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The predictions of expression (2.7) for all possible cases of interest are displayed in Table I along with the earlier
calculations of Refs. 9 and 10 for comparison. As we noted earlier, these values are still consistent with the present
experimental upper limit. The photon energy distributions for various cases are ploted in Figs. 1 and 2.
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We have calculated the radiative corrections to the Dalitz plot for E»+ and E„30 decays, assuming a
phenomenological weak E-m vertex and using perturbation theory. The answer depends logarithmically on
a cutoff. We have evaluated all terms which contribute to order a analytically, without any approximations
concerning the smallness of the muon mass or the "real inner bremsstrahlung. "Thus, the dependence on
the parameter h (the ratio of the form factor f /f+) is exact. The radiative corrections to the It„z Dalits
plot, muon spectrum, and lifetime average around 2% over most of their respective ranges and are not
especially sensitive to the cutoff. The radiative corrections to E»+ decays is a fraction of a percent over
most of the Dalitz plot and is sensitive to the cutoff. The radiative correction to the AI = —, rule prediction
for the ratio of the charged and neutral decay rates is approximately 2%. The final-state Coulomb correc-
tion accounts for most of this numerical result, the rest being model-dependent noise.

I. INTRODUCTION

'X two previous papers, ' ' we have derived expressions
~ - for the radiative corrections to the Dalitz plots in
K&3+ and X&3' decays using a phenomenological model
for the weak interaction and perturbation theory. The
processes considered are examples of strangeness-
changing leptonic weak decays which can be analyzed
experimentally in great detail. The numerous theoretical
predictions for the form factors involved in these decays
can, in principle, be tested by sufFiciently fine measure-
ments. Such measurements, of course, require an
estimate of the radiative corrections for their interpreta-
tion. The numerical estimates which we have given were
limited to the electron modes, where the approximation
m, —+ 0 is valid. Unfortunately, in this limit the depen-
dence on one of the form factors, f, is neglected, since
these terms are proportional to m, '. In this paper we
remove this restriction and present numerical estimates
of the radiative corrections applicable to the muon
modes. We have performed all the necessary integra-
tions by analytical means, thus avoiding some lengthy
numerical computations. Therefore, within the limita-
tions of our model, the dependence on P, the ratio of
the form factors f /f+, is evaluated exactly.

Briefly, let us recall the assumptions underlying our
previous calculations. First, we assume a phenomeno-
logical w'eak interaction for the hadrons using vector
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currents and characterized by the usual form factors f+
and f . In momentum space, the Lagrangian takes the
familiar form

~-L(px+P-)-f++(PK P-)-f ju ~—-s (1 s-~")st. —

Our normalization is such that in the limit of unitary
symmetry, the form of the weak E-~ vertex is the same
as the weak ~-z vertex, the latter being given by the
conserved vector current hypothesis. ' Assuming also the
octet hypothesis of Cabibbo, z we have f+ —z Gov tang,

j=f /f+ ~ 0, where Gpr is the weak-coupling con-
stant determined from 0' decay and 0 is the Cabibbo
angle. Second, we calculate the radiative corrections to
lowest order in n using perturbation theory and assum-

ing minimal electromagnetic coupling. In particular,
the gauge-invaria, nt substitution p —+ p —eA for the
charged particles present gives rise to Feynman
diagrams in which the weak and electromagnetic
currents act at the same vertex. 5 Third, electromagnetic
corrections to strong-interaction renormalization graphs
are ignored; instead, we use phenomenological form
factors and the physical masses of the particles involved.
Finally, in calculating the radiative corrections, we

shall neglect the momentum dependence of the form
factors. If the form factors are expanded in the usual

manner, f~(q') =f+(0)(1+X+q'/rrt ), this amounts to
neglecting terms of order o.X+, where X~ are small

parameters characterizing the energy dependence of

3 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
4 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).' E. S. Ginsberg, Phys. Rev. 142, 1035 (1966).
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the form factors. The model here envisioned is char-
acterized by two phenomenological constants, namely,

f+ and $, and in addition, by a cutoff A. The results
depend only logarithmically on A, as do all other
radiative corrections to weak processes, with one
exception. The presence of the cutoff is due to the
nonrenormalizability of the weak Lagrangian given
above. We regard the estimates of the radiative cor-
rections as useful, provided the numerical result is not
particularly sensitive to reasonable variations in a
cutoff around the value of a nucleon mass.

