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We show that the second-order radiative correction changes the electron eikonal function into [1+F (%) ]
X[1+F'(k?)]E(k?), where E(£?) is the bare eikonal, % is the momentum transfer between the electrons (e
and ¢'), and F(k?) is the second-order electric form factor. This suggests that in high-energy near-forward
electrodynamic processes, the eikonals should be regarded as the basic carriers of the interaction.

I. INTRODUCTION

ATELY there has been considerable interest in the
high-energy behavior of amplitudes in quantum
electrodynamics.’~* It has been shown that if an arbi-
trary number of photons are exchanged across the ¢
channel, the invariant amplitudes near the forward
direction for elastic processes ¢+b— a-+b can all be
distinctly characterized by two quantities: (i) the im-
pact factors F, and Fp,' and (ii) the electron-electron
and the electron-positron eikonals.?=® The presence of
the impact factors is a reflection that quantum fluctua-
tion gives structures to particles, while the eikonals
indicate that the z-channel-exchanged photons behave
like classical potentials.

The importance of this result lends itself not only to
electrodynamic processes, but also perhaps to other
areas, since we may wish to abstract certain observa-
tions and apply them to high-energy processes involving
hadrons. For this reason, the subject of electrodynamics
is taken up once again.

Now, if the true situation can be qualitatively well
described by the sets of Feynman diagrams discussed in
Ref. 2, a physical picture seems to emerge.® It suggests
that in a highly energetic near-forward process, as far
as the leading order goes, we may regard the “electrons”
and “positrons” as the more elementary constituents.
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The other energetic particles, i.e., the photons, interact
via dissociation virtually into electron-positron pairs,
which, incidentally, gives rise to impact factors. Then
the electrons and the positrons interact amongst them-
selves in pairs via eikonal exchange. In other words,
instead of individual particles, some collective entities,
the eikonals, now serve as the basic agents that carry
the interaction.

In order to make this picture more concrete, one
should assign definite roles to, e.g., the effects of radia-
tive corrections. To be specific, the eikonal function
between electrons has the form

E(k2)=/d2xl ek

d% 1
X{expl:—iee’/ L g ]—1} )
@m)? gl NI—ie

where & is the momentum that is exchanged. If this
object is the basic interaction carrier, then radiative
corrections should modify it to become

(a) E(k?) = [14-F () 1ER?) ,

ie., F(k?) gives structure to the eikonals. On the other
hand, if the individual exchanged photons are still the
basic agents, then we may expect a result

(b) EGE)—[145()] / e

d%g
X {exp[—iee’/ ' 1(g:2)T (gu2)eian-a
(2m)?
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ie., each photon vertex is expected to acquire some
structure 7(g:?) and I’(g.?). We have also introduced an
additional factor g(k?) to account for the probable
over-all modification.

The purpose of this work is to perform such an
investigation. As a beginning, the simplest situation is
studied here. We shall find out what the effects of
second-order radiative correction are on an energetic
electron line. As it turns out, after elaborate cancellation
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1 RADIATIVE CORRECTION

and combination, the eikonal is shown to modify to the
form (a). In fact, we shall be concerned with the spin-
nonflip part only, and F(k%) is none other than the
electric form factor.

The plan of this paper is as follows: We shall find
that in order to study the high-energy behavior of the
electron-electron scattering amplitude with arbitrary
number of photons exchanged in the ¢ channel, it is
convenient to split the amplitude into two halves.
Therefore in Sec. II we shall first investigate the
behavior of the n-photon absorption (production)
amplitudes by an energetic electron. In Sec. III, we
shall pair these amplitudes together and show that the
electron-electron eikonal now takes on the form (a).
In Sec. IV, we shall discuss our results.

II. PARTIAL AMPLITUDES

In order to calculate scattering amplitudes involving
“electrons” at high energy, it is convenient to look at
the partial diagrams, in which virtual photons are
emitted or absorbed from an electron line. We shall
subdivide this section into parts according to the num-
ber of photons coming out. We shall call a photon line
which begins from and ends on the same electron line a
radiative-correction photon line. We include effects of
one radiative-correction photon line only.

We choose the coordinate system so that the electron
is moving approximately in the z direction with very
high momentum. Let p; and p; be the initial and the

e
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final energy-momentum vectors, respectively; then
pl:P_%ka ?3=P+%k:
pr=((| p|*+ik2+m*)'2 0,0, |p]),

kr= (0, kl, kz, 0) .

