one
of the charged particles only in (11), we generate the
known amplitude for the other particle in an external
field (essentially the Coulomb field of the first particle
as seen in a frame where its momentum is p). The proof
is similar to the one given in the Appendix. There we
show that, in the case where one of the masses goes to
infinity, the crossed-ladder series generates the proper
amplitude for a relativistic particle in a static field. In
any case, both approaches imply a,n angular shift for
the poles as given by (10). Of course, one would hope
to find a better justification for this procedure.

A formula similar to (18) is obtained in the hypothet-
ical case of scalar photons interacting with "charged"
particles with a coupling constant equal to 2m, g;.
Bound states occur for "charges" of equal sign and for
total energies given by

s =mt'+m, '+2mims(1 —(g,gs/4') '(1/m') ]'~'.

' Similar ideas have led M. Levy and J. Sucher [Phys. Rev.
186, 1656 (1969)) to propose for the positronium a different
analytical expression which agrees up to order o. with Eq. (20).

Some comments on the infrared divergence are in
order. Within the set of diagrams that were considered
here, the "infrared catastrophe" manifests itself by
an infinite phase factor. It is interesting to observe that
this factor becomes real below threshold and indeed
infinite at the location of the poles. This phenomenon
already occurs in the nonrelativistic case. But we know
in this case that the remaining coventional amplitude
nevertheless has poles at these points. On the other
hand, had we included more terms in the amplitude —in
particular, terms where photons would be emitted and
absorbed by the same charged particle —we would have
found a new type of infrared divergence in the modulus
of the amplitude. To correct for this effect, we would
have had to include the probability for real photon
emission (inelastic effects) in order to get a finite result.
Hence it is likely that a more correct treatment of the
problem requires the investigation of the four-point
Green's function (which does not suRer from these
defects) rather than of the scattering amplitude.

I et us also remark that all the formulas (for vector
electrodynamics) discussed above allow a simple

interpretation. They can be written

(21)

Here e» is the relative velocity of particles 1 and 2

expressed in terms of their total energy on the mass
shell, analytically continued to imaginary values. The
quantity m, « is an integer in the nonrelativistic case
for 0(4)-symmetric case] and close to an integer
(m —e;) for relativistic particles. This is clear for the
nonrelativistic case [see (8a)] where vis ——(2E/m)'I'.
For a relativistic particle in a fixed potential,
=P1 —(m'/E') ]"' which, inserted in (21), yields
formula (10). Finally, for two relativistic particles the
relative velocity is given by

vis = LA (s mi' m ')]' '/(s —mi' —ms') 1

where
A(g b c) =u'+b'+c' 2ab 2—bc 2—ca. —

With this value, expression (21) yields the result (18).
The intuitive meaning of the remark is that the main
contributions to the binding energy come from the
Coulomb forces exerted by one particle in its rest frame
on the second particle. This concept is invariant when
interchanging the roles of the particles and can ob-
viously be extended to all frames by expressing the
relevant quantity, i.e., the velocity, in terms of the
invariant total energy squared s.

Our conclusion is that the series of diagrams discussed
in this paper deserves a more thorough study in view
of its remarkable properties.
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APPENDIX

In this appendix we give the proof of some state-
ments made in the text.

A. Ward Identity and Gauge Invariance

Since it may be less well known, we derive a "Ward
identity" for the case of scalar charged particles. I.et
G(A) be the Green's function in an external potential:

G(A) =1/($P eA (X)]'—m'+i—e} .

The current operator J„(k,A) is defined through

=eG(A)(P» eA «(X) e'"x}G(A)—.

