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f

We show that the second-order radiative correction changes the electron eikonal function into L1+F(k )g
XD+F'(k'))E(k'), where L'(k') is the bare eikonal, k is the momentum transfer between the electrons (e
and e ), and P(k ) is the second-order electric form factor. This suggests that in high-energy near-forward
electrodynamic processes, the eikonals should be regarded as the basic carriers of the interaction.

I. INTRODUCTION

ATELY there has been considerable interest in the
. & high-energy behavior of amplitudes in quantum

electrodynamics. ' 4 It has been shown that if an arbi-
trary number of photons are exchanged across the 3

channel, the invariant amplitudes near the forward
direction for elastic processes a+b~a+b can all be
distinctly characterized by two quantities: (i) the im-

pact factors F, and Fb, ' and (ii) the electron-electron
and the electron-positron eikonals. ' ' The presence of
the impact factors is a reRection that quantum fluctua-
tion gives structures to particles, while the eikonals
indicate that the t-channel-exchanged photons behave
like classical potentials.

The importance of this result lends itself not only to
electrodynamic processes, but also perhaps to other
areas, since we may wish to abstract certain observa-
tions and apply them to high-energy processes involving
hadrons. For this reason, the subject of electrodynamics
is taken up once again.

Now, if the true situation can be qualitatively well
described by the sets of Feynman diagrams discussed in
Ref. 2, a physical picture seems to emerge. ' It suggests
that in a highly energetic near-forward process, as far
as the leading order goes, we may regard the "electrons"
and "positrons" as the more elementary constituents.
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The other energetic particles, i.e., the photons, interact
via dissociation virtually into electron-positron pairs,
which, incidentally, gives rise to impact factors. Then
the electrons and the positrons interact amongst them-
selves in pairs via eikonal exchange. In other words,
instead of individual particles, some collective entities,
the eikonals, now serve as the basic agents that carry
the interaction.

In order to make this picture more concrete, one
should assign definite roles to, e.g. , the effects of radia-
tive corrections. To be specific, the eikonal function
between electrons has the form

E(k') = d'xg e
—*" *~

exp —ice'
(2w) '

—1

q s+),s —je

(b) E(k') —+ [1+g(k')] d'xg e '"*L—
X exp —iee' I(q, ')I'(qi') e"~ '~

(2s-) '

x
q +k 1e

i.e., each photon vertex is expected to acquire some
structure I(qP) and I'(qP). We have also introduced an
additional factor g(k') to account for the probable
over-all modification.

The purpose of this work. is to perform such an
investigation. As a beginning, the simplest situation is
studied here. Ke shall find out what the effects of
second-order radiative correction are on an energetic
electron line. As it turns out, af ter elaborate cancellation

where k is the momentum that is exchanged. If this
object is the basic interaction carrier, then radiative
corrections should modify it to become

(a) E(k') ~ [1+7 (k') jE(k'),
i.e. , F(k') gives structure to the eikonals. On the other
hand, if the individual exchanged photons are still the
basic agents, then we may expect a result
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and combination, the eikonal is shown to modify to the
form (a). In fact, we shall be concerned with the spin-
nonfhp part only, and F(k') is none other than the
electric form factor.

The plan of this paper is as follows: We shall find
that in order to study the high-energy behavior of the
electron-electron scattering amplitude with arbitrary
number of photons exchanged in the t channel, it is
convenient to split the amplitude into two halves.
Therefore in Sec. II we shall 6rst investigate the
behavior of the zz-photon absorption (production)
amplitudes by an energetic electron. In Sec. III, we

shall pair these amplitudes together and show that the
electron-electron eikonal now takes on the form (a).
In Sec. IV, we shall discuss our results.

II. PARTIAL AMPLITUDES

In order to calculate scattering amplitudes involving
"electrons" at high energy, it is convenient to look at
the partial diagrams, in which virtual photons are
emitted or absorbed from an electron line. We shall

subdivide this section into parts according to the num-

ber of photons coming out. We shall call a photon line

which begins from and ends on the same electron line a
radiative-correction photon line. We include eRects of
one radiative-correction photon line only.