Obviously, % is the momentum transfer. We shall look
for the leading behavior of the following amplitudes
when p — oo, while the other quantities are held finite
and fixed. Furthermore, we shall confine our attention
to the spin-nonflip amplitudes.

and

A. One-Photon Absorption
One-photon absorption is represented by Fig. 1. It
gives an amplitude’

Ml:a(pa')eArEnalu(Pl) ) (1)
where A,n® is the renormalized part of the vertex, and
d%q 1
Avi=¢? / Yu Y
Q2m)4% m4y-(p—q+3ik)—ie

1 1

X v )
mty-(p—q—3k)—ie @*:FN1—ie
in which we have used m and A? to indicate the masses
of the electron and the photon, respectively.
For the spin-nonflip amplitude, the dominant term
comes from the electric part, which yields

My=e(pe/m)F(k?),

al

with

—4m2[1 - (x2+x3) —%(xz—l-xs)Z:l - 2k2(1 —xz) (1 —xg)

1
F(kZ) = N / dxldxgdx;; 5(1 —x1—x2—x3)<
1]

m

m2(xe+x3) 2+k200x3+N22q
4m?[1— (wo+xs) — 5 (va+a35) %] 21
—21In

m?(xe+25) 2N

mz(xz+xs)2+k2xzxs+>\2x1) @
i m?(we+xs) Ny '

B. Two-Photon Absorption

In order to preserve gauge invariance, we have to include the diagrams of Figs. 2(a)-2(d). The first diagram

corresponds to the amplitude

1
My, =e*3 !/ dwrdxadasdas 6(1 — a1 —xo— x5 —2%4)
0

d4q A,Ta;ag

(21)% Dagt
Nerar=gg(pg)y*[m—ry- (pxat+3k(1+x1—xata5) —rxs) ]y

)

X [m—ry - (prest-Fk(r—22t25—1) —7 (25— 1)) Jy2Lm—ry - (pra— 3k (1 — 12— x5) —7%5) Jyuu(p1)
1) (v y vy Lm—ry - (pra— k(1 — 21422 —x5) —7%5) Jvu
Fyilm—y- (pratgk(1+x1—2atus) —ras) oy Yy 21 va
+yeyya[m—y - (pratik(r—aatxs—1) —r(xs— 1)) Iy >yvutu(py)

Dso=q>+b2—1e,
b*=2p rasxstc?,

62 =)\2x4+m2(x1+x2+x3) 2+k2x2(x1+x3) ——k . rx3(2x2+x4)+72x3(1 '—xs) .

TWe use the metric g#=(—1, 1, 1, 1), vb=—*+ 40=40" {y#4*}=—2¢». The Dirac equation is (m-+vy-p) u(p)=0.
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We have shifted the ¢ integration to arrive at this form. Our problem now is to extract the leading terms as p—o.
Given the denominator function Dy, it is seen that the major contribution comes from that region where x3=<0
and/or #42=20.8 On the other hand, it is easy to see (for example, by infinite-momentum technique?) that

Nereax=gq(py)y*[m—y - (prat3k(1+w1—x2+1x5) —7%3) ]
Xy (= pra)yee[m—ry - (pra—3k(1—x1+2s—0x5) —rx5) Jy,uu(p1) +1¢°2(ps) v y"y “1(— - pxa)y “2vov (1) -

The essential point to observe now is that N is proportional to xs. For this reason, we can safely discard all
factors with 3, since a factor x3x4 will give rise to terms of order 1/2p-7 (up to powers of logarithm) lower than
the other. Therefore,

N porso®122dmip i p [ 1 —dwvsts? — (k2/m?) (1 — 1) (1 — ) 1+(2%/m) peip*2xs.
The amplitude can be written in two parts:
' M2u=M2a(1)+M2a<2), (4)

corresponding to the first and the second term, respectively, of NV*12, After the ¢ integration, we find

e4 1 1 kZ
MW= 4mp"1p"‘2/ dxrdxadnsday 6(1—x1—xa—%3—2xy) —m[l —dastxld— —1—x)(1 ——xz):l
1672 0 (b2—1ie)? m?
64 1
>~ R—;‘me"‘lp“z[ dx1dxadas (1 —x1—xa—x0) wa 1 —dowst42— (R2/m?) (1 —21) (1 —x2) ]
U 0

1
X/ dxs [2p 731+ m? (w14 22) 24 k221200 N2py — 1€ ]2
84 ZPquaz 1 0

1
/ dx1dxedxs 6(1 —x1—x2—x3)
0
y —4m2(1 — (x2+x3) — 2 (wa+23)2) — 2k2(1 —x5) (1 — x5)
m?(xa+2x3) 2+ k2xoxs N1 '