In this definition A (k) stands for the Fourier transform
of A(x) and the symbol (, }means anticommutator.
One has the "Ward identity"

k„j&(k;A) =e[e'" x, G(A)$.
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Indeed,

kJ(k; A)=eG(A)(P k e—A(X) k e'" x)G(A)

Now)

(P k —eA(X) k, e'" x) =[G—'(A) e'" x]

from which the identity follows. With an obvious
definition, we also find

Let p=)(n, where e is a fixed four-vector orthogonal to
q, normalized to e =1; hence m'=I('+ —'q' The infinite-
mass limit is defined by letting P —+ . A simple
transformation leads to

() m —-',
q i T(A) i

X)t+i2q)

(~ q~e
—~(i—i)n xT(A)ea'o, —i)n x~)t+ q)

k»,J»» (k„k„.. . ; A)
=e[e'~'x J»' '(k2, . . . , A)$. (A1)

=(n.—-', q~T exp i d, ~{X—2.[J + (I —1)~],

Let us apply these results to the mass-shell scattering
amplitude to order e, which is proportional to J'+ () —1)e) 'U(X, P+ ()( 1)it) i

e—+—', q) .

»m[(Pi —2q)' —mi'j[(pi+kq)' —mi'j[(P2+lq)' —m2'j

X[(P2—kq)' —m2'3
dkg dk„

(k)2+is) (k '+is)

XS(zk —q)(p, ——',
q~ J,»»" ~-(k, , . . . ,k. ; 0)

~

pi+-,'q)

XA„,„,(k,)A„,„,(k,)" A„„„„(k.)

X (p2+-,'q
~

A"'"""(ki,. . . ,k„;0)
~
p2 ——',q),

where h„„(k) stands for the gauge arbitrariness intro-
duced in (13):

A„„(k)=g„„+k„it„(k)+it„(k)k„+k„k„f(k) .

We have the products

A„„,(ki) A„„,„(k~)=g„„, g„„,„+P of terms,

B. Infinite-Mass Limit

The formulas (11)—(14) reduce this problem to the
study of the scattering of a heavy particle by an
external field. In the scattering process, a heavy particle
is hardly deflected. Therefore, it is not surprising, and
indeed it will be proved, that the scattering amplitude
tends, in this limit, to the eikonal expression. Another
way to express it is that for a heavy particle in an
external field we expect the wave function to pick a
phase factor and its spin (if any) to precess in the
magnetic field. This is what we show now.

Consider the matrix element (p —-',
q~ T(A)

~
p+-,'q),

in which the infinite-mass limit is taken as follows:

which all involve at least one four-momentum k acting
either on J, or J2. Making use of identity (A1), we
reduce the matrix element of this divergence to the
difference of two matrix elements of lower order between
external states, one of which has a momentum shifted
by the corresponding k. By applying the mass-shell
conditions, such terms are seen to vanish. Therefore,
it is proved that all the terms, except g„„ in A„„(k),
give no contribution. The proof extends easily to
spin- —,

' particles.

It is now natural, when X is large, to neglect the operator
J', as compared to ()(—1)n,, and, consequently, to
replace I'+P, —1)e by the c number p. For scalar
particles, the time-ordering symbol becomes irrelevant
and the amplitude reduces to

(p —-', q ~
T(A)

~

p+-,'q) 2im
m large

l)(X it)e"*
(2~)'

Z +
X exp dt U(x+nt, P) ~

—1 . (A2)
2m ~

Let us now examine the effect of inserting this
approximation in the four-point amplitude given by
(11).From Eq. (A2) we see that we have to investigate
the behavior of m2 'U2(X&,p2) when m2 becomes very
large. We choose the reference frame in which p2 is
close to (m2, 0) and hence q2O =0. In this limit,

(1(m2)U2(X, ,P,) = —2e,A,'(X2)+ (e2 /m&)A 2 (X~),

and, for large m~, we can neglect the second term.
Equation (A2) can then be simplified:

(p2 —,q2~ T(A2)
~
p2 ——',q2)- —2t'm&

d4xg

5($2 tl2)e'q~*
(2')'

exp —ie2 dt A 2'(x2+it, t) —1

The effect of the operator E, given in Eq. (12), on this
amplitude amounts to replacing A2O(x2) in the above
formula by

d'xi D&"(xi x2) . —
u, (x,)

Then E(p2 —
2q~~ T(A2)

~ p2 ——',q2) ~ ~, 0 becomes a dis-
placement operator acting on the field 3~. Therefore we
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get the following expression for the two-body amplitude: reduces to solving the one-body Klein-Gordon equation

—5/(2~)'3~"'(Vt —
Vs)

x(pi+-'vi) ps —-'vsl &l pi —-'ci~ ps+see)

d4X2—2im2 5(xs ns)e'ps s(p, +-', qtl 2'
m2 large (2ir)'

X —ie2 Ct D&'(xs —xi —Nst)
l p, —-', q,).

