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An analysis of typical microphysical systems is presented in the hydrodynamic formulation of quantum
mechanics. The emphasis is on the physical peculiarities appearing in the hydrodynamic picture, and on the
mathematical treatment of the nonlinear quantum-hydrodynamic Geld equations. Further, quantum-hydro-
dynamic uncertainty relations are derived, which relate the minimum uncertainty products to the interior
quantum stresses.

I.. INTRODUCTION

HE theoretical description of microphysical sys-
tems is generally based on the wave mechanics of

Schrodinger, ' the matrix mechanics of Heisenberg, ' or
the path-integral mechanics of Feynman. ' Another ap-
proach is the hydrodynamic formulation of quantum
mechanics due to Madelung4 and de Broglie. ' The
hydrodynamic theory of quantum mechanics has been
later extended by de Broglie (idea of the "double solu-
tion")' and Bohm (idea of "subquantic medium")' and
used as a preliminary theoretical scheme for quasicausal
interpretations of microphysical phenomena. '

In the hydrodynamic formulation of quantum me-
chanics, the complex, linear Schrodinger equation is
replaced by real, nonlinear differential equations for a
probability density and its velocity field (formally
similar to the equations of continuity and motion of
ordinary hydrodynamics). The complete mathematical
and physical equivalence to wave mechanics is estab-
lished by means of a compatibility condition which
relates a single wave function, i.e., a solution of the
Schrodinger equation, to each hydrodynamic solution in
a unique way.

The physical particularities of the quantum-hydro-
dynamic model and the mathematical procedure for the
solution of the nonlinear quantum-hydrodynamic differ-
ential equations are discussed. In this connection, con-
crete static, dynamic, and time-dependent microscopic
quantum systems are considered: the particle in a box,
the harmonic oscillator, the hydrogenlike atom, and the
nonstationary particle motion. Fundamental uncer-

' E. Schrodinger, Collected Papers on Wave Mechanics (W. M.
Deans, London, 1928).

' H. S. Green, Matrix Mechanics (P. NoordhoG Ltd. , Groningen,
1965).

3 R. P. Feynman and A. R. Hibbs, Qmanturn Mechanics and Pa/h
Integrals (McGraw-Hill, New York, 1965).

'E. Madelung, Z. Physik 40, 322 (1926). For a more recent
discussion of the hydrodynamic formulation of wave mechanics,
see T. Takabayasi, Progr. Theoret. Phys. (Kyoto) 8, 143 (1952);
9, 187 (1953); 14, 283 (1955).' L. de Broglie, Compt. Rend. 183, 447 (1926); 184, 273 (1927);
185, 380 {1927).' L. de Broglie, Compt. Rend. 233, 641 (1951);234, 265 (1952);
235, 557 (1952); 235, 1.345 (1952); 235, 1435 (1952); 236, 1453
(1953);23'7, 441 (1953);239, 737 (1954);241, 345 (1955);244, 529
(1957);264, 1041 (1967).

7 D. Bohm, Phys. Rev. 85, 166, 180 (1952); D. Bohm and D.
Pines, ibid. 85, 338 (1952); 92, 609 (1953);D. Bohm auld J. Bub,
Rev. Mod. Phys. 38, 453 (1966).

tainty relations are derived which associate the product
of the variances of conjugate particle variables to the
intrinsic quantum stresses.

I. Hydrodynamic Field Equations

Equation (1) is a linear, but complex, differential
equation. It is separable by means of the general com-
plex statement

p(r, t) =R(r, t)e'sir '~. (2)

In the resulting real and imaginary part of Eq. (1), the
real variables R(r, t) and VS(r, t) are replaced by the
velocity field v(r, t) and density field p(r, t) in accordance
with

v = (tt/srto) ~7S (3)

p —E. R

)Note that Eq. (3) has a physical meaning only a,t
points where p/O. j Thus, the field equations of quan-
tum mechanics in the hydrodynamic picture result in
the form4 5

and

As Vs'�)
(ntppv) +V' ' (m ppvv) = —p V'~ U —

~
(5)

ctt ( 2rtto gp s

8—p+7 (pv) =O.
Bl

(6)

The wave function of P(r, t) is invariant with respect to a
change of its phase S(r,l) by an integer multiple of 2sr

