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An analysis of typical microphysical systems is presented in the hydrodynamic formulation of quantum
mechanics. The emphasis is on the physical peculiarities appearing in the hydrodynamic picture, and on the
mathematical treatment of the nonlinear quantum-hydrodynamlc field equations. Further, quantum-hydro-
dynamic uncertainty relations are derived, which relate the minimum uncertainty products to the interior

quantum stresses.

I. INTRODUCTION

HE theoretical description of microphysical sys-
tems is generally based on the wave mechanics of
Schrodinger,! the matrix mechanics of Heisenberg,? or
the path-integral mechanics of Feynman.? Another ap-
proach is the hydrodynamic formulation of quantum
mechanics due to Madelung® and de Broglie.’ The
hydrodynamic theory of quantum mechanics has been
later extended by de Broglie (idea of the “double solu-
tion”)% and Bohm (idea of “subquantic medium”)” and
used as a preliminary theoretical scheme for quasicausal
interpretations of microphysical phenomena.$’

In the hydrodynamic formulation of quantum me-
chanics, the complex, linear Schrédinger equation is
replaced by real, nonlinear differential equations for a
probability density and its velocity field (formally
similar to the equations of continuity and motion of
ordinary hydrodynamics). The complete mathematical
and physical equivalence to wave mechanics is estab-
lished by means of a compatibility condition which
relates a single wave function, i.e., a solution of the
Schrédinger equation, to each hydrodynamic solution in
a unique way.

The physical particularities of the quantum-hydro-
dynamic model and the mathematical procedure for the
solution of the nonlinear quantum-hydrodynamic differ-
ential equations are discussed. In this connection, con-
crete static, dynamic, and time-dependent microscopic
quantum systems are considered: the particle in a box,
the harmonic oscillator, the hydrogenlike atom, and the
nonstationary particle motion. Fundamental uncer-

LE. Schrodinger, Collected Papers on Wave Mechanics (W. M.
Deans, London, 1928).

3 }§ S. Green, Matrix Mechanics (P. Noordhoff Ltd., Groningen,
1965).

3 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill, New York, 1965).

¢ E. Madelung, Z. Physik 40, 322 (1926). For a more recent
discussion of the hydrodynamxc formulation of wave mechanics,
see T. Takabayasi, Progr. Theoret. Phys. (Kyoto) 8, 143 (1952);
9, 187 (1953); 14, 283 (1955).

8 L. de Broghe Compt Rend. 183, 447 (1926); 184, 273 (1927);
185, 380 (1927).

L. de Broglie, Compt. Rend. 233, 641 (1951); 234, 265 (1952);
235, 557 (1952); 235, 1345 (1952); 235 1435 (1952) 236, 1453
(1953) 237,441 (1953) 239,737 (1954) 241 345 (1955) 244 529
(1957); 264, 1041 (1967).

7 D. Bohm, Phys. Rev. 85, 166, 180 (1952); D. Bohm and D.
Pines, ibid. 85, 338 (1952); 92, 609 (1953); D. Bohm and J. Bub,
Rev. Mod. Phys. 38, 453 (1966).

1

tainty relations are derived which associate the product
of the variances of conjugate particle variables to the
intrinsic quantum stresses.

II. HYDRODYNAMIC FORMULATION

The wave field ¢(r,f) of a particle of mass m, in a
given force field with the potential U (r,?) is described by
the Schrédinger equation

1 #?
i =Up— —V2. 1)
at 2m0

From this fundamental equation, a nonrelativistic
quantum hydrodynamics can be derived as follows.

1. Hydrodynamic Field Equations

Equation (1) is a linear, but complex, differential
equation. It is separable by means of the general com-

plex statement
Y(r,0) =R(r,0)e?sx0. @)

In the resulting real and imaginary part of Eq. (1), the
real variables R(r,f) and VS(r,f) are replaced by the
velocity field v(r,£) and density field p(r,£) in accordance
with

v=(I/mo) VS )
and

p=R'R. 4

[Note that Eq. (3) has a physical meaning only at
points where p7£0.] Thus, the field equations of quan-
tum mechanics in the hydrodynamic picture result in

the form*5
g P Ve
—(mopV)+V+ (mopvv) = ——pV(U— — ) (5)
o 2my V/p

and

a
—p+V- (pv)=0. (6)
ot

" The wave function of ¥ (r,£) is invariant with respect to a

change of its phase S(r,f) by an integer multiple of 27
[Eq. (2)]. Hence, Eq. (3) gives

fmgv-dr=hfd5=21rhm, m=0,+1,+2, ... (7)