T 16mt m 2p-r—ie

©®)

Also,

64 4Pa1pa2 1 X4
— | dxidxedxsdxy 6(1 —x1—x9—x3— 24— . (6)
162 m 0 b2—ie

In order to extract the first two leading terms in p of this integral, it is convenient to introduce the following
additional integral:

1 ' 1 1(s2—a* s a® afra*+ts s 3
/dxldxgdxadx46(1—x1—x2—x3—x4) =—{ ln(1+—>+——+—|: 1n<1+—;>—-1]—;}
0

sx3ta? sl 2s? a? 2s  sL s a
=~(1/2s) Ins—(1/2s) Ina®—3/4s, (7

where a is some arbitrary nonzero number with the dimension of mass. Using also the identity

M2a<2) =

1 1 1 a—@
[
a B 0 [(e—B)z+B]?

we write (s=2p-r—1ie)

¢f dpmper (1 1 1 1 s 3
Moo= —— ——l:/ dxrdasdwsdas 5(1 —x1—x2—x3—x4)x4< — )—l— —In— — —-]
0

16m2 m sxsxatc? swswatatiy 2s a* 4s
64 4pa1pa2 1 1 x4(c2—-a2x4) 1 s 3
= { ——/ dz/ dxrdxedxsdas 6(1—x1—%3—%x3—2%4) + —Iln—— -—}
162 m 0 0 [(c2—a%ry)z+sxsxata®xs ]2 25 a* 4s

et 4puper ! ! ?—a*x, 1 1 s 3
= —/ dz/ dx1dxedxs 6(1 —x1—%2—2%4) — 4 —In—— —} ,
1672 m 0 0 (?—a*xy)z+a*xss 25 a* 4s
8 There are, of course, many equivalent ways to extract the high-energy behavior of amplitudes. We follow the method of
%’. G.)Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22, 263 (1969); 22, 299 (1963); J. C. Polkinghorne, J. Math. Phys. 4, 503
1963).
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where to come to the last step, we have once again made use of the fact that the high-s behavior comes from the
region where x3=20, resulting in

2= " 2=m2(x1+x2) 2+ k2010 N2x4
and

64 2pa1pa2 1

1672 m

M2a(2)g

{ln(Zp-r—ie)—%
2p-r—ie

1 mz(x2+x3)2+k2x2x3+)\2x1
——/ dxidxadas 6(1 —x;—xz—xa)ZInI: :'} . (8
0

X1

Our contention is that parts of the vertex correction and the self-energy effect of the internal electron line cancel
the term which is proportional to [1/(2p-r—ie)] In(2p-r—ie). Let us then turn first to the self-energy figure 2(b),
which gives

Myp=ea(ps)y[m+y- (p+r—3k) —ie] [ —Zren(p+r—3k) Im+v- (p+r—3k) —ie T v 2u(py), 9)

where 2., is the renormalized part of the self-energy; i.e.,

1 1 1
—Zen(ptr—3k=p")= (m+7'j?')2{ — ;/ dz/ dx1dxe 6(1—x1—2%9)21%2
T Jo 0

y m(1+az)+(v-p'—m)(1—x2)[ 1 —2m2x2(1+x2)z/(m2x22+)\2x1):]} (10)
m2x22+ (p'2+m?)x2(1 —x2)z-+N2x1 '
Tt is easy to extract the dominant contribution, which 1 1
comes from the portion proportional to (y:p’—m), Ap + 72k \ pt 72k
et 2parpe 1 2p-r—ie <
Moo= Per rln ? kK-r
1602 m  2pr—id  m? 7 SN
! k-r
1 N EATH q
——2—2/ dx (1—1x) 1n(x2+ —(l—x)) DR dou
0 m? T
! dm2xo(1—x52) 1 <
- / dxids 6(1—x1—x2)—2—~—~—2:' . p - 72k oo T
0 G D p- 2k
We now come to the vertex correction. Note that one (a) (b)
of the electron lines is off mass shell. Figure 2(c) gives
an amplitude
1
Mas2a(payy=[m-ty- (p4r—3k) —ie] AP+ 72k Ap + Y2k
XArena?'u(Pl) } (12)
k-1 q{:
p+ Yok k-T
A
Fic. 1. One-photon absorpti r r
q “' W\f(vvk i)fl}ith ra(?i;t[i’vg C(:)I;‘rictslcz)l;’ll), o p - 1/2 k p - 1/2 k
(c) (d)
p - 1/2 Kk F16. 2. Two-photon absorption

with radiative correction.
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where Aen® is the renormalized vertex,
d%q
Amnaz =2 !/dx1dx2dx3 6(1 —"x1—x2'—x3) —_—
2m)4
5 ( Nex gy {g?—4m’[1— (watws) — 5 (w2 +25) 2]})
Da? Lq4-m2(xa4-25) 2Ny —ie J? )