In Sec. II we present the results of our calculation
of the radiative corrections to the charged kaon decays
E»+. In Sec. III we give similar results for the neutral
kaon decays E» . In the final section we make some
brief comments on these results and on the accuracy
of the numerical estimates. Expressions for many of the
integrals involved are contained in the Appendices.

given by

r, (E„,F )
= (2~) '

~ f+ ~

'{I (m~' —m ') (W —E,„) H„'E—„]ReA

+—'m '(W„E„)—ReL(A*+B)(1+$)]
+-,'m„2(W„—E.) ~1yg~' ReBj, (3)

where

A = (n/7r)L2' 1n(A/m„) —1+tg ——,'m„'(1+$)t2/H„'$, (4)
B= (n/~)r ,'—1n—(A/m„)—(7/4)+t 2t /(—1+&)] (5)

and

2mwp„
Li, —

~

—Li.
p„mls E„+p—„/ m~(E„+p„) m„')—

(mx +„+P„—&„+P„)—1n~ ln
(m~ E„p„—m—~

II. X„3+ RADIATIVE CORRECTION

The calculation of the radiative corrections to the
E»+ Dalitz plot is based on the expressions given in
Ref. 1. With some minor exceptions, we will use the
notation of that paper. We shall not attempt to in-
dicate, by means of cumbersome superscripts and sub-
scripts, the charge state to which each variable refers,
it being understood that all symbols occurring in this
section refer to the charge states appropriate to E„3+
decays. Thus, mz, Io, etc., in this section refer to the
mass of the positive kaon, an integral expression given
in Ref. 1, etc. , while the same symbols used in the next
section will refer to the mass of the neutral kaon, an
integral expression given in Ref. 2, etc. We shall write
down a11 expressions in the center-of-mass system of
the decaying particles, i.e., the kaon rest frame.

The zero-order pion-muon energy correlation (the
Dalitz plot) is given by

ro(E»E ) = (2m) '~ f+~'{L2mlrE„—m„' Re(1—&)]E„
—(mrs' ,'m '~1 —$~—')—(W L~' )) (1)—

This expression is linear in the pion energy and qua-
dratic in the muon energy.

The radiative corrections to lowest order in o. originate
from two sources, the virtual corrections and the inner
bremsstrahlung. The latter can be conveniently split
into two parts, the first is infrared-divergent and the
second is the so-called real inner bremsstrahlung. Thus,

ra. (E„,E.) =r.(E„,E.)yr,.(E„,E.)
+rais(E, E ) (2)

The virtual corrections~ to the E»+ Dalitz plot are
6 The experimental values of X+ are consistent with zero, i.e.,

constant form factors. See, for example, S. H. Aronson and K.
Wendell Chen, Phys. Rev. 175, 1708 (1968), for a summary of
E,3 measurements, and C. Rubbia, in Proceedings of the Topical
Conference on Weak Interactions (CERN, Geneva, 1969), p. 227,
for results of the X2 collaboration.' Figures 1(b)—1(f) of Ref. 5.

(7)

)(,ln Ll g
— —Llg

and

2~mgx

2m„F.,(H.' —m„'))

(E',+p.)&+ =LE.P' (H-' m') '+'E.j- —
~{(Ep 2(H 2 m 2) 1g2E $2 1 m 284)1/2 (1O)

8'=x, (4p„p —x,„).
The momentum transfer q' is here denoted by the more
symmetrical notation

H.'=—q' =mph —2mlrE +m.'. (12)

The real inner bremsstrahlung contribution to the
E»+ radiative correction has been expressed as a sum

8 Figures 1(g)—1(i) of Ref. 5.

and Li, (s) is the dilogrithrn function. In these and
subsequent expressions we have omitted the infrared-
divergent terms, which cancel out exactly when the
various contributions to the radiative corrections are
combined.