LEq. (2)j.Hence, Eq. (3) gives

mpv dr=Pi dS=2xhm, m=o ~1 &2, . . . 7~ ~ ~

II. HYDRODYNAMIC FORMULATION

The wave field P(r, t) of a particle of mass rrto in a
given force field with the potential U (r, t) is described by
the Schrodinger equation

et' tv'
i7i—= UP-

Bt 2mp

From this fundamental equation, a nonrelativistic
quantum hydrodynamics can be derived as follows.
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state of an atom) with respect to small, arbitrary Accordingly, Eq. (18) applies, which leads Lunder
perturbations (proper stationary and quasistationary consideration of Eq. (23)j to the linear boundary-value
states, respectively). problem

III. MICROSCOPIC QUANTUM SYSTEMS

As an illustration to the hydrodynamic formalism,
individual static, dynamic, and time-dependent quan-
tum systems are analyzed with respect to the physical
and mathematical aspects of the hydrodynamic model.

d'V'P

dS

(2moE
Qp, 0&x(a,

k As .(0) =o, .(a) =0 (»)
A solution p=p„exists if the total energy of the system
assumes certain eigenvalues E=E . One finds"

2 (ew q
fS' ~rIwy'

p. = -»n'I —x l, E.=
g kg j' 2mEg)

'

rs=1, 2, 3, . . . . (22)

Equations (20) and (21) indicate that the energy
eigenvalues are potential energies of the particle in the
quantum potential,

E„=Q, -', mov '=0.

2. Harmonic Oscillator

The one-dimensional harmonic oscillator is a particle
in a spatially symmetric potential energy 6eld of the
forni

U(x) =-,'mgu'x', —~ &*&+~ . (23)

In the stationary state, p(x) v(x) =c by Eq. (14), where
either of the boundary conditions p( —~) =0 or
p(+~) =0 specifies that e=O. Hence,

I. Particle in a Box

One of the simplest quantum systems is a particle
enclosed in a one-dimensional box by in6nite potential
walls at x=o and x=u,

U(x) =0, 0(x(a; U(x&0)= oo; U(x&a) =oo. (19)

In the stationary state, p (x)v(x) =c by Eq. (14), where
either of the boundary conditions p(0) =0 or p(a) =0
specifies that c =0. Hence,

v(x) =O. (20)

Accordingly, Eq. (18) applies, which leads t under
consideration of Eq. (19)$ to the linear boundary-value
problem

dx'

2moE mooo)
lx' gp, —~(x&+~,

p(*= —~) =0, p(x=+~) =0. (25)

A solution p= p exists if the total energy of the system
assumes certain eigenvalues, E=E . One finds' I

(m~/A)'~'-
P ~

—(mph/A) x2

~1/22 n~ f

E„=hoo(e+-,'), m=0, 1, 2, . . . . (26)

Equations (24) and (25) indicate that the energy eigen-
values are potential energies of the particle in the
exterior and quantum potential,

E„=U'+Q„, —',mov„'=0.

The particle in a box and the harmonic oscillator are
examples for static systems (the generalization to the
three-dimensional case is trivial). In each case, the
particle appears to be at rest (v=O, (v)=0), in the
former because of the absence of forces (—VV=0,—VQ=O), and in the latter because of the balance be-
tween the forces (—V'U —V'Q =0). In the hydrodynamic
picture, a stationary solution of either of these systems
with v&0 is not feasible because v&0 would imply a
discontinuity of the probability density Qow at the
boundaries. This result is explained as the averagt:
statistical behavior of the particle in the final statioIiary
state. "

2pEp gg
~'v'P = — &—-', moo'+ Qp V' (pv) =0,

A,
2 r

0(r( ~, 0&8&w, 0&y(2w; (28)

3. HYdrogenlike Atom

A quantum system exhibiting both static and dynamic
states is the hydrogenlike atom. In this case, an electron(s=- Is l) is bound by the Coulomb Geld of a nucleus
(Z le l), so that the potential energy is

U(r)= —Zes/r, 0&r&~.
According to Eqs. (15), (16), and (27), the stationary
state of the hydrogenlike atom corresponds to the
boundary-value problem

v(x) =0. (24) P (r ~A') & & I &
=P (r ~+ w 0) ~

'

o R Courant a„d D HIIhert ~eikode oy~oihe~oi;«I Ph», ee The Probability currents can only flow in closed lines.
(Interscience, New York, 1962), Vols. I and II. Because of the azimuthal symmetry of tlie system, theo L. I. Schi8, Qegltuoe 3Ieehalees (McGraw-HiII, New York,
1955). "M. Born and W. Ludwig, Z. Physik 15O, IOS (&95g).
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e&
V= — 5$

mor sin8
m=0, &i, &2, . . . . (29)

velocity potential is of the form S=~ j Eq. (3}$,
corresponding to a velocity field independent of P:

Equations (29) and (38) represent the complete solution

fp, v) i of the quantum hydrodynamics of the hydro-
genlike atom.