We choose the coordinate system so that the electron
is moving approximately in the s direction with very
high momentum. Let Pi and Ps be the initial and the

A. One-Photon Absorption

One-photon absorption is represented by Fig. 1. It
gives an amplitude~

M i ——22(P3)eh„„zs(P3), (1)
where A„„ is the renormalized part of the vertex, and

gn1 —g2
d4q

Vp 'Y"
(2zr) 4i m+» (p —q+-', k) ze—

1
X v" )

m+» (p —
q
——',k) is —q'+)t;2 ie—

in which we have used re and X' to indicate the masses
of the electron and the photon, respectively.

For the spin-nonQip amplitude, the dominant term
comes from the electric part, which yields

Mi ——e(p /m)F(ks)
with

final energy-momentum vectors, respectively; then

pi= p lk— p =p+lk
ps=((~ p[2+-'ks+ms)'~2 0 0,

~ p[),
and

k&=(0, ki, k2, 0).
Obviously, k is the momentum transfer. We shall look
for the leading behavior of the following amplitudes
when p —& ~, while the other quantities are held finite
and fixed. Furthermore, we shall confine our attention
to the spin-nonAip amplitudes.

g2

F(k') =
16m' p

—4m'[1 —(xs+xs) —-', (xs+xs)'] —2k'(1 —xs) (1—xs)

(dxidxsdxs 5(1—xi —xs —xs)
ms (xs+xs) 2+k sxsx3+)~sxt

4m'[1 —(xsyxs) ——,'(xs+xs)'] m'(xs+xs) '+ k'xsxs+) 'xl )
ms(xs+xs) 2+Vxi m'(xs+ xs) 2+'Asxi

B. Two-Photon Absorption

In order to preserve gauge invariance, we have to include the diagrams of Figs. 2(a)—2(d). The first diagram
corresponds to the amplitude

1 d 4q Q7 a],0,'g

Ms, ——e'3! dxidxsdxsdx4 8(1 xi xs x3 x4)
0 (2 )'zirDs, '

1V" ' =zz(P3)»~[m —» (Px4+sk (1+xi—xs+xs) —rxs)]»"
X[m »(px4+—sk (xi—xs+xs —1)—r (xs —1))]» '[m —y (px4 —

2k (1—xi+xs —xs) —rxs)]»„zz(p i)

+-', q'22(ps) (»"»"»"»,»"[m—» (pxs ——',k(1—xi+xs —xs) —rxs)]»„
+»&[m —». (Px4+-'sk(1+xi —xs+xs) —rxs)]» '»"» '»,»„

+»&»"»"[m »(px3+-'2k(xi xs+xs —1)—r(xs —1))]—» '».»~) z—z(pi),
Ds~ =q'+b' —ze,

b'=2P rxsxs+cs,
c' =) 'xs+m'(xi+xs+xs)'+k'xs(xi+xs) —k rxs(2xs+x4)+r'xs(1 —xs) .

' We use the metric g»=( —1, 1, 1, 1), »3= —»"+, »'=»'+, (»~,»"}= —2g». The Dirac equation is (~rz+» P) u(P) =0.

(3)
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terms as p~~.r roblem now is to extract t e ea ing —0f h hh t h 'o o 'b6' the denominator function itisseent a em
le b infinite-momentum tec 'qit is easy to see (for examp e, y

'
and/or x4—O.o On the other an, i i

)] ( )+-' ' ( ) """(— ) "
or this reason, we can safely discard all

1 11

The essentia poin o 1/, o o oflo ih )ive rise to terms of order p r upfactors with x3, since a factor xax4 wi give rise o
the other. Therefore,

' —k' m' 1 —xi)(1—xo)]+(2g'/m)P"'P 'x4.1V ' '—4mp 'p 'x4[1 —4x4+x4' —(k'/m')(1 —xi —xo g

be written in two parts:

1

—x —x —x —x 1—4x+x' ——(1—xl)(1—xo)
16m 2

4 1

x '—k' m')(1 —xi)(1—xo)]4m "' ' dxidxodx4 5(1—xi —xo—x4) x4[1—4x4+x4-
16n' o

1

x Xox —iodxo [2p rxox4+m'(xl+xo)'+&'xlxo+&'x4 —zo

0

The amphtude can

tivel of S j 2. After the q integration, wwe findfirst and the second term, respectively, ocorresponding to the rs an, tivel o