2278



1 HYDRODYNAMIC MODEL OF QUANTUM MECHANICS

as a condition of compatibility between quantum
hydrodynamics and wave mechanics. The path of
integration of Eq. (7) may not pass through regions
where p=0 (i.e., where v is possibly singular), but is
otherwise arbitrary.

Equations (5) and (6) represent a complete system of
differential equations for the fields p(r,f) and v(r,?).
Equation (7) relates each hydrodynamic solution (p,v)
to a wave solution ¢ in a unique way.

The field p(r,f) has the meaning of a probability
distribution [Egs. (2) and (4)], i.e., the probability for
finding the particle in the vicinity dr of the point r is, at

time ¢,
dW=pdr,///pdr=1. 8)

(Spatial integrations extend over the entire region of
the system.) Any variation of the probability density
p(r,t) with ¢ is accompanied by a probability density
flow pv into or away from the respective field point r
[Eq. (6)].

The velocity field v(r,), Eq. (5), of the position
probability changes with r and ¢ like that of a hydro-
dynamic fluid in the force fields of an exterior potential
U(r,t) and interior potential Q(r,f):

Q=—(%)Vi;:”. ©)

The quantum fluid (in the sense of a statistical ensemble
of particles) exhibits, however, an essential difference
compared to an ordinary fluid: In a rotating motion,
v(r,t) decreases (increases) with increasing (decreasing)
distance from the center [Eq. (7)].

The expectation values for the wvelocity field
v=(h/m) VS of quantum hydrodynamics (QH) and the
velocity operator W= —i(%/m,)V of wave mechanics
(WM) are equal:

<V>QHE//fPVdr=f//¢*b¢drE<U>WM- (10)

Similar identities do not hold for the higher-order
expectation values, (V*)qus=(0™)ww, |7|> 2. The expec-
tation value for the quantum force vanishes at all times
(theorem of Ehrenfest),? i.e.,

i
J ]~

From the mathematical point of view, Eas. (11) and

(11)

v \/p>dr=% f (oVV Inp)-df=0. (12)
Vp

8 P. Ehrenfest, Z. Physik 45, 455 (1927).
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(12) may be looked upon as integral equations for the
variables Q(r,) and p(r,£), respectively.
2. Stationary Quantum States

The time-independent states of a quantum system are
special solutions {p(r),v(r)} of Eqgs. (5)-(7). Two types
of stationary states are distinguished.

(a) Dynamic States
For 8/9t=0 and vs£0, Egs. (5) and (6) give

B VA
V<%m0v2-|—U— — )=0, (13)
2mo /p
. V- (pv)=0; (14)
ie.,
72 V3A/p
I U— — —— =E, (15)
2mo \/p
pv=VXF. (16)

In a dynamic system, the inertia (mqv-Vv), exterior
forces (—VU), and interior forces (—VQ) are in balance
at every field point [Eq. (13)]. The sum of the kinetic
(3mqv?), exterior potential (U), and interior potential
(Q) energies is invariant, i.e., equal to the integration
constant E#E(r) [Eq. (15)]. E=(F) represents the
total energy of the dynamic system. The probability
flow density pv has no sources [Eq. (14)]; i.e., its
stream lines are closed [Eq. (16)].

(b) Static States
For 4/9t=0 and v=0, Egs. (5) and (6) give

n? VA/p
V(U—————>=0, (7
. 2mo /p
i.e.,
7 Vi/p
Ue — — =F. (18)
2my V/p

In a static system, the exterior force (—VU) is balanced
by the interior force (—VQ) at any field point [Eq.
(17)]. The sum of the exterior (U) and interior (Q)
potential energies is invariant, i.e., equal to the integra-
tion constant E#E(r) [Eq. (18)]. E=(E) represents
the total energy of the static system.