Hy means of the recurrence relations for the asso-
ciated Laguerre and Legendre polynomials, "one shows
from Eq. (38) that LEq. (9)j

ey'(9
sspv &r=kpE =A8$

r sin5
(30) while LEq. (27)j

By substitution of Eq. (29), Eq. (28) is reduced to the
linear differential equation and j Eq. (29)j

This statement is in accord with the compatibility
condition, Eq. (7),

A2 j. 2 m2
——+

2mo u'e2 ar r2 sIn'5

A'/mo
U(r) =—

(39)

(40)

2mo- ( A ' mo

7'Qp = — E' ——',moj-
kmo r' sin'8

+ v'p (31)

A 2 m2

2PLOV =gPSO
mo r' sin'8

(41)

(33)

1 1 d f dg~ m'—
j

sinb —j.
—

g
g sin5 d8k d81 sin'8

(34)

Solutions to Eqs. (33) and (34) exist if the constants 8
and P assume the eigenvalues' "

and
I,=l(lyl), l=0, 1, 2, . . . (35)

2Z8
~—2

@'/mo«'
S1)2)3) ~ ~ ~ 0 (36)

As is known, '" the solutions of Eq. (33) are f(r)
oo g' exp( ——,'$)1. P'+'($), where ]=2r/rta and

a =6'/mo«', (37)

and the solutions of Eq. (34) are g(8) ~ Pi (cos8). Thus
one finds after normalization that"

2r " 2r —2

F/R0 J P + P wl(cos j)
ma rIa

(38)
2 ' (n —l —1)! 2l+1 (l jmj)!—

C„) =— —X
na 2nL(n+l}!jo 41r (l+ j

1n
j )!

For physical reasons, only the following combinations of
quantum numbers are acceptable:

0&i&I—1, —l&m&+l.

p is independent of p, i.e., p=p(r, b) since vjjeo, and
V' (pv) =v Up=0 j Eq. (29)].By means of the statement

dp= J(r)g(~), (32)

Eq. (31) can be separated into differential equations
with respect to r and 8, respectively (A=separation
parameter):

Equations (39)—(41) exhibit singularities at r =0, and
Eqs. (39) and (41) also for 5=0 and 8=1r. These
singularities have no physical implications, since the
expectation values of Q, U, and -', m,v' remain finite.

By comparison of Eqs. (39)—(41), it is seen that the
quantum potential energy Q overcompensates the
Coulomb energy U and the kinetic energy —,mov' at any
field point (r, ti,&) The . remaining energy is finite and
represents the observable energy of the system,

o mov'+ U+Q = —lt'/2moa'e'=— E.
The states with m =0 are static states (v =0) and the

states with m/0 are dynamic states (v/0) LEqs. (29),
(39), and (41)]. In any state m&0, the rotational
motion decreases with increasing distance r, i.e., for a
given direction 8, vooo1/r LEq. (29)j.

It is remarkable that no centrifugal forces (mov Vv
=0) appear for m=0 states, in which the Coulomb and
quantum forces balance each other alone, —&U—VQ
=0. The quantum-hydrodynamic picture thus leads to
conceptions completely diferent from the classical Bohr
model.

4. Free Motion of a Particle

A simple example of a time-dependent quantum
phenomenon is the free motion of a particle satisfying
prescribed initial values. According to Eqs. (5)—(7), this
problem is described in the one-dimensional case by

ao ao 8 ( A' O'Qp
mo —+o—= ——

j
—,(42)

at »»k 2mo (v'p)»'

p 8—+—(pv) =0.
8$ Bx

(43)

v(x, t=0) =vo,

p(x, t=0) = (1/1r'1'a)e i*i i'=po(x).
(44)

(45)