2

(4)

Also,

8 2p p 1

16m' m 2p. r —io o

dxidxodxo 5(1—xl —xz —xo)

—4m'(1 —(xz+ xz) ——,
' (xo+xo) ') —2l'z'(1 —xo) (1—xo

m'(x +x )'+k'xzxo+X'xi

2Q

e4 4palpag 1

16x2 m p

X4
d,d d* d 3(1—*——xo —x4) (6)

In ord
additional integral:

1 s' —a' s a' a' a'+s s) 3

sxo a0

=(1/2s) lns —(1/2s) lna' —3/4s,

sin also the identityer with the dimension of mass. singwhere a is some ar ib trary nonzero num er wi

1 Q—1 1

41 P
ds

[(~ P)s+&]'—
we write (s=2p r—zo

ient to introduce the followingof this integral, it is convenien o iner to extract the first two leading terms in p o is
'

4,4 4palpI4 — 1

3f2g&"=
16m 2 m p

1 1 s 3
» *o xodx4 ( -*1-*o- 4-*4)*4I

s 3—ln———
2s a' 4s

x4(c —a x4)1

[( ' —'x )s+sx x +a'x ]'.0

4
4 4P&lPI4

&4 4palpao

16m 2 ns 0

c —cx4 1 1 $31 1

—x4 —+—ln———" "'*'"'""*' *'(. ..),P.;., 2, . 4,
er e a e follow the method of

16m 2 m 0 p

er behavior of amplitudes. Ke o og gy
e e

'
ru Ann Phys. (¹Y.) 22, 263 (1969);22, 299 (196P. G. Federbush and M. T. Grisaru, Ann. ys.

(1963).
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where to come to the last step, we have once again made use of the fact that the high-s behavior comes from the
region where x3—0, resulting in

c' ~c"=m'(xi+x2) '+k'xix2+li'x4
and

e4 2p~'p~' 1

16m' m 2p r —ie
ln(2p r —ie) —-',

dxidx2dx3 b(1 —xi —x2 —x3)2 ln
m'(x2+x3) '+k'x2xa+X'xi

~ {g)

Our contention is that parts of the vertex correction and the self-energy effect of the internal electron line cancel
the term which is proportional to [1/(2p r —ie)] ln(2p r—ic). Let us then turn first to the self-energy figure 2(b),
which gives

M 2t,
'e'N——(pa)y '[m+y (p+r ~k) ——ie] '[—Z„„(p+r—~k)][m+y (p+r —2k) ie]—'y~'u(pi)

where Z„„is the renormalized part of the self-energy; i.e.,

1 1

ds dxidx2 8(1—xi —x2)xixmEppes(p+r g k:p ):(sf+& p )
8m' o

m(1+x2)+ (& p' —m) (1—x2) [1—2m'x2(1+x2) s/(m'x2'+X xi)]

m x2 +(p +m )x2(1 x2)s+~ xi
(10)

It is easy to extract the dominant contribution, which
comes from the portion proportional to (y p' —m), P+ ~2k

)&

„p+ 2k

M2b=
2p~'p~' 1 2p r —ie—ln

16s2 m 2p r —ie m2

—2 —2 dx(1 —x) ln~ x'+ —(1—x)
~

4nz'x2(1 —x2')
dxidx2 8{1—xi —x2) . (11)

0 ns'x2'+X'xi

%e now come to the vertex correction. Note that one
of the electron lines is oR mass shell. Figure 2(c) gives
an amplitude

M2,=N(pa)y '[m+y (p+r —-', k) —ie]-'
&(A„„N(pi), (12)

p+ izk
)&

P- 2k

(a}

~P + l2k

p -'/2k

l~p+ ~2k

(,'(

FrG. 1. One-photon absorption
with radiative correction. p- zk

FrG. 2. Two-photon absorption
with radiative correction.
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where A„„'is the renormalized vertex,