The infrared contribution to the radiative correc-
tion may be written

riR(E„F. )=( / )I' (E„,F..)I (E„,E.),
where E„2p„(m„x... '
j,(E„,F.) = 2 ln +in~P„e:, (4(R„+P„)r„)
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of integrals:

~ If+I' 1
I'am (E„,&~)=-

42r (22r)' mx

dx p c,.I,.(p„,plr), (13)
m 2

where the l„'s and c „'s are given' in Ref. 1. The
most general term in Eq. (13) is a,n integral of a rational
function of polynomials in x and the square roots of
polynomials in x times a logarithm of a similar rational
function of x. We have been able to evaluate all these
integrals analytically. We give the expressions for the
nontrivial integrals in Appendix A. The real inner
bremsstrahlung contribution can then be written

and we shall adhere to the notation of that paper with
some minor exceptions. We repeat the caveat of Sec. II:
The notation in this section applies only to the decays
of neutral kaons.

As in the case of E»+ decays, we split the radiative
corrections to the E»' Dalitz plot into three parts,
virtual, infrared, and real inner bremsstrahlung.

I
The

zero-order energy correlation is given by the same
expression, Eq. (1), provided masses and from factors
appropriate to neutral kaon decays are used. )

The virtual contribution' is, to lowest order in o.,

I"„(11. 1r )
= (22r) 'I f~,'t4L2mIr1'-„E„mrrz(W—~ 1'.)]R—eA

—-', m„'E „ReL (A e+8) (1—5)]
+ ', m„'(W-. E.) I

1——f I

' ReB), (15)
where

~ If+I' 1
r „(Z„,E.)=— P U„

42r (22r)' mrs '=o

where the terms U; are given in Appendix B.
We have evaluated the radiative corrections to the

Dalitz plot Lthe sum of Eqs. (3), (8), and (14)7 on a,

computer. This has been done for several real values of
the parameter $ and for cutouts of one proton mass and
two proton masses. In addition, the corrections to the
Dalitz plot have been numerically integrated, yielding
corrections to the muon (or pion) spectrum and to the
decay rate. The E»+ radiative corrections are small,
averaging only a few tenths of a percent except near
the boundaries of the Dalitz plot. Moreover, because
both positive and negative values are present, the
integrated corrections to the spectra and the decay
rate are even smaller because of cancellations. In Fig. 1,
we present a sample of the results for the radiative
corrections to the E»+ Dalitz plot. We shall postpone
the discussion of these results until after similar results
for the radiative corrections to E»+ decays have been
given (see Sec. IV).

(a+2m. z —244 (a+2m '
tr -', ~'+Li,

I +LizI
l,a+2m, '+4 (a+2m„'+4)

1 a+2m ' —5 ' 1( a+2m„' —6 '
+- ln — +-I ln

4 a+2m, '+4 4( ~+2m„'+4)

1z'~ a+A q-
+(1+in—

~

ln
~

+2 Iml, , OB)~) 2m„m. )

with a and 6 as given in Ref. 2. The imaginary part of
tr does not contribute to any physical process (to this
order in o2) and once again we have omitted the infrared-
divergent terms which cancel out in the final result.

The infrared contribution to the radiative corrections
to the E„oo Dalitz plot has the same form as Eq. (8)
with, however, a different expression" for Io(E„,E ),
namely,

III. K„3 RADIATIVE CORRECTION

The calculation of the radiative corrections to the
E» Dalitz plot is based on expressions given in Ref. 2,

(14) A =(4r/zr)Lss ln(A/m„) —1+tr—-', m '(1—$)tz/tz'j (16)

8= (4r/zr)I —
s In(A/m„) —(7/4)+t, 2t,/(1 ——()] (17)