Equations (15), (16), and (18) are the differential
equations describing the dynamic and static system
(with given boundary conditions), respectively, and
also the eigenvalue equations for the respective total
energies £. The compatibility condition [Eq. (7)] is a
boundary condition for the dynamic system; it is
satisfied in a trivial way for a static system, since in the
latter, v=0 and m=0.

The stationary states are either stable (e.g., the
ground state of an atom) or unstable (e.g., an excited
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state of an atom) with respect to small, arbitrary
perturbations (proper stationary and quasistationary
states, respectively).

III. MICROSCOPIC QUANTUM SYSTEMS

As an illustration to the hydrodynamic formalism,
individual static, dynamic, and time-dependent quan-
tum systems are analyzed with respect to the physical
and mathematical aspects of the hydrodynamic model.

1. Particle in a Box

One of the simplest quantum systems is a particle
enclosed in a one-dimensional box by infinite potential
walls at =0 and x=a,

U(x)=0, 0<x<e; UxL0)=w; U@x>a)=x. (19)

In the stationary state, p(x)v(x) =c¢ by Eq. (14), where
either of the boundary conditions p(0)=0 or p(a)=0
specifies that ¢=0. Hence,

v(x)=0. (20)

Accordingly, Eq. (18) applies, which leads [under
consideration of Eq. (19)] to the linear boundary-value
problem

d*/p <2moE

dx? #h?

>\/p, 0<z<a,

p(0)=0, p(a)=0. (21)
A solution p=p, exists if the total energy of the system

assumes certain eigenvalues £=E,. One finds®1

2 nwr 7 fnmw\?
pr=— sinz(—x), E,= —(—) )
a a 2mo\ a
n=1,2,3,.... (22)
Equations (20) and (21) indicate that the energy
eigenvalues are potential energies of the particle in the
quantum potential,

E, =Qn I} %movn2=0 .

2. Harmonic Oscillator

The one-dimensional harmonic oscillator is a particle
in a spatially symmetric potential energy field of the
form

U(x) =3mp?s?, —oo<a<+o. (23)

In the stationary state, p(x)v(x) =c by Eq. (14), where
either of the boundary conditions p(—)=0 or
p(+4 =) =0 specifies that c=0. Hence,

v(x)=0. (24)
' 9R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York, 1962), Vols. I and II.
© 1. I. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1955).
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Accordingly, Eq. (18) applies, which leads [under
consideration of Eq. (23)] to the linear boundary-value
problem

dZ\/p ZM()E MW 2
N
dax? #? /]

p(x:—oo)z()’

p(r=—4c0)=0.

A solution p=p, exists if the total energy of the system
assumes certain eigenvalues, E=F,. One finds®

(m(}(’)/ﬁ)lﬂr (m()wx2 1/242
= Hﬂ > ] e (mow/ %) x2 ,
/2

Pn= wl2)ny ! l_
E,=hw(n+3), n=01,2,...

(25)

(26)

Equations (24) and (25) indicate that the energy eigen-
values are potential energies of the particle in the
exterior and quantum potential,

En=U+Qa,

The particle in a box and the harmonic oscillator are
examples for static systems (the generalization to the
three-dimensional case is trivial). In each case, the
particle appears to be at rest (v=0,(v)=0), in the
former because of the absence of forces (—VU =0,
—VQ=0), and in the latter because of the balance be-
tween the forces (— VU —VQ=0). In the hydrodynamic
picture, a stationary solution of either of these systems
with v#0 is not feasible because v#0 would imply a
discontinuity of the probability density flow at the
boundaries. This result is explained as the average
statistical behavior of the particle in the final stationary
state.!t

%mOVnz =0.

3. Hydrogenlike Atom

A quantum system exhibiting both static and dynamic
states is the hydrogenlike atom. In this case, an electron
(e=—e]) is bound by the Coulomb field of a nucleus
(Z|el), so that the potential energy is

Ulr)y=—2Ze/r, 0<r< . 27)

According to Egs. (15), (16), and (27), the stationary
state of the hydrogenlike atom corresponds to the
boundary-value problem

Z’WLO Ze?
VZ\/p= — —;:;(E—%mo'zﬂ—l- —)x/p , V- (pV) =0,
7
0<r<o, 0<8<m, 0<¢<2r; (28)

p(r,0,0)s<r/2=p(r,043m,0).