(13)

In this expression, the second term is due to subtraction,
and

D= g-m?(wy-ats) 0
+2(p—3k) - rwrxe+triea(1—2x2) —ie,
Ner=y{m—ry-[por—3kurtr(l—x2) —g T}y
X[m—y- (px1—3kx1—rx2—q) Tyu.

(14)

It is straightforward to show that the dominant
contribution is

w(ps)y[m—ry- (p+r—3k) INu(py)
=a(ps)y i [m—y- (p+r—3k) Iy2q*u(p1)
=2(p1p2/m)g?.

The standard technique gives
et 2perper 1
o PmP 2pr—ie / dxidxsdas
(2p-r—i€)x1x,
m?(xeF-235) 2Ny
dm[1— (wat-15) — 3 (wat-205)*]
+ m*(xa+23) N2y ) '

Mch

X5(1 —xl—xz—x3)<—2 In

(15)

We point out that the first term comes from
Ne2 ,ya2q2
Dy [q*+m?(xatux5)2+N2x1—1e?

in Eq. (13). It was pointed out that the part which
contributes to V2 is N*2=2ye2¢2, As we shall see, this is
in conformity with a general rule which states that for
any graphs (except self-energy correction) such that the
radiative-correction photon line has at least one end
tacked onto an off-mass-shell electron line, then the only
part of the numerator function which can contribute to
the first two leading terms in p of the amplitude must be
proportional to g% Furthermore, these two powers of ¢
must come from the electron lines which touch the two
ends of the radiative-correction photon line.
Similarly, we can show that
Moa=M,,. (16)

When we add these four amplitudes up [Eqs. (4), (5),
(8), (11), (15), and (16)], we see that the In(2p-r—ie)/

YORK-PENG YAO 1

(2pr—ie) term cancels out, as we promised. Besides, a
remarkable thing happens, because

MoatMoe=Moat+M2q
22pa1paz 1

= g\

m 2p-r—ie

e2 1
X [——(% -2 / dx1dxedxs
1 67[' 2 0

X6(1—x1—x2—x3) lnx2>+F(k2):| .

It is easy to show that
1
—%—2/ dx1dxodxs 6(1 —x1—x2—x3) Inw,=0.
0
Let us also define

2ppr 1
2 — —‘G=M2b+M2,;=M2b+A[2d;
m  2p-r—ie

(4

or

62 1 )\2
G= [1—2/ dx (1—2x) 1n<x2—l— —(I—x))
161!'2 0 m“’

1
-—/dx
0

after some simplification. Then,

4m2x*(1 —%x)
__2_] 17
m2 N (1—x)
Mo=MoatMap+Moct+Maq

2peper 1
=¢? ? ~[F()+G].
m 2p-r—ie

(18)

C. Three-Photon and Multiphoton Absorption

We are now in a position to attack the general case.
However, it is perhaps more pedagogical to work out
the case with three external photon lines and then
discuss the general situation, since otherwise we shall
have to write down large numbers of superscripts and
subscripts, which is quite confusing.

There are eight diagrams we have to contend with
when three photons are absorbed [Figs. 3(a)-3(h)],
out of which four have been done already [3(e)-3(h)].
The most complicated one is Fig. 3(a), which gives

1
Miz,=e4! / dxdx1dx.dz1dz,
0

dYq Neaazas
X6(1—x—x1—x2—321—22) — , (19)
(27!')41 D3a5




1 RADIATIVE CORRECTION TO EIKONAL FUNCTIONS 2321

(d)

(e)

1 1
P+ 72k AP * 72K
Z
ety STy
L2
X, 2 2
p-1/2k p - Y2k

(f)

(g)

F16. 3. Three-photon absorption with radiative correction.