(wmax ( wo ( a+& (w.'. +2& (w . +26)A ( a
Io(p„,p ) =— 2 lnI —lnI lnI —lnI ln +.2 LjzIkw„„„(2m„m (2m„m k 2D 2m„'m' E 2h )

a+~ a —~l (H ' m„') (H„' m—')——2 Liz — —
I

—2 Liz I+a+6) w, +2ai w, w, ) &max

m. F. +p. 1:„+p„' ( a+6—ln ——+ ln- —+ln- ——
I ln (20)m„m m„k 2m„m

9 Note that Eq. (19) of Ref. 1 should read, in part, c &, O=c1 p, = —2. See E. S. Ginsberg, Phys. Rev. 187, 2280(E) (1969).
"Figures 1(b)—1(f) of Ref. 2.
"The expression given in Ref. 2 is marred by misprints. See E. S. Ginsberg, phys. Rev. 187, 22gp(F) (tgtig)
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FyG. I, Fractional radiative correction in 'po at various points in the X„3+Dalitz plot (indicated by the
corresponding decimal point) for several values of g and A.

where

m ..=2(F-.+P,) (~-+P-) (21)

g;„=2m'(a+~)& '"
)&L(g —b) (w„—E„)(w. —I;.)q'", (22)

(23)~ —~~+Lgr~ —4m~ m„' j2 2 tl/2

(g b)
—'I gb —4m„'m 'j,

(25)

L t1. the real inner bremsstrahlung contribution toLasty, crea '

the radiative corrections to the E»' Dalitr plot can be

written

(26)

where the expressions for the V, 's are given in Appendix
C. As before, all the integra/s implied in our earlier
expression for the real inner bremsstrahlung contribu-
tion have been evaluated analytically and are given in
Appendix A.

The sum of Eqs. (8), (15), and (26) Lusing Eq. (20)
for I,(E„,E )j constitutes the radiative corrections to
the IC»~ Dalitz plot. This has been evaluated on a
computer for several values of the parameter $ and
for two different cutoffs. A sampling of these results is
shown in Figs. 2(a)—2(d), where the percent of radia-
tive correction Li.e. , 100Xrac(E„,E )/ro(E„,E )j is
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Fis. 3 an ord 4 f one particular muon eneigy
f ~ d A. The radiative corrections to

r v s ectrum of either the muon or pion can be
l l d b numerical integration. s an pcalcu ate y

s ectruminh d tive corrections to the muon sp

iative corrections to the decay rate (or the fractional

b numerically integrating over both the pion an
muon energies. vve presen
in Table I.

IV. DISCUSSION AND SUMMARY
OF RESULTS

hall make some brief commentsIn this section we s a m
in Secs.on the resu t.s o e cl . f th computations described in ecs.

II and III. First, it can be seen from Fig. 1 that the
radiative correc ionstions to the E 3+ Balitz plot are only ap3

f percent too small to affect the resu ts
o present experim nperiments. The radiative corrections to t e

) of
o ~alitz lot, on the other hand, are an order o

~ ~

a e ofmagnitu e grea't de greater, probably within the range
accuracy o recenf ent experiments. " The reason is t e

~ ~presence o an eecf lectromagnetic final-state interaction
albetween the charged muon and pion in the neutra

kaon ecay, w ica, h' h is of course absent in the decays of
charged aons.d k The Coulomb part of the electro-

2magnetic na -s .a .fi 1- t. te interaction contributes to the ~
term in q.E ~18) and has the characteristic form 7r~ q,
where v =6/a is the relative speed of one of the partic]es
when the other is at rest.

The Coulomb part of the final-state interaction is
exp ecte o omd t d minate the radiative corrections w en

"See C. Rubbia, Ref. 6.
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plot yields

I'co Io h (f-'I z- ) = (~&/~) I'o(~P I'-' ) . (27)

C3. 5

Except for a small kinematic range near z=O, the
Coulomb correction is very nearly a constant multiple
of the zero-order energy correlation. For the values of
energy shown in Figs. 3 and 4, for example, the Coulomb
correction is almost a constant fraction (2.38%) of
I p(E„,E ), whereas the shape of the complete model-
dependent radiative correction is quite different.
Moreover, Eq. (27) is always positive. The Coulomb
correction to the muon spectrum varies between 2.31%
and 2.95% of the zero-order spectrum depending on P.'„,
which can be compared to the behavior shown in Fig. 5.
The Coulomb correction to the lifetime is (hr/r)c, „~, b
= —2.53%, which is fairly close to the complete results
given in Table I.