The initial state of the particle is speci6ed by a discrete
velocity (determined by measurement) and a Gaussian
position distribution (distribution parameter n):
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This means that at t =0, the center of the distribution
p(x) is at (x)p ——0 and has the velocity (v)p ——vp. The
boundary conditions are

particle
vpn'+ (A/mpn)'tx

n'+ (At/mon)'
(56)

p(x=+~, t) =0, p(x= —~, t) =0;
v(x=vot, t) =vo ~

At any t~~0, one has (( BQ—/Bx))=0 [Eqs. (11) and
(12)j.This suggests that Eq. (42) can be separated into
((x)=vpt because of absence of exterior forces)"

8 8'gp 2
(x—vpt)

Bx (gp)Bx' a(t)'

Equations (55) and (56) represent the quantum-
hydrodynamic solution of the free motion of a particle.
While the observable motion of the particle is uniform,
(v) = vp, the associated submicroscopic motions are
inhomogeneous in x and t space owing to the action of
the interior quantum force:

BQ A'/mp
(x—v,t).

Bx [n'+ (At/mon)']'
85 Bv A /mp

mo —+v—= (x—vot) .
Bt Bx a (t)'

(49) The quantum forces on the semispaces —~(x& (x) and

(x)&x(+~, (x)= vpt, compensate each other,

Integration of Eq. (48) gives, under consideration of the
boundary conditions, Eq. (46), a solution qua, dratic in

(x—vpt):

(t)3 "' ' "'""'" (50)

This function indeed satisfies the initial condition,
Eq. (45), if the initial value of a(t) is chosen as

(m pdv/dt) „*'= (mod v—/dt) &,&+"

This means that the particle in free motion polarizes the
vacuum behind itself, x&eot, and ahead of itself, x&v()t,
in such a form that the resulting interior quantum forces
are distributed symmetrically with respect to the plane
through the observable particle position (x)=vpt at any
time t.

a(t=0) =n' (51)
Iv. UNCERTAINTY PRINCIPLE

Insertion of Eq. (50) into the equa, tion of continuity,
'

Eq. (43), indicates that for x=vpt,

1 da (Bv

2a dt &ax .=„„
(52)

Under consideration of this relation, the differential
equation for a(t) obtains by performing the operation
(a/ax), =„„onEq. (49):

(53)

The solution of Eq. (53) with the initial condition, Eq.
(51) [satisfying the requirement that p(x, t) be real,
which is met by the symmetry condition a(+t) =a( —t),
Eq. (50)] is

a(t) =n'+(ht/mpn)'. (54)

"In Eq. (48), the g-independent proportionaHty factor is,
written for convenience in the forIn 2t/g'.

According to Eqs. (50) and (54), the probability density
is Gaussian in form with a time-dependent distribution
parameter a(t), and spreads with the classical particle
velocity vo.

(x—vot)'
p= exp (55)

[n'+ (At/mon)'j'" n'+ (At/mon)'

Similarly, integration of Eq. (49) gives with the
initial condition, Eq. (44), and the boundary condition,
Eq. (47), for the submicroscopic velocity field of the

In conventional quantum theory, the impossibility of
determining the variances of the position coordinate
hx; and of the conjugate momentum component
Ap; (p, = —ihV;) with arbitrary accuracy is commonly
attributed to the unavoidable perturbation exerted on
the particle by the measuring process. " Since the

measuring device is generally not defined quantitatively
and its perturbation may eventually be very large, the
uncertainty relation is formulated as a larger-than-or-
equal-to equation":

Ap, Ax~&-,'h.

In connection with this interpretation, it is strange that
definitive nonzero variances Ax; and Ap, obtain for
quantum systems which are not exposed to a measuring
device. This has been demonstrated by means of so-
called negative-result experiments. ' Further, it should
be noted that one obtains theoretically the (nonzero)
variances dx; and Ap; of quantum systems without
including in the analysis perturbations from or presence
of a measuring device at all.

In the hydrodynamic model of quantum mechanics,
the uncertainty relations result in a quite natural way
from the momentum perturbations associated with the
interior quantum stresses. The quantuin potential Q
has an effect on the particle similar to a hydrodynamic
pressure with a driving force —VQ. Introducing the
identity —mppVQ=V [p(mph)oVV lnp), Eq. (9), and the

"W. Heisenberg, The Physica/ Princip/es of Quantum, 3IIechani cs
(Dover, New York, 1952); N. Bohr, Nature 121, 580 (1928).