~ren

(1V *

XI
1D 2

de
dxidxzdxz 8(1—xi —x2 —xz)

(2zr) 4i

y"(q'—4m'[1 —(x2+xz) ——2, (x2+x,)27) )
[I72+m'(x2+xz) 2+Xzxi —ib7' )

(13)

In this expression, the second term is due to subtraction,
and

M2, +M2. =M2, +Mzg

2p
xl Ip

n!9

g2

m 2p'r —z6

2e 1

g
—2 d$1dx2dx3

16m' o

(2pr —ib) term cancels out, as we promised. Besides, a
remarkable thing happens, because

XI(I—x —x, —x,) Inx,)+I'(I')D2.= I72+m2(x2+xz) 2+l).2xz

+2(P——',k) rxix2+r'x2(1 —x2) ie—,
E z=y„(m y[pxi ———2'kxi+r(1 —x,) —I77)y 2

X[m —y (Pxi ——,'kxi —rx2 —I7)7y„.

(14) It is easy to show tha, t

1

—
2
—2 dxidx2dxz 8(1—xi —x2 —xz) lnx, =0.

It is straightforward to show that the dominant
contribution is

N(P2)V"[ —~.(P+ —2k)7&" (Pi)
&(Pz)p—"[m p(P+—r 'k)]y —'g—'N(P 2)

=2(P"P"im) V'

The standard technique gives

s4 2P«p~~
JI2,—— -- = —dX1dX2dh3

162r2 m 2p r —ib

(2p r ib)xix2—
XI(1—x, —xm

—x,)(—I In
m'(x2+xz) 2+X2xi

4m'[1 —(x +x ) —',(x +x,)'7
(15)

m'(x, +x,)2+~'x,

Let us also define

ol

2palpI2
G M2b+M2 M2b+M2d

m 2P'r zb

4m'x'(1 —-', x)

m'x'+X2(1 —x)

after some simplification. Then,

M2 =M2o+M2 b+M2, +M2g

~2 — 1

G= I —I dx (I —Ix) In~~ x'+ —(I —x))
16m2 p m2

(17)

We point out that the erst term comes from

g2

2P"P"
. [J"(k2)+G7.

m 2P'r zE—'
(18)

D2, ' [I72+m2(x2+xz) 2+Vxi —zb72 C. Three-Photon and Multiphoton Absorption

in Eq. (13). It was pointed out that the part which
contributes to Ã ' is E '=y 'q2. As we shall see, this is
in conformity with a general rule which states that for
any graphs (except self-energy correction) such that the
radiative-correction photon line has at least one end
tacked onto an off-mass-shell electron line, then the only
part of the numerator function which can contribute to
the first two leading terms in p of the amplitude must be
proportional to q2. Furthermore, these two powers of g
must come from the electron lines which touch the two
ends of the radiative-correction photon line.

Similarly, we can show that 1

(,6) M,.=e 4. dxdx, dx,ds, ds,
M2g ——M2, .

We are now in a position to attack the general case.
However, it is perhaps more pedagogical to work out
the case with three external photon lines and then
discuss the general situation, since otherwise we shall

have to write down large numbers of superscripts and

subscripts, which is quite confusing.
There are eight diagrams we have to contend with

when three photons are absorbed [Figs. 3(a)—3(h)7,
out of which four have been done already [3(e)—3(h)7.
The most complicated one is Fig. 3(a), which gives

When we add these four amplitudes up [Eqs. (4), (5),
(8), (11), (15), and (16)7, we see that, the ln(2p r —ib)/

d4q QT ala20.'3

X()(1—x—xi —x2 —si —s2) —,(19)
(2zr) 'i Db, '
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,(
p+'/zk ), p+ '&zk

&,
p+'/zk

Cf

x

p-"&zk+ r,

p- zk

(cI) (e) (g)

FIG. 3. Three-photon absorption with radiative correction.