\ \ A

(h)

where

Dso=@*+m?(w1+-x2+-214-25)2
N2 +4-20(p—5k) - [x2(r1+72) +x171 ]
—[a(rit7rs) +x1r1 12— 220k - [02(r1+7s) +x171 ]
Fk2%s (w120 4-21) 22 (r1-72) 21712 — e,

and by the infinite-momentum technique

Neaereaz=gg(ps)y,[m—ry - (po+3k(1+z1—z+21+2)
=2 —2y(r1tr2)) (= pr)y A (—y - px)y
X[m—y(px—3k(1—21420—%1—22)
—x1r1—wa(r1+r2)) Jyu(pr) +19*a(ps)

XYuwysy (= - pR)y (=7 pr)y*yv.amu(ps) . (20)

The second term comes from an average over ¢. In fact,

the factor ¢% is extracted from the lines with parameters

z1 and z,. We can show that ¢* terms due to other terms
are negligible. Suppose we take from lines with parame-

ters 1 and x; each a factor v-¢; then we shall have in
the numerator function a term

~ RV Y OBy S gy Ty oy S, (21)

Now, by the infinite-momentum technique, the large

component of the vector v¢ is
Y+=7+7v'~p,
the small component is
Y-~y —=y"~1/p,
and the components that are of order unity are
Yi=Y1 Or 7Ya.
Since v4v4+=0 and {v4,v.} =0, we see that the leading
term in Eq. (21) is two powers of p smaller than the
second term of (20). By the same kind of argument,
we can show that all the other ¢* and (¢%)? terms are
small.
It is convenient to introduce the substitution
vi=wy1, Ze=w(l—y1), dvdr,=wdwdy; (22)
then
D3, =2@2+m2(21+29) 24+ N2x 42 pwa- (roy1+7r1) +k22120— e
and

Nereras (perpezpes /i) x?[ 2m?(1 —4dx-+x2)
—3k*(1—z1+20+a) (1421 —21%) ]
+(4pa1pazpa3/m)x2q2 .
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The amplitude can be written as

M3a=M3u(1)+M3a(2) 5 (23)
where, after the ¢ integration,
85 4pa1pa2pa3

1672 m

M3a(l)g

1
2/ dz1dz:dwdx §(1 —z1—20—w—2%)
0
L 2m2(1—4a+-x?) —3k2(1 —z14+20+2x) (1421 — 22+ %)
wazf 3%1
0 [2pxw- (ray1+r1) +h%ze+m?(z1420) N2 — i€ ]*

& Aprprp
1m0 m
Xa[2m*(1 —4x—a?) —3k*(1 —z1tzat+a) (1421 —22+2) JL— (2p - r2—ie) ]
X{[2pwx- (rotr1)+k%1ze+m(z1+22) *H- N2 ]2 — [ 2pwix - 71+-k2%122F-m2(21+22) - N2x ]2}

1
/ dz1dzedw (1 —21—22—wW—1%)
0

The range of integration where w~0 gives us the leading term, which is

M (I)gi 4pa1pa2Pa3 1 / 1 B 1
MUTI6r m 2pre—ie\2pori—ie  2p-(ridtro)—ie
y —4m?(1 — (xot23) — 5 (a+23)2) — 2k2(1 —x2) (1 — x3)

k2005 +m?(2a+205) 24Ny

1
) f dxrdxsdis 6(1—x1—x2—x3)
0

(24)

Similarly, after the ¢ integration,
e 4pa1pazpa3

1672 m

M3zz(2) =

1
2 / dz1dzedx1dxadn (1 —21—20— X1 — X2 — 1)
0
X2 2px- ((ritre)astriws)+k2zizetm?(z1+20) N —ie ]2
85 4pa1pa2?aa

- 1672 m

1 1
Zf dzdzedadw 6(1 —21—22—x—w)wx2/ dy,
0 0

X[2pww- (ray1tr1)+k*zizet+m*(z1+22) N —ie ]2
85 4Pa1pazpa3
a 1672 m

XL(2p- (ritrs)xw+Ek%iza+-m?(z1422) 2+ N0 —ie) 1 —(2p - rivw—+-kz1z0Fm?(z1+22) - N2w — i) 1]

1
2/ dz1dzedadw 6(1 —z1—z0—x—w)a[ — (2p-ra—1ie)~1]
(1]

As before, to facilitate the extraction of the first two leading terms, it is helpful to introduce the extra integral
of Eq. (7). One then finds, following the same procedure that led to M2, ®,

. €8 dpaperpe - a1 .
M3, :1_6;7 2p-re—ie)"H{ (2p-r1—ie)~ 12 In(2p-r1—1ie)
—[2p- (ritr2) —iel2In[2p- (r1trs) —ie ]} + 2p-ra—ie) [ (2p-r1—i€)"1—(2p- (r1-+r2) —i€) ]
k22003 m?(x2+23) 24Ny
)]} (25)