The probability currents can only flow in closed lines.
Because of the azimuthal symmetry of the system, the

M. Born and W. Ludwig, Z. Physik 150, 106 (1958).
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velocity potential is of the form S=m¢ [Eq. (3)],
corresponding to a velocity field independent of ¢:

hooey
v=— m ,
Mo 7 SInd

(29)

m=0, +£1, 2, ....

This statement is in accord with the compatibility
condition, Eq. (7),

€4 dr 2
fmovdr:hmf =ﬁm/ do=2mhm. (30)
7 sind 0

By substitution of Eq. (29), Eq. (28) is reduced to the
linear differential equation
Zé

21’}10 h 2 7”2

mo/ 7% sin% ¥

p is independent of ¢, i.e., p=p(7,8) since v|e4, and
V- (pv)=v-Vp=0[Eq. (29)]. By means of the statement

Ve=1(r)g®), (32)

Eq. (31) can be separated into differential equations
with respect to # and §, respectively (A=separation
parameter) :

7?r1dys df 2m Ze?
——I:— ~<r2~—>—!— ~——<E-|— —-)f ] =\ (33)
fL2dr\ dr h? r
and
Iri1 4 dg m?
A=— —l:——— —(sin&—)— g:l . (34)
gLsiné dé ds/  sin?

Solutions to Egs. (33) and (34) exist if the constants E
and A assume the eigenvalues® !

N=I(+1), 1=0,1,2, ... (35)
and
3Z¢
Ey=————n? =123, .... (36)
W2 moZe?

As is known,®¥ the solutions of Eq. (33) are f(r)
o £t exp(—%&) Loy 21 (), where £=27/na and

a=m/moZe, 37

and the solutions of Eq. (34) are g(8) « Py (cosd). Thus
one finds after normalization that?:10

2r\% 27 2
pnlm=cnlm<—> el ”“[Ln+z2l+l<_>P l”‘(cosﬁ):l )
na na

2\% (n—1—1)! 2041 (I—|m|)!
Cnlmz(—') X .
na/ 2n[ (n+0)IP ar (4 |m])!

For physical reasons, only the following combinations of
quantum numbers are acceptable:

0<I<n—1, —Ii<m<+l.
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Equations (29) and (38) represent the complete solution
{p,V}nim Of the quantum hydrodynamics of the hydro-
genlike atom.

By means of the recurrence relations for the asso-
ciated Laguerre and Legendre polynomials,’® one shows
from Eq. (38) that [Eq. (9)]

0 h2( 1 2 4 m? > (39)
a Imo\a?n®  ar  r?sin? ’
while [Eq. (27)]
7*/mo
Ur)=— (40)
ar
and [Eq. (29)]
i\ m?
%mo‘ﬂ:%mO(—) X . (41)
mo/ ¥%sin2

Equations (39)-(41) exhibit singularities at =0, and
Egs. (39) and (41) also for 6=0 and 6=w. These
singularities have no physical implications, since the
expectation values of Q, U, and 3m,v? remain finite.
By comparison of Egs. (39)-(41), it is seen that the
quantum potential energy Q overcompensates the
Coulomb energy U and the kinetic energy $mov? at any
field point (7,8,¢). The remaining energy is finite and
represents the observable energy of the system,

tmov2+U+Q=—1/2man?*=E.

The states with m =0 are static states (v=0) and the
states with m3£0 are dynamic states (v&£0) [Eqgs. (29),
(39), and (41)]. In any state w30, the rotational
motion decreases wlth increasing distance 7, i.e., for a
given direction 8, v4< 1/7 [Eq. (29)].

It is remarkable that no centrifugal forces (mov-Vv
=0) appear for m=0 states, in which the Coulomb and
quantum forces balance each other alone, —VU—VQ
=0. The quantum-hydrodynamic picture thus leads to
conceptions completely different from the classical Bohr
model.