where

Da. ——g'+m'(x, +x2+s~+s,) '
+X'x+2x(p ——,'k) Lxg(rg+r2)+xgrgl

Lx2(rl+r2)+xlrlj 2s2k
' Lx2(r1+r2)+xlrlj

+k s2(xl+x2+sl) +x2(ri+r2)'+xu'P —i~

and by the in6nite-momentum technique

1V & 2 3=u(p, )v„Lm —v. (px+-,'k(1+st —s,+x,+x,)
—»r —x2(ri+r2)) jv"(—v px) v"(—v. px) v"
&& Lm —v(px ——',k (1—sg+sg —xg —x2)
—x,r, —x,(r,+r,))jV„u(p~)+-,'g'u(p3)

Xv.v.v"( vpx)v"( —v px)v"v.v—„u(p.). (20)

The second term comes from an average over q. In fact,
the factor q' is extracted from the lines with parameters
2'& and s2. W'e can show that q2 terms due to other terms
are negligible. Suppose we take from lines with parame-
ters x~ and x2 each a factor 7 q; then we shall have in
the numerator function a term

component of the vector 7 is

v+ =v'+v'- p,
the small component is

v--v' —v'-1/p,
and the components that are of order unity are

7~=7& or 72 ~

Since v+v+ ——0 an.d (v+,v~) =0, we see that the leading
term in Eq. (21) is two powers of p smaller than the
second term of (20). By the same kind of argument,
we can show that all the other g' and (q')' terms are
small.

It is convenient to introduce the substitution

x& ——wy&, x2 ——w(1 —y&), dx&dx& ——wdw dy„(22)
then

D ga'+ ( m&+ s)'+s2), ' +2xp xw(r2y~+r~)+k's~s2 —i&

and

~ & q27n17 7e27v7a3~ q27a17a27a3

Now, by the infinite-momentum technique, the large

N.~.~"=(4p"~p.2p "/m)x'L2m'(1 —4x+x')
(21) —',k'(1 —si+s2+x) (1+st—s2+x) j

+(4p.~p "p.s/m)x'q'
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e written asThe amplitude can

YpRK-PEN YAp

li&+Mau (23)
where, a terw, f the q integration,

(1)~313,
16m

2 dzidzzdwdh 8(1—si —zs-
m 0

2
x 1+zi—sz+x)—4x x') —'k'(1 —s,+z,+x)

2 gw (rzyi+ri)+ i zzgw z k siss+zzz (si+zz0" 4p"p"p"
16x2

—s —w —x)dzidzzdw 8(1—zi sz—

~ ]—(2p rz —ze—x' ——, — x 1+si—sz+$)g[-') 'k'(1 —s +s +xXh[2zzz'(1 —4x—x' ——, — x

k'z, z,+zN'(si+sz

S5 4p&1pCKmpQS

1 xi $2 $8)
1

dxidhzdxz 8( —i
1

X([2Pwx (r,yr, )
~ ~

s the leading term, which is0 ives us ete ration where m
'

s e

1

The range of integra
'

(24)

Similar y, a1 fter the q integration,

16~2

I—2 dsids2dxidgzdx 8 1—Zi —s

—2

2-xi -xz -x)

r x ' s )'+li'x —zcXh rixi)+&'zizz+rrz'(zi+zzXx'[2px ((ri+rz)xz+rixi

16m2

1a1 a2 a3

1—Si—S2—X—m ~X2 dyi

2 2 g2g —Z6
—2

2 d dsidszdh8W(1 —si —zz x

k's z +riz'(si+sz)'+l~'x —zeX[2pxw (r, y+r )i+ lz'sizz riz

16x2
2 dsidsz x — —s2 —x—w)x[ —(2p rz —ze)-'7d dw 8(1 si

zi(z+si)s'z+X' xze) 'j—

One

—1 ri —ie)ln 2

2 rz is —' 2 ri ——ze)
—' —2P ri

)
dxidxzdkz 8(1—xi —xz —xz

Xi

(2)~3f3,
16m

X

—' —2 rixw+k zi z+)'+li'x —ie)X[(2p (riyrz xw ' z

fi t two lea ingcilitate t e ex r
d th tl dt Mme roce urefollo thof Eq.. (7). thenfinds, o o

E s. (5) and (8).'k . (24) and (25) to Eqs.'keness of Kqs. aWe see the alik . a E
Now we take up Fig.