¥1

1
XI: —3 ——/ dxrdaadas 6(1 —x1—x2—x3)2 ln(
0

We see the alikeness of Eqgs. (24) and (25) to Egs. (5) and (8).
Now we take up Fig. 3(b), which gives

M3b§62[2Pa3/(2P ‘ rl—ie)]M"l"‘z , (26)
where

1 d4q Na1a2
Mae2=3 !/ dx1dxedadz §(1 —x1— 23 —2—3) [ —— (27)
0 (27l') 4’£ D3b4
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and

Diy=g*+2px- [(r1t+ra)xstrie ]+d*. (28)

Here, d? is some function independent of ¢ and p. Its
exact structure is immaterial, as we shall see. Also,

Nevar~y (ZPaxpaz/m)qu . (29)

There are, of course, many other terms in N,
However, we shall argue later on that they are indeed
negligible. After the ¢ integration we have

1 2 aipaz pl
Mawzz_z_ —_— p P-— / dxldxzdxdz
1672 0
Xo(1—x1—x2—x—2)
X 2x/{2px- [ (r1+ra)xatrins ]+d%

1 2Poupaz 1
=~ ——f dxdzdw 6(1 —x—z—w)xw
1672 0

m

m

(30)

1
X/ dy1 )
0 Zj)xw (7’2y1+7’1)+d2

after introducing the same change of variables given in
Eq. (22). The y, integration renders

1 2papa 1
1672
€5 4poiperpes 1 1
1672

2p (1’1+7‘2) —1€
In
2p-ri—ie

M e
m 2p-ra—ie

or (31)

M 5=

2p-ri—ie 2p-ro—ie
2p- (ritrs)—ie
Xln———m .
2p-ri—ie

m

For the terms without the factor ¢? in the numerator
function N*1e2 [Eq. (29)], after the ¢ integration, we
shall have instead of Eq. (30) some quantity

1 1
~/ dxdzdw5(1—x—-z——w)xw/ ay1
0 0
1

X
[2paw- (ray+r1)+d*]?
—1

1
~f dxdzdw §(1 —x—z—w)————
0 2p-re—1ie

X{[2pxw- (ro+r1)+d* T 1—[2pxw-r1+d2}1}.
Clearly, these terms are proportional to (2p-7;—ie)~!
X (2p-r2—1ie)7), etc. (again, up to powers of the log-
arithm), which are one power lower in .
In a similar fashion, we obtain

Pu 4Pa1pazpa3 1 1
Zp (7’1‘,‘7’2) —1e 2P'7’2—i6
2p- (r14re)—ie

XIn: —_—
2p-ri—ie

m

(32)

TO EIKONAL FUNCTIONS

€5 4pa1pazpa3 1 1
M 3=
1672 m 2p- (r1tre) —ie 2p-r1—ie
2?'7’1
X(—————— In(2p-r1—1te)
Zp'rz—ié
2p-(r1tre) P
I — ln[2p (1’1+7’2) —1€]+A> )
2p-ra—1ie
65 4Palpazpa3 1 1
“Tlomr om 2peri—ie 2p- (ritro)—ie
X{—In[2p- (r1trs) —ie]+A},
¢ dpapmpes 1 1
Mo PP
1672 m 2p-r1—ie 2p- (r1-trzs) —ie
X{In[2p- (r1+rs) —ie]+Z},
¢ dpapeaps 1 1
Moy PP
1672 m 2p-r1—ie 2p- (r1tre) —ie
X{In(2p-r1—ie)+Z},
6 dpmpapas ] 1
M=
16w m 2p-r1—ie 2p- (r1+r2) —ie
X{—=In(2p-r1—ie)+A},
with

1
K=/ dx1dxedas 6(1 —x1—x2—x3)
0

X1%e
m2(xe+x3) 2Ny
Am*[1 — (wa+wxs) — 5 (Ra+25) 2]
m*(xe+x3) 2Ny )

X(—Zln

p+1/2k
k - (]"1 4 eeee 4 rn_1)

Ty
p- Y2k

F16. 4. Multiphoton absorption
without radiative correction.
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(33)

(34

(35)

(36)

(37

(38)
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prmn e T
p-Y2k p-2k
(c) (d)

F1c. 5. Multiphoton absorption with radiative correction.