-4%. Repp&nger, Z. Physik 158' 417 (1960).
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Similarly, one shows that e~QO, e;;=0 for i~ j, and
t.g =0.

(d) By means of the solution for the time-dependent
(one-dimensional) motion of a free particle, Kq. (55),
one verifies that

(g') =2(l&)'/~(t), ((*—(*))')=l~(t).

Accordingly, the uncertainty relation, Eq. (62), be-
comes, for the particle in free motion,

(68)

Finally, a, momentum component (i) could be defined

by the expression

(2moQ')"' Q'= —(&'/2mo) (7"V'p)/V'p,

to form the uncertainty relation

linear differential equations is evidently not feasible
even in simple cases. The quantum-hydrodynamic con-
siderations have led to (1) an original insight into the
physics of microphysical systems, (2) a different con-
ception of the origin of the indeterminacy phenomenon,
and (3) a novel formulation of the uncertainty principle.

In connection with the results presented, the following
further mathematical and physical aspects of the
hydrodynamic model of quantum mechanics are to be
discussed.

(a) For nonstationary quantum systems, the hydro-
dynamic fields p(r, t) and v(r, t) can be represented by
series involving the eigensolutions p, (r) and v, (r) for
the stationary states (q) of energy E,. The correspond-
ing series representation of the nonstationary wave func-
tion is"

(2m, Q;)'t'a*, = —,'Ae, (s) . (6~) ip(r, t) =g c,u, (r)e
—' "'" (71)

This uncertainty relation corresponds to that for the
diagonal conjugate variables, Eq. (62).

Equation (58) indicates that the momentum transfer
responsible for the indeterminacy phenomenon is given

by the quantum momentum

q=-,'AV lnp. (70)

V. DISCUSSION

According to the quantum-hydrodynamic considera-
tions presented, the minimum uncertainty products
result from the interior quantum stresses of the micro-
physical system. Perturbations due to the measuring
process (which have neither been defined nor taken into
account) are not essential for the indeterminacy phe-
nomenon. Since Q~A', the responsible mechanism is
obviously a nonlinear interior interaction. As a model
for this nonlinear quantum interaction, the conception
of a polarized vacuum reacting back on the polarizing
particle is at hand. " Similarly, a hidden turbulence
(excited by the presence of the particle) kicking the
particle to and fro in a random manner could lead to an
explanation of the nonlinear quantum force. ' In both
models, the mechanism giving rise to the uncertainty
phenomenum in quantum systems would be similar to
that in classical stochastic systems, " e.g. , a colloidal
particle in Brownian motion (for which Aphx=ND;'
M= particle mass, D= diffusion coefficient). ig

(im o

u. (r) =I p. (r))'"«pl vq(r) « I.j (72)

The constant rp is the position vector of an arbitrary,
nonsingular fixed point I the corresponding constant
phase factor does not change the physical content of

u, (r)). By substituting Eq. (71), with Eq. (72), into the
general relations

p= ihip and pv= —(ift/2mo) Pip*%'ip tp~tp*)—)

one obtains the desired series representations for the
nonstationary hydrodynamic fields L& indicates summa-

tion over terms pWq):

p(r t) =2
I c.'I p, (r)+2 I c.llc. I t p. (r)p.(r))'"

and
&«os(&r at+fl i a(r)+Inc) (73)

in accordance with the linearity of the wave equation.
LThe expansion coefficients c, are determined by the
initial value of the wave function iP(r, 0).) By Eq. (3),
the wave functions u, (r) for the stationary states are
related to their hydrodynamic fields p, (r) and v, (r):

+-,' 2 I c.lie, I I p. (r)p, (r))'"I v.(r)+v, (r))

&&cos(~,t+Q, (r)+p„)+ g lc„llc, l

282p Pi Q
6 A. A. Sokolov and W. S. Tumanov, Zh. Eksperim. i Teor. Fiz.

30, 802 (1956) (Soviet Phys. JETP 3, 958 (1957)j.
'7 D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).' F.Bopp, Ann. Physik 1'7, 407 (1965).' R. Fuerth, Z. Physi 81, 143 (1933).

&&(Lp.(r))'"~I p.(r))'"—Lp. (r))'"|7Lp.(r))'")

&&sin(cu„t+n„, (r)+y„,), (74)

The hydrodynamic approach to quantum mechanics (r t)v(r t) pic 2lp (r)v (r)
is equivalent to wave mechanics. For static systems, and
for dynamic systems with simple symmetry properties,
the nonlinear hydrodynamic equations can be reduced
to (not complex) linear differential equations. For non- P~Q

stationary systems, a similar reduction to (not complex)
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~v. = (~.—&.)/&,

y„= (1/2i) In(c„*c,/c„c,*).