Let us observe that

—ze2

gp0

dt D~P(xs —x,—est) =-
4ir lxs —xil

Using the time independence of this result and perform-
ing the translation xi~ xi+xs, we can factor out
p(qip)e'&i *s. The integral over xs gives finally 5(pip)
)&6(') (qi —qs) =6'4) (qt —q&), since g&' 0. Therefore the
two-body amplitude, in the limit m2 large, is propor-
tional to the scattering amplitude of the first particle
in the static field, AP(xt) = (es/4ir)(1/lxil), produced
by the second particle in its rest frame. If we are
interested in finding the bound states, the problem

eye2 1
pi' — —(pi)' —mt' &=0.

4~ lx, l

For spin- —,
' particles the same argument can be

repeated. In this case, it leads to the Dirac amplitude
of the light particle in the Ceulomb field produced by
the heavy one. But another effect can be included here,
if one regards the magnetic moment of the heavy
particle as a nonvanishing static property. Then, in
addition to the Coulomb field, the heavy particle
produces a magnetic field responsible for the hyperfine
splitting of the Dirac levels. We then have to add an
extra term in the potential equal to (es/2ms)osl'"P„„',
where we can even replace e&/2nz& by the actual magnetic
moment trs=(es/2m. )(1+x). In the same spirit as
above, we have to neglect the noncommutativity of
the spin matrices and set a-20" 0 as if the operators
were replaced by their mean values. Following the
previous recipe, we 6nd that particle one moves in a
static field with four-potential given by

e2 0'2

Ap(xi) =, A(xi) =ps cu»*,
4~I»l
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Parameter-Free Regularization of One-Loop Unitary Dual Diagram*
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We propose a parameter-free regularization of the one-loop planar unitary dual diagram, very similar to
the renormalization in quantum 6eld theory, compatible with duality, Regge behavior, unitarity, and
crossing symmetry.

I. INTRODUCTION

ECENTLY, there have been several attempts' '
to put the Veneziano model on the same footing

as quantum electrodynamics, by considering the A"-

point functions as tree diagrams of the theory. This
leads to a finite result when factorization problems are
neglected. ' However, when factorization is taken into

*This research partially supported by the Air Force Ofhce of
Scientiiic Research under Contract No. AI"-49(638)-1545.

f Procter Fellow.
f X.A.T.O. Fellow.
'K. Kikkawa, B. Sakita, and M. Virasoro, Phys. Rev. 184,

1701 (1969); K. Kikkawa, S. Klein, B. Sakita, and M. Virasoro,
University of %wisconsin Report No. 248, 1969 (unpublished).' D. Amati, C. Bouchiat, and J. L. Gervais, Nuovo Cimento
Letters 2, 399 (1969).' K. Bardakci, M. B. Halpern, and J. A. Shapiro, Phys. Rev.
185, 1910 (1969).

account, the one-loop diagram exhibits an exponential
divergence due to the large degeneracy of levels. ' '

It would then seem that a renormalization procedure
would need an infinite number of subtractions, and
thus an infinite number of parameters. However, we
show that in the case of the one-loop diagram, the
divergent part of the new trajectory, n, +g'Z(n&), is
independent of t and can be removed by a single sub-
traction. This can be extended to the amplitude itself
and one finds that the subtraction of a crossing-
symmetric, Regge-behaved, dual amplitude, having
only single and double poles in the external variables
s and t, is enough to make it finite. We then find that
the renormalized amplitude still Reggeiaes at s ~ —~.
We have extended this to the case of the one-loop
diagram with S external legs.