and ) Once again, all the p-dependent logarithmic terms
S = —Inm2—2—2 / dx (1—2) cancel completely among themselves. The final result is
0
alpa (2%
A2 M3%e34p L ! !
xln(x2+ —(1 —x)) m 2p-ri—ie 2p-(ritrz) —ie
m
! Amxs(1—x02) X[F(kH+2G]. (40)
—i—/ dxrdas 5(1—x1— %) ——— . (39) . . .
0 MmNy By now, it should be obvious what the trend is for the
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general case. Thus, to include second-order radiative
correction to a graph with # absorbed photons (Fig. 4),
we shall have to consider three classes of diagrams,
besides vertex and self-energy insertion: (i) The
radiative-correction photon line is inserted into the two
on-mass-shell electron lines [ Fig. 5(a)]; (ii) it is inserted
into one on- and one off-mass-shell electron line
[Figs. 5(b) and 5(c)]; and (iii) it is inserted into two
off-mass-shell electron lines [Fig. 5(d)]. The previous
examples reveal that, after introducing Feynman
parameters and shifting the origin of ¢ integration, the
relevant terms in the numerator functions will be

Nsa~ (2p*1) - - - 2por=t) (pon/m)
XY —4m?[1— (z1422) — 5 (21+29)2]
—2k*(1—21)(1—22)+¢%},

N~ (2pm) - @p==(p/m) =t

Nam (292)- - Qpo) (oo /m)r—m,

Naa (2%)- - (2pt) (pon/m)n=ig,

while the denominator functions will be

Dso~@* +2px-[rima 4+ - (it - - Fra) @i
—I—m2(z1—|—z2)Z—I—k221Z2—I—)\2x——ie y

Dy~ @ +2px-[rwet- - -+ (1t - Frdai]—ie,

an+2 an 1

M=

TO EIKONAL FUNCTIONS 2325

Dse~@®+2px-[(rit+ - - +m )%t - -
+ it A Dea_1]—1e,
Dsa~@*+2px-[(rit - +rio)ai - -
+ (1t Frm)xm ] —ie.
To be specific, we shall discuss Fig. 5(a) in greater

detail. After the ¢ integration, we make a change of
variables

X1= wy1 y

x2=w(1—y1)y2,
.. (41)
Tn2=w(1—=y1) - (1 =yu_3)Yns,

g =w(l=y1)- - (I=ya1)(1—yu-s),

which has the properties that
%1t a0 =w,

dxl- . ~dxn-1=w"‘2(1—y1)"”‘3- ..

(A —yn_s)dwdyi- - dyn—s,
and that the ranges of integration for the y’s are from
0 to 1. It is then simple to carry out the y integration,
starting from v, », after which we see that both the
Jacobian and the factor 47~ from the numerator func-
tion are cancelled away. We are left with expressions
very similar to those in the previous examples. Once
again, introducing the integral expression in Eq. (7) and
going through that same manipulation, we find

(2p)- - (2pe)—

1672 m

Zp'rl—ie. . .210- (it Fra_r) —ie

1
X[(p-dependent logarithmic terms) —3+ f dxydosdxs 6(1 —x1—x2—23)
0

><< —dm*(1 — (x2+x5) — 5 (024-25)%) — 2k2(1 —15) (1 — 5)

—21n

m2(x2+x3)2+k2x2x3+)\2x1):l

mz(x2+x3)2+k2x2x3+)\2x1 X1

After a similar procedure, we also find that Figs. 5(b)-5(d) contribute to only p-dependent logarithmic terms. As
before, all these cancel with those which come from mass and vertex renormalization effects. We are finally left with

an 1

M 22en(2p) - - - (2pr-)

The factor F(k?) is due to M5, plus one of the vertex
corrections. The rest of the vertex corrections (n—1)
pairs with the (z—1) self-energy insertions to give the
factor (n—1)G.

Now, we shall show that G [Eq. (17)] actually
vanishes. This is seen if we perform integration by parts
of the term

/ dx (1—2x) ln<x2+ z\—(1 —x))
0 m?

- /0 =) ln(x2+ 3:-2(1—@)

L (x—a?)(2x—N2/m?)
= —/ dx .
o« +0Y/m?)(1—x)

m 2p-ri—ie  2p-(ri+---Fr,_1)—ie

1

———[F(&)+n—-1G]. (42)

Consequently,

G=0. (43)

III. FULL AMPLITUDES

For definiteness, we shall write down the high-energy
spin-nonflip amplitude of “electron-electron’ scattering
e(pr)+e (p2) — e(ps)+e€ (ps), although what we say in
the following can be applied directly to other cases
involving electrons. The graphs we include in the
present consideration are shown in Fig. 6. The number
of photons that are exchanged in the ¢ channel are
arbitrary. For » photons, after fixing the labels on the
photons which come out from one of the electrons, the



2326

PzA P4
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e

other ends are to be permuted in %! different orders and
tacked onto the other electron. The radiative photon
lines on both sides are to be inserted in all manners as
discussed before. It is well known that this procedure
will preserve gauge invariance.