150 200 250
PION ENERGY (MeV)

FIG. 3. Zero-order E» Dalitz plot and radiative corrections for
E„=190MeV, (=0, and h. = »z„and 2m„.

LLI

one of the charged particles is moving slowly relative
to the other, corresponding to v —+ 0. In this limit, each
of the dilogarithms in Eq. (18) contributes 6~', which,
when added to the first term, results in the so-called
Coulomb correction. Using this as a basis for an approxi-
mation to the radiative corrections to the E„3 Dalitz

10

I t i I I I I t t I

150 200
MUON ENERGY ( MGV)

FIG. 5. Zero-order E„3' muon spectrum and radiative corrections
for &=0 and A. =m~.

O

I I I I I I I I I I I

150 200 250
PION ENERGY ( MSV )

FIG. 4. Zero-order E»' Dalitz plot and radiative corrections for
E„=190MeV, (=+1, and A=m„.

We have chosen to base the numerical estimates for
the radiative corrections on a cutoff of one proton mass,
as is customary in nuclear P decay. There is probably
no theoretical justification for this procedure, but if the
numerical results are found to be relatively insensitive
to reasonable variations in the cutoff, then they may
be of some use. We have chosen to measure the sensi-
tivity to the cutoff by comparing the numerical results
for cutoffs of one and two proton masses, respectively.
It can be seen from Figs. 2(a) and 2(b) that doubling
the cutoff alters the numerical estimates by a few
tenths of a percent (on the average, about 0.2%). For
the Ep3 radiative corrections this is not a significant
change but in the E»+ case the change is of the same
order of magnitude as the radiative correction. (This
is true for all values of $ between —1 and +1.) There-
fore, the numerical estimates for the radiative cor-
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rections to A»~ decays are meaningful only as regards
their general order of magnitude. "

IWe remark, parenthetically, that we have evaluated
the cutoff dependence of the standard divergent integral,
retaining only the leading terms in m'/A', where m
is the mass of a charged particle entering into the
decay. '4 This is customary in nuclear P decay also. The
terms of order m'/4' add a contribution to the standard
divergent integral of the form

p, 3

X+3

0
0
0

+1—1

'Jnp

/'Izp

2NLP

'Iny

'Inu

~T/~

0.06%
—2.02%—2.31%

1.85%—2.15%

TABLE I. Fractional change in lifetime because of radiative
corrections to the E„3Dalitz plot.

rates for E» and E»+ can be obtained easily from the
(283 ~ ~

numbers given in Table I. Following arguments pre-
viously given in Ref. 2, we find

This would add the following ext.ra terms to the leading
terms already included in the radiative corrections:

(n/~)LF(M, A) —4(m„,A)j to the A term
where

(n/~) $F (M,A.)—(7/4) F (m„,A) 1 to the 8 term, 2.1 o. (30)

where M is the mass of the appropriate charged meson.
For E» decays, M =m and the extra terms are negligi-
ble. For E»+ decays, M=nzz and the effect is larger,
but still less than half the amount associated with
doubling the cutoff from m„ to 2m„. If A. =2m„, the
extra terms are negligible even for M=m~. Thus,
the limitations due to the cutoff procedure are not
altered by ignoring such terms. I

A brief comment concerning the numerical accuracy
of our results: We checked the expressions for the
radiative corrections to E» decays against our previous
results for E,3 decays in two independent ways. First,
we performed the limit nz„—+ nz, —+ 0 analytically
after doing all the integrations indicated in the Ap-
pendices. Second, we checked the expression numer-
ically, by computer, for m„=m, up to the fifth decimal
place. Terms which do not contribute in the limit
nz„—+ m, were checked in the following manner. Some
of these are apparently divergent since the variables
P, ' can be zero for kinematically allowed energies. By
explicit expansion up through third order, these terms
canceled exactly as required. Thus, there is some
justification for confidence in the numerical results.