M, b—e'[2 3/(2p ri —ie)]M ' '
where

1

1—gi —$2—g—8i 2 =3! dhidhzdhds 8(1—xi —hz x
0

d4 Qa].a2
g

(2zr)4z Dzl, '

(26)

(27)
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and
D35 g——'+2px [(.r11r2)x2+rlxl]+d'. (28)

Here, d' is some function independent of g and p. Its
exact structure is immaterial, as we shall see. Also,

QtxlX32~(2ptxlptx2/2N)~2x (29)

There are, of course, many other terms in X ' '.
However, we shall argue later on that they are indeed
negligible. After the q integration we have

3X5 4P txlP tx2Ptx3

2p (rl+r2) i5—2p rl i5—

2p rl
xI ln(2P rl —i5)

I2p r, —i5

2p (rl+r2)
»[2p (rl+r2) —i5]+A I, (33)

2p r2 —i5

2p~lp~2
M"'~'— — — dxqdx2dxCk

16m' m 0

p5 4PtxlPlx2Ptx3

3f3,——
16m' m 2P rl ie 2P—(rl+r2) i5—

XS(1-x,-x2-x-s)
X2x/{2Px [(rl+r2)x2+rlxl]+d }

2ptxlptx2 1

dxdsdw 8(1—x—s —25) xw
16~' m

e5 4ptxlptxlptxl

3Eef-
16x' 2P rl i5 2P—(r,+r2) ie—

X{ln[2P (rl+r2) —i5]+2}, (35)

X{—ln[2P (rl+r2) —i5]+X}, (34)

2
X dye (30)

2px21l (r2yl+rl)+d

after introducing the same change of variables given in
Eq. (22). The yl integration renders

3X5 4PtxlPtx2Ptx3

3f3g-
16x' 2P rl —ic2P (rl+r2) —i5

X{in(2P r1—i5)+Z}, (36)

or

2palptx2

162r2 225 2p r2 —ie

2p (rl+r2) —i5
ln

2p ' r1 it5

2p rl —ie 2p r2 —ie

2p (rl+r2) —i5
Xln-

2p ' r'1 —i5

g5 4PtxlPX32Ptx3

SI3b-
16m'

(31)

g5 4PtxlPtt2Plx3

2p rl —ie 2p (rl+r2) —i5

X{—ln(2p r, —i5)+X}, (37)

dxldx2dx3 ~(1 x1 x2 x3)

For the terms without the factor g2 in the numerator
function cV ' ' [Eq. (29)], after the g integration, we
shall have instead of Eq. (30) some quantity

I 1

dxdsd'N 8(1—x—2 —w)xw
0 0

XI -2ln
rr52(x2+x3) 2+X2xl

42352[1—(x2+x3) —',(x2+x3)2])
(3g)

2332(x2+ x3)2+X2xl

X
[2pxw (r2y+rl)+d']'

—1

p+'~ok~ k —
(rt t'- + l2 ))

Clearly, these terms are proportional to (2P rl —i5) '
X(2P r2 ie) ', etc —(again, .up to powers of the log-
arithm), which are one power lower in p.

In a similar fashion, we obtain

dxdhdw 8(1—x—z —w)
0 2p'r2 iC

X{[2Pxw (r2+rl)+d'] ' [2Px1e rl+d']-'—}. -

g5 4PtxlPtx2Ptx3

&3,——
16m' m 2p (rl+r2) ic 2p r2 ——i5

2P (r,+r2) —i5
Xln

2P rl —25
(32)

p-'&zk

FIG. 4. Multiphoton absorption
without radiative correction.
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FIG. 5. Multiphoton absorption with radiative correction.