We shall choose the coordinate system in such a way
that electrons 2 and 4 are moving almost in the —gz
direction. Thus

© n dY —1
T=i/d4xe_“°" Z I:H (f £ > ]
a=1L =1 @2m)*  rHN2—ie/;

an

YORK-PENG YAO 1

+ - F1c. 6. Electron-electron
Tttt scattering with radiative cor-
rection.

p2=p'+3k, pu=p'—ik,
pr=((1p' [ +ik2+m'2)12,0,0, — [ p']).

We shall normalize the invariant amplitude in such a
way that the Born amplitude is

TBorn = 12(?4)7””(1[72)72(173)7;[“ (P1> 1/k2

X(e"[1+F (&9 J@2p)- - (ZP)"""P

X(e,n[1+Fl(k2)](2p,)a1' ot (Zp,)an_lpl Zn:

=(p-p'/mm)1/k2. (44)
Then, the invariant amplitude is
1 1 )
m 2p-ri—ie  2p-(rit--Fra1)—ie
1 1
. ) , (45)
m vomn —2p ty—ie  —2p(rpke e br, ) —ie

where »; indices are to be permuted #(z—1) times over 1,...,nz. Now, we introduce the variables

ry=r3+7°,

then
pr= lplr—)

and

r—_=r;—19;

—'p/'1’= IP’|7'+:

) © n d%drdr_ -1
T=(21r)2i/d2x1 e—ik-xy Z I:H (/ eirL -y, ) :l
n=1L i=1 2(2m)4 rar—+ri2—ie/;

XO+FE)I+F () ](ee)™

Up-p)t pop/( 1

Alpllp ) mm\—) ' (+ B

) 20014+ Fra)_

n 1 1
F o) o ).
perm rn—te/y  \rytetr,  —ie/y

Upon using the relations?

n 1 1
b 5(”1+"'+7’n)+< ) (
perm ¥y —1€/ 4 7y1+ e _'_7'%;_1_1.6 +

=2m)"16(r1) 1 - 8(rn)y

and

8pllp'|=—4p-p',

we find

T=i1+FE)1+F' () 1p- p'/mm’

X/del e—ikl.:cl

d27'1 1
X [exp( —1ee / evrL Ty ) — 1] , (46)
(2m)? 712 N2—1e
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where F(k?) is given in Eq. (2) and is the second-order
electric form factor.

IV. DISCUSSION

The second-order radiative-correction calculation
once again suggests that in high-energy near-forward
electrodynamical processes, the eikonals should be
looked upon as the basic interaction carriers. It would be
interesting to extend this investigation to include
radiative effects to all orders. The major problem here
is the complexity of the renormalization procedure, and
we are looking into it.

One may also wonder what the effects of vacuum
polarization are. Clearly, the photon self-energy effects
will change the eikonals to something of the form (b)
in Sec. I. However, it is unclear to us without detailed
calculation what form it will assume after other
diagrams, such as Fig. 7, are included.

It is amusing to notice that in Eq. (46), the amplitude
is proportional to the square of the electric form factor.
This resembles the conjecture of Wu and Yang,? except
that they argued for large-angle scattering, whereas
our deduction applies to small angles only.

Note added in manuscript. After the submission of this
work, a paper by H. Cheng and T. T. Wu appeared
[Phys. Rev. 184, 1868 (1969)] in which second-order
radiative correction to an electron which interacts with
a Coulomb potential was considered. Results similar to
those of our corresponding case were obtained. They
also looked into the spin-flip amplitudes.

®T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).
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F16. 7. An example due to vacuum polarization.

Higher-order radiative corrections to this problem
were carried out independently by three groups: (1)
H. Cheng and T. T. W, (2) S. J. Chang, and (3) Y.-P.
Yao, using three different methods. To summarize the
situation, the conclusion is that if vacuum polarization
effects are neglected, and if Z diagrams are not included
(Cheng and Wu, and Chang) and/or if soft-photon
approximation is made to the -channel exchange (Yao),
then the results obtained in this paper and in the
aforementioned work of Cheng and Wu remain valid
to all orders.
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