(75)

(76)

(77)

tion values of the interior quantum stresses exhibit
themselves in the experimentally observable minimum
indeterminacy in microphysical measurements.

In this connection, it should be noted that the mo-
mentum stresses p,p; [Eq. (57)j, are caused by two
types of quantum stresses,

The series in Eqs. (73) and (74) are nonlinear and
transcendental in accordance with the nonlinearity of
the hydrodynamic field equations (5) and (6); Ac-
cording to Eqs. (73) and (74), a nonstationary quantum
system corresponds to a stationary mass and current
density (p = q terms) which are superimposed by
oscillations (pNq terms) at the quantum frequencies
co„~ [Eq. (75)$ of the transitions between states p and q.
The phase of the oscillations is Av, = II„,(r)+P„,
[Eqs. (76) and (77)7, i.e., changes with position.

In simple cases, the hydrodynamic fields of non-
stationary quantum systems can be obtained by a
straightforward solution of the nonlinear field equations
(5) and (6), as has been shown by means of the example
of the particle in free motion. A. more systematic
mathematical approach would consist in applying the
similarity methods of classical mechanics. "

(b) The quantum-hydrodynamic uncertainty rela-
tions are necessarily different from those of wave me-
chanics because ((mev;)')@nW(p, 2)wM. Actually, an un-
certainty relation analogous to that of wave mechanics
does not exist at all. For example, in the case of the
motion of a free particle [Eqs. (55) and (56)), there
results

A(mov) Ax= ~mo(k/men)2t; i.e. , A(mev) Ax —+0
for f —&0.

The minimum uncertainty products, Eqs. (59) and
(62), have been shown to be a direct consequence of the
interior quantum stresses. These quantum stresses are,
in their possible effects, equivalent to momentum
stresses, since the momentum is conserved in any
process [Eq. (5)j. The expectation values of the
hydrodynamic momentum mov, and of the wave-
mechanical momentum operator lp, are equal, i.e. , (mov;)
=(l1,) [Eq. (10)$. Accordingly, (mev;) is observable,
since (I3;) (ordinary wave-mechanical momentum) is
observable.

According to Eq. (59) or Eq. (62), the expectation
values of the quantum stresses can be determined
experimentally from the measurement of the minimum
product of the corresponding conjugate momentum and
position uncertainties of any microphysical system in
any quantum state (s). Thus, it is seen that the expecta-

2' L. I. Sedov, Si ~hilarity and Dimensional Methodsin Mechanics
iAcademic, New York, 1959l.

The stresses 0-,; and q;q, differ in an essential respect
since they have a vanishing and nonvanishing expecta-
tion value, respectively:

o = —(-', k)'VV'p/p, (e)=0.
The stresses q;q, with nonvanishing expectation value
[Eq. (58)j are responsible for the momentum un-
certainties in an observation, while the stresses 0-;;
cannot produce an observable momentum change of the
particle. In a submicroscopic theory, it should be
possible to relate the stresses 0-;, to "the particle itself"
and the stresses q;q, to "a hidden medium. "

The quantum-hydrodynamic uncertainty relations
for the diagonal conjugate variables [Eq. (62)) are
comparable with the uncertainty relations of wave
mechanics. It can be shown that the minimum quantum-
hydrodynamic uncertainty products [determined in
accordance with Eq. (62)j are numerically equal to the
minimum wave-mechanical uncertainty products (Ap;
and Ax; determined by the methods of wave mechan-
ics") for any quantum system, as it should be (otherwise,
at least one of the two formulations of the indeterminacy
principle would not agree with experiment).

In conclusion, it is noted that the hydrodynamic ap-
proach to quantum mechanics has been applied suc-
cessfully to Bose system at low temperatures. " [Equa-

. tion (7), e.g., describes the peculiar quantized rotation
in superQuids" similar to the quantized rotation in the
hydrogenlike atom. $ Further, the quantum-hydro-
dynamic approach seems to be also promising in other
areas, e.g. , for the hydrodynamic description of high-
energy processes, " nuclear-force models, '4 and atomic-
electron structures. "
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