4. Free Motion of a Particle

A simple example of a time-dependent quantum

phenomenon is the free motion of a particle satisfying

prescribed initial values. According to Egs. (5)—(7), this
problem is described in the one-dimensional case by

dv v a 2 o
T S
of  Ox 3x\  2my (\/p)0a?

dp a
— + —(pv) =0. (43)
at ox

The initial state of the particle is specified by a discrete
velocity (determined by measurement) and a Gaussian
position distribution (distribution parameter a):

(44)
(45)

v(x, =0) =1y,
p(x, 1=0) = (1/7%a)e~ =10 = po(x) .
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This means that at /=0, the center of the distribution
p(x) is at (x)o=0 and has the velocity (v)o=v,. The
boundary conditions are

P(x=+°°7 t)=07

v(x=vot, t) =7.

(46)
(47)

At any #=0, one has ((—90Q/dx))=0 [Egs. (11) and
(12)7. This suggests that Eq. (42) can be separated into
({x)=wot because of absence of exterior forces)?

p(x=—00, t)=0,

a/ ™o 2
= e
an

0v ek} 72 /mo

) e @

Integration of Eq. (48) gives, under consideration of the
boundary conditions, Eq. (46), a solution quadratic in
(x—vot) :

p=[ra(l) T2 e a®) (50)

This function indeed satisfies the initial condition,
Eq. (45), if the initial value of @(f) is chosen as
a(t=0)=a’. (51)

Insertion of Eq. (50) into the equation of continuity,
Eq. (43), indicates that for x =1y,

1 da <av>
2a dt B 0x/ x:,,o;’
Under consideration of this relation, the differential

equation for ¢(¢) obtains by performing the operation
(8/9%) z—pyt on Eq. (49):
h 2
(MQ) '

?a  1/da\?
— -(_) -
@ 2\dt
The solution of Eq. (53) with the initial condition, Eq.
(51) [satisfying the requirement that p(x,f) be real,
which is met by the symmetry condition a(+¢) =a(—¢),
Eq. (50)] is

(52)

(53)

a(t) =+ (ht/mee)?. (54)

According to Egs. (50) and (54), the probability density
is Gaussian in form with a time-dependent distribution
parameter a(f), and spreads with the classical particle
velocity o:

 (—og) ] 55)

1..—1/2
L2+ (it / mge)?]H2 4 (ht/moa)?
Similarly, integration of Eq. (49) gives with the

initial condition, Eq. (44), and the boundary condition,
Eq. (47), for the submicroscopic velocity field of the

2In Eq. (48), the a-independent proportionality factor is
written for convenience in the form 2/a2

WILHELM 1

particle
voe—+ (/moc) 2
= -

@+ (ht/mea):

Equations (55) and (56) represent the quantum-
hydrodynamic solution of the free motion of a particle.
While the observable motion of the particle is uniform,
(v)=1y, the associated submicroscopic motions are
inhomogeneous in x and ¢ space owing to the action of
the interior quantum force:

6Q h2/ moy

P

The quantum forces on the semispaces — 0 <x<(x) and
(x)<x< -+, {(x) =9y, compensate each other,

(modv/dt)_," "' = —(modv/dt) (a5t

This means that the particle in free motion polarizes the
vacuum behind itself, x<vof, and ahead of itself, x> vy,
in such a form that the resulting interior quantum forces
are distributed symmetrically with respect to the plane
through the observable particle position (x) =1, at any
time .

(56)

(x—vot).

IV. UNCERTAINTY PRINCIPLE

In conventional quantum theory, the impossibility of
determining the variances of the position coordinate
Ax; and of the conjugate momentum component
Ap; (p;=—1hV;) with arbitrary accuracy is commonly
attributed to the unavoidable perturbation exerted on
the particle by the measuring process.® Since the
measuring device is generally not defined quantitatively
and its perturbation may eventually be very large, the
uncertainty relation is formulated as a larger-than-or-
equal-to equations:

In connection with this interpretation, it is strange that
definitive nonzero variances Ax; and Ap; obtain for
quantum systems which are not exposed to a measuring
device. This has been demonstrated by means of so-
called negative-result experiments.’ Further, it should
be noted that one obtains theoretically the (nonzero)
variances Ax; and Ap; of quantum systems without
including in the analysis perturbations from or presence
of a measuring device at all.