1

2 = —1neP —2 —2 dx (1—x)

Once again, a11 the p-dependent 1ogarithmic terms

cancel completely among themselves. The final result is

Xln x' —1—x
m2

4pR1pQ'2pR3

313=e'
2p r~ ie 2p (rq+r2) ie— —

1 4~2x2(1 x22)

+ dxgdx2 6(1—xg —x2) . (39)
m'xP+Vxg

&(LF(k')+2G). (40)

By now, it should be obvious what the trend is for the
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general case. Thus, to include second-order radiative
correction. to a graph with rz absorbed photons (Fig. 4),
we shall have to consider three classes of diagrams,
besides vertex and self-energy insertion: (i) The
radiative-correction photon line is inserted into the two
on-mass-shell electron lines [Fig. 5(a)]; (ii) it is inserted
into one on- and one off-mass-shell electron line

[Figs. 5(b) and 5(c)]; and (iii) it is inserted into two

off-mass-shell electron lines [Fig. 5(d)]. The previous

examples reveal that, after introducing Feynman
parameters and shifting the origin of q integration, the

relevant. terms in the numerator functions will be

(2p mi). . . (2p nn —1) (pmn/m)

Xx"-'(—4m'[1 —(si+2,) ——',(2,+s,)']
—2k'(1 —si) (1—s,)+q2}

(2pml). . . (2p«—1) (p«/m)Xd —iq2

g ~(2pmm). . . (2pnn
—l)(pun/m)xn mq2-

Zb&~(2p«). . . (2pmm
—

1)(pmm/m)xm &q2

while the denominator functions will be

D,.-q'+2p'[r», + . .+(4,+ +.. i). ,]
+m'(Si+S.) '+k'S1S2+X'X —Ze,

Dbb q'+2Px [rixi+ .+(ri+ +r;)x,]—i~,

D"-q+2p'L( + + - ), .+
+(rl+ ' ' ' +r —1)x —1]

Dbd-q2+2Px [(ri+ . +r'-i)x;-i+
+(ri+. . +r )x„] i—c

To be specific, we shall discuss Fig. 5(a) in greater
detail. After the g integration, we make a change of
variables

Sy =
%PAL,

x2 ——w(1 —y,)y, ,
(41)

xn 2—w(1 yl) (1—
yn 2)yn —2 ~

yi) ' ' '(1 y —1)(1 y —2)

which has the properties that

Xl+ ' ' '+Xn 1=W,

dXl' ' 'dXn 1W—n 2(1 —
yi) n 3. . . —

(1—y. 2)dwdyi dy. „
and that the ranges of integration for the y's are from
0 to 1. lt is then simple to carry out the y integration,
starting from y„2, after which we see that both the
Jacobian and the factor x" ' from the numerator func-
tion are cancelled away. We are left with expressions
very similar to those in the previous examples. Once
again, introducing the integral expression in Eq. (7) and
going through that same manipulation, we And

Qf A+2 pmn

M, =—(2p 1) (2p.--))
16m2

~ ~ ~

m 2P ri i» —2P (ri+ +r„ 1) ie—
—21n

~en(2pml). . . (2pnn —)) -[Id'(k2) + (zz —1)G] .
m 2p ' rl zc 2p (r1+ ~ ~ ~ +r 1) ze-

The factor F(k') is due to Mb, plus one of the vertex Consequently,
corrections. The rest of the vertex corrections (zz —1)
pairs with the (rz —1) self-energy insertions to give the G=O.
factor (zz —1)G.

Now, we shall show that G [Eq. (17)] actually
vanishes. This is seen if we perform integration by parts
of the term

(42)

(43)

III. FULL AMPLITUDES

For de6niteness, we shall write down the high-energy
spin-nonflip amplitude of "electron-electron" scattering
e(pi)+e'(p2) 1 e(pz)+e'(p4), although what we say in
the following can be applied directly to other cases
involving electrons. The graphs we include in the
present consideration are shown in Fig. 6. The number
of photons that are exchanged in the 3 channel are
arbitrary. For sz photons, after Gxing the labels on the
photons which come out from one of the electrons, the

1

dx () —2z) )n z'+ (1—x))
m2

1 'A2

d(x —x') )r x'+ —()—x))
m2

(x—x2) (2x—X2/m2)
dx

x2+ P.'/m') (1—x)

(p-dependent logarithmic terms) —2+ dxietx2dx, g(1 —x,—x2 —x,)
0

—4m'(1 —(x2+x2) —-', (x2+xz)') —2k'(1 —x2) (1—x ) m'(x +x )'+k'x x +X'xi)

m'(x, +x,)'+kzx, x,+X x, Xg r
After a similar procedure, we also find that Figs. 5(b)—5(d) contribute to only p-dependent logarithmic terms. As
before, all these cancel with those which come from mass and vertex renormalization effects. We are finally left with

rxrb ]
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~ ~ ~ ~ ~ ~ ~ ~+ FxG. 6. Electron-electron
scattering with radiative cor-
rection.