The radiative correction to the ratio of the decay

The value given in Eq. (30) is relatively insensitive to
the cutoff because the cutoff dependence is of the same
form in both E„3+ and E„&' and, to first order in n
and neglecting electromagnetic mass differences for the
mesons, cancels out in the ratio. Making the plausible
assumption that the AS=AQ and AS= —AQ ampli-
tudes have the same I.orentz-covariant form, using the
TCP theorem, and keeping only the lowest term in the
CP-violating parameter e, one finds'

F.„p(Er,~ ~+y+v) I'p(K„pP)
i
1+xj'(1+5), (31)I' (E+~ x p+v) I'p(K p+)

where x is the ratio of the AS =&AQ amplitudes and 8 is
given by Eq. (30). If the AI= p rule were valid, the
ratio of the zero-order rates in Eq. (31) would be 2,
except for phase-space corrections.
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APPENDIX A

In this appendix we give expressions for the nontrivial integrals appearing in the real inner bremsstrahlung
contributions to the radiative corrections to &» decays. We follow the notation of the Appendix in Ref. 1 for the
invariant integrals I„, ,„, etc. , with i, j=p, vr denoting muon or pion variables, respectively.

"-dx n+p;—ln
o

=2LLi p(yPi, )+Li.(i „—') —Li.(yP) —Li, (1)],
"This is consistent with the earlier estimate of the radiative correction to the K„3 lifetime in Ref. 5, which, however, applies to

different experimental conditions.
'4 J. M. Jauch and F. Rohrlich, TIzeory of PIzotons and Electrons (Addison-%esley Publishing Co., Inc. , Reading, Mass. , 1955), p. 181.
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J2(i) =
"""x($x n, +p,—1I1

=m;2(y, g+1)J,(i)+2m, g(y, g —1)t Lg(i) 2L4—(i)]+2x, +4P '*""Ll(i), (A2)

Jg(i) =
' '*&'A ( '+(d')

lni
P, (42, —P,

=2m;2(y, g+1)Jg(i) m, (y—~4+1)Ji(i)+m, 4(y,4 1)t2I—4(i) —I-2(i)] 2—m,gx,„

J4(i) =
+mRx pe

+lx 2 4 (& max+m 2)p maxL (i) (A3)

xmax dX 42.+p,J,(i) =m, 4 —1n
0 ~ 0'-i —i

=2y, 2(Ll(i)+Lg(i)+2Lg(i)+m„g(p; '"g;) 'Ll(i)+2(y, g —1) 'LL2(i) —L4(i)+Lp(i)+2y, L2(i)]},

(A4)

(A5)

Jp(i) =m;2
* '*xdx ( ~+4;)

1ni

P,' (42, —P,

= (V''+1)Jp(i) —4m''Ll(i)/O' ' —S(V'' —1) 'LI 2(i) —I4(i)+Lg(i)+2m *L2(i)], (A6)

Ji(i) =m,'

+
—

gi m 2(~ max+m 2) (p max) —2 2 (+,2+1) (+ 2 1)
—2 1+ —lL (i)] (A7)

Jg(i) =m;4

—(y?+1)Jy(j)+.S(y,g 1)—2 2(m 2/p, .»»x)2 (AS)

Jg(i) =m, g

'-*de;+4;)—1n
n, —,

=-'v '{v'(v' —1) 'Lji(i) —4(v' —1) ']+(m'/P '")'I ~'(v' 1) '+(~ -'—*+m')Ll(i)/iP -'"I]
+S(y;2 1)—2LL2(i) I.,(i)+L, (i)+2ly,L2(i)]+4y,—2L(y;2 1)—2(L, (i) L,(i)+L,(i)) 4ly,.(y;2 1)—'L, (i)

Jlp(i) =mP
* » xdx (42,+P,)

1ni

p,' k~; p,)— —'m 'P -'L, , (i)/P —.+1ni 2 (~;--jP,--)/P, --i]}, (A9)

(+ 2y1)J (i) 4 (+ 2(+.2 1)—1J (i)+ (m,2/P max)2Lm 2L (i)/P max+ (+ 2 1)
—1]

+S(7"—1) 'LL (2) —L (2)+L (2) —l+lv' '4 "+1)L (2)]} (A10)
where I (i) jnL (&,max+P. max)/ (&,max P .max)]