In the hydrodynamic model of quantum mechanics,
the uncertainty relations result in a quite natural way
from the momentum perturbations associated with the
interior quantum stresses. The quantum potential Q
has an effect on the particle similar to a hydrodynamic
pressure with a driving force —VQ. Introducing the
identity —meVQ=V-[p(3%)2VV Inp], Eq. (9), and the

18 W. Heisenberg, Zhe Physical Principles of Quantum Mechanics
(Dover, New York, 1952); N. Bohr, Nature 121, 580 (1928).
1 W. Renninger, Z. Physik 158, 417 (1960).
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momentum conservation equation (5) gives
V-Lo(movmev)J=V-[p(G#)*VV Inp ]+ - -

Accordingly, the interior quantum stresses are, in their
possible effects, potentially equivalent to momentum
stresses p;p; imparted to the hydrodynamic fluid as-
sociated with the particle:

VVp VpVp
=—(34)*VVInp=— (;h)2<————— - —) . (57
PP P

This is similar to an ordinary liquid, in which a pressure
gradient produces a fluid motion as soon as the con-
straints or forces balancing the negative pressure
gradient are changed or removed.

The expectation values of the momentum stresses,
(pip;), represent the observable momentum stresses of
the particle. According to Eq. (57),

(PP>=(%%)2///p Vlnp VInp dr,
///vvpdr=fvpdf=&

It is recognized that the momentum stresses p;ip;, Eq.
(57), are due to unobservable (first term) and observable
(second term) quantum stresses. The observable mo-
mentum stresses are given by the dyad

since

(qq)0. (58)

They determine the observable uncertainties or vari-
ancies Ax;; of the conjugate components of the position
tensor rr of the particle. Thus one finds from Eq. (58)
the fundamental relation

qq=(3%)*V Inp V Inp,

(qig3) (Axi;)?= (37)%:;(5)?, (59)

where
(gigi)= Gh)* / f / pVilnp Vilnpdr,  (60)
(Aw)?= ((ai— (x:)) (wi— (%)) - (61)

€;;(s) is a function of the set of quantum num-
bers specifying the state of the quantum system.
For systems with a separable distribution function
o(1,8) = p1(w1,8) p2 (%2,f) p3 (x3,¢), the nondiagonal variances
vanish: Ax;;=0 for i j. In this case, Eqgs. (59)-(61)
reduce to

<9 2>1/2Ax, 1h51(5); (62)

where
(g2)= Gy f f / p(Vilngldr,  (63)
(Aws)?= ((a;— <x¢>)2> (64)

Equation (59) is the tensorial formulation of the
quantum-hydrodynamic uncertainty principle. The un-
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certainty relation for the diagonal components, Eq.
(62), is formally similar to that of wave mechanics for
the conjugate variables of momentum and position.

The application of the hydrodynamic uncertainty
relation to concrete quantum systems and the evalua-
tion of the function of quantum states is demonstrated
in the following examples.

(a) By means of the solution for the particle in the
field-free (one-dimensional) box, Eq. (22), one verifies

that
(gH=4G)(nr/a)?, ((x—(x)?)=1z0

Accordingly, the uncertainty relation, Eq. (62), be-
comes, for the particle in the box,

{g2)2Ax=%h(n/N3)n, n=1,2,3,....
The function of states for this system is
e(n)= (w/V3)n>w/V3.

(b) By means of the solution for the harmonic (one-
dimensional) oscillator, Eq. (26), one verifies that

(g)=2G1)* (mow/h) (14 2n) ,
((a—(x)H) = (G7/mow) (14-2n).

Accordingly, the uncertainty relation, Eq. (62), be-
comes, for the harmonic oscillator,

(gAx=1n(14+2n), n=0,1,2,....

(65)

(66)

The function of states for this system is e(n)=1
+2n>1.

(c) By means of the solution for the particle in the
spherically symmetric Coulomb field, Eq. (38), one
verifies that!®

7 \2 ! 1+1
(a)= (W) [1 2;5;‘:;]
((r—(M)H= Ga)’[n*(n*4-2)—PI+1)%].

Accordingly, the uncertainty relation, Eq. (62), be-
comes, for the  components of the dynamical variables