P„P2
nds are to be permuted in e t different orders and

tacked onto the other electron. e ra ia
'

sides are to be inserted in all manners aslines on both si es are o

b f It is well known that this procdiscussed be ore. is

ill reserve gauge invariance.wi pres

s stem in such a way%e shall choose the coordinate sys

ovin almost in the —sthat electrons 2 and 4 are mov g
direction. Thus

(44)

+~+
htnde jn snch aWe shall normalize the mvarian p

th t the g«n amplitude is

g(p, )~nM(P2) u(p3) vn&(p&) ~/
=(p.p'/mm') &/&'

Then, the invariant amplitu e

oo n (III
n= 1 2 ll=

d4r —i
e SP ~ S

(22«) ' r'+X' —ie;

&&I e"I:&+&(~')j(2p)"" (2p)""-'
m 2p «2 —ie 2p (rg+ +rn 2 ie—

(45)
l1

I
""L + '( ' 3( P')- " ( P' -.

Now we introduce the variablese—j, times over 1,. . . ,e. ow, wwhere v; indices are to be permuted N(m—

then

and

r=(2 )'2 d'x, o
—"' r. n (

=r —r'r =r+r', r =r —r,
r= IPI«-, -P' «= IP'lr+,

d'r dr dr
g'6 J $J

2(22«) 4 r+r +«2,2 iel;—
I»(,+ +..)/

4I II 'I).— ~~'lr, —i.
t'xZ &( +" +.) I

perm

Upon using the relations'

1
t

( i+ + .)PIE lperm
Vg + P],

= (22«i)" '8(rg)+ 5(rn)~

slpllp'I=-4p p',

d2g e
—i7c~.x~

expl —iee' e'"~ n~ —
I

—1, (46)

we find

2 =iLiyJ (k') jL1+J'(k') jp p'/~m'
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where F(ks) is given in Eq. (2) and is the second-order
electric form factor.

IV. DISCUSSION

The second-order radiative-correction calculation
once again suggests that in high-energy near-forward
electr odynamical processes, the eikonals should be
looked upon as the basic interaction carriers. It would be
interesting to extend this investigation to include
radiative effects to all orders. The major problem here
is the complexity of the renormalization procedure, and
we are looking into it.

One may also wonder what the effects of vacuum
polarization are. Clearly, the photon self-energy effects
will change the eikonals to something of the form (b)
in Sec. I. However, it is unclear to us without detailed
calculation what form it will assume after other
diagrams, such as Fig. 7, are included.

It is amusing to notice that in Eq. (46), the amplitude
is proportional to the square of the electric form factor.
This resembles the conjecture of Ku and Yang, ' except
that they argued for large-angle scattering, whereas
our deduction applies to small angles only.

1Vote addedie ma~lscript After. the submission of this
work, a paper by H. Cheng and T. T. %u appeared
LPhys. Rev. 184, 1868 (1969)] in which second-order
radiative correction to an electron which interacts with
a Coulomb potential was considered. Results similar to
those of our corresponding case were obtained. They
also looked into the spin-Qip amplitudes.

' T. T. Wu and C. N. Yang, Phys. Rev. 13'7, B708 (1965).

FIG. 7. An example due to vacuum polarization.

Higher-order radiative corrections to this problem
were carried out independently by three groups: (1)
H. Cheng and T. T. Wu, (2) S. J. Chang, and (3) Y.-P.
Yao, using three different methods. To summarize the
situation, the conclusion is that if vacuum polarization
effects are neglected, and if Z diagrams are not included
(Cheng and Wu, and Chang) and/or if soft-photon
approximation is made to the t-channel exchange (Yao),
then the results obtained in this paper and in the
aforementioned work of Cheng and Ku remain valid
to all orders.
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