)m„g(q, +1)2—x .„y,—1ig
Lg(i)=» i

km;2(y, —1)'—x .„y;+1d'
Lg (i) =1n (x„,„/m;2),

I.4(i) =1n (y;2 —1),
L,,(i) =1n(-,'m'/iP -"i),

(A11)

(A12)

(A13)

(A14)

(A15)
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~,2= H,2/m, 2,

{' = (E'+p') (mK L—1+p, ) ',

(A16)

(A17)

r2 """+m'=E,(mK E) —P~P-

P, '"=p, (m —E,)—E;p, .

In addition, the following integrals are necessary for the E» real inner bremsstrahlung contribution:

(A18)

(A19)

&'max dg (QK+PK—ln/

PK E(XK—PK)

r'E +p. p-i—
I

—(p.—p.)»~
x„...) "

kE„—p„+p,)
' (A20)

E.2 =m+
z ( *+0

)1—-ln
PK' 2PK EnK —PK—

E.+p. p-—
Ex .„) kp„—p„E„—p„+p.

(A21)

2m~ p

+p)dx PK ln
&K PK4E'i, «.+p.-p.l-

~

—(p„—p.)»~
x„„.i "

&E„—p„+p.)
(A22)

APPENDIX B

In this appendix we give expressions for the terms which enter into the real inner bremsstrahlung contribution
to the radiative corrections to E» decays of Eq. (14). The notation in this appendix refers only to the decays of
charged kaons (see Sec. II).

Uo= gd( OC, OIO, +01C,1Il,l+C ,—01IO,—1+C—1,0I 1,0+Cp, 2I0,2)—

=~»-Ll~--+ mK(6E„+3E-—W )+2LH.' —4m. 'I 1+(I'0{(E./P. )»L(E.yP. )/m. j—1),
+m ax

=(L' +E )L(E2+p 2
p 2)R, E (p 2

p 2)R2 —Rp —(E.+2E )x (Il2)

Ug= dx co, yIo, y

=2{(mK+2L„))mK(mK 2L„)—~m„2~ 1—$—PJ

+ (mK+E„)E,„' (E„+E,.) (H„' —,'m„'
~

1+$
~

2) )Rl ——2—(mK+E„)R2, (83)
&max

dx c

=&-:(p-' p' E'+2~ -)+—(E.—+2E.)R2 L(p' —p')Rl—
—L(mK —E„)'—,'m„'~ 1—

$~ ]2(LE+ E2„) ,R+(p.'—p„')R,—& $, (Z4)
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dS cg, ply, p

= (2m~E„+m„')$m~ (2E,—m~)+H„' —m„' Re ($)jJ g(p)

—-', (lI.'+m„') LH„' ——,'m„'
~
1+&

~

']Jg(p) —m~L~„J, (p), (85)

=m~ (m~' 3m~—E„m~E— m„')—fE.y„'(y„' 1)Lo—(p) —(E„+2E„)J4 (y) —2E„J,(p)

+kE.(v.'—1)'Jo(~)—Ã.+E.+kE.h'+1)]Jp(~)) (&6)

dx cg, erg, —]

=m~L2m~E 2H„'+—m„' Re(1+$)]$4E„(L4(p)+Lo(p))
—2(E.+E.)v, 'Lo(~)+IE.(v.'—1)Jo( ) —k(E.+2E.)Jo(~)j, (~&)

&max

dS(c2, pl 2, 2+—cl,—2l—1,—2)

=m~'( (m„' —2E„')J~(p) x,„,„+y 'L1—2E„(E„+E„)+om„'(y„' 1)'—3E„'(p—„'—1)—E2„'(y„'+1)jL (2p)

+lk2E. (E.—E.) —4p '—m '(v ' )3~4(~)—+L (E.+ E.)' E.E.(v.—' )+l( &—' m')(v ' ——1)'3Jp(~)

+LE,(E,+E ) —E '(v ' —1)+m.'jJo(u) —ll:4E.(E.+E ) —E '(v '—1)—E '3(v ' —1)'J~( )

+'B(E.+2E-)'+(v ' —1)(4E ' —E ') —E '(v ' —1)'jJo(~) —l(v.'—1)'L(E.+2E.)' —E.E.(v ' —1)3Jo(~)

+4[&(E.+2&p)(E.V.'+E.+E.) Ep(E.+E.—)(7.' 1)'3J1 (pp))
— (&~)

APPENDIX C

In this appendix we give expressions for the terms which enter into the real inner bremsstrahlung contribution
to the radiative corrections to E» decays. The notation in this appendix refers only to the decay of neutral
kaons (see Sec. III).

d&c~, ~(p p-)I~, ~(p p-)

=2(2"+~+c")L2(E.P-+P,E-)(Lp(~)+Lp(~)) ~--—~L )+2m, 'm. 'P 7' —(Lp(p)+Lp(~))'j

+ (~. -+p.p-)t' ~ -+p.p- (E.p-+pP'-)—(Lp(~)+Lp(~)))+~(~L7 9) (C1)

Ug= d* c~.p(pu~p&)l&, p(pl 1p&)

=)2m Jc'E„E„+ac' ——', (H.'+m„') c")J,(p)+ (c' ——',u)J,(p) —-', J,(p), (C2)

dx c„,p(p, p~)l~, p(p. ,p~)

=t 2m&'E E„+a(c'+c"—)+ ', (H„'+m ')c"$J~(~)+-(c'——',g+-,'c")J,(~)——',J,(ot), (C3)

d*co, i(p„p~)lo, i(p„pz)

mx (mxE„+c') L4I'.„(—L4 (p) +Lo (y) ) o(I':„+2I'.„)Jp (p)+ &
—f'-, (p„' 1)Jo (p) 2(l'.„+g& „)L, (~)~—„—J, —

(C4)
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U4= dx c-, 1(P-PK)I2;1(P. PK)

=mK/mK' H—„2+m„' Re(j) —c"]L4E (L4(vr)+Lq(1r))

—2 (E.+E„)Lp(1r)y. '+2E, (y.' —1)J5(1r)—-', (E„+2E,.)Jg(1r)], (CS)

dx c, , (p„,pK)I, ,(p„,pK)

U6 ——

mK[mK (2E,—mK)+-', (H„'+m.')](E,(y„'—1)y„'Lu(p) —(E,+2E„)J4(p) —2E„J1(p)+-,'E„(r„'—1)'J1(p)

—
I E„+E„+2E„(y„'+1)]J6(p))+mK(2(E„+2E„)x„——',m„'(p„' —1)'L(E„+2E„)y„'Lg(p)+-',Jg(p)E„]

+E„J (/~)+P(E, /2E„)(H '+m„') ', E,„(H—-' m„')]—J (p)+[18„'(E„+E„)+,'E„(H.'-+m„')]

XL2J (~)+(7'+1)J (p) —-'(7.' —1)'J (p)]) (C&)

dx c1,—l(p pK)I1, 1(p pK—)

=-', (H„'+m ')mK(E, (y
' —1)y 'L1(1r) —(E„+2E )J4(1r) —2E J1(1r)+-',E (y ' —1)'J1(1r)

$E„+E—„+2E (y '+1)]Jr(7r))+mK(2(E„+2E )x ~m '(p —' —1)'L(E„+2E )7 'I1(vr)+-', Jq(1r)E,]
+E.Jg(1r)+L(E„+2E,) (H„'+m ') ——,'E„(H„'—m, ')]J4(vr)+Lm. '(E„+E„)+-',E, (H„'+m ')]

&&I:2J1(~)+(V-'+1)J6(K) —2h-' —1)'J1(~)]) (C&)

dxL~mP'I2. 1(P1 )PK) —2I1, 1(pl 1PK)]—

where we have used the following abbreviations:

c'= mK(E„2''„)+m„' Re(1——(),
c"=mK' ——,'m„'l1 —(I'

L,(i)=1nL(E,+P,)/m, ], z=p or ~

I.,= &nL(~+~)/(2m„m. )].

(C8)

(C9)

(C10)

(C11)

(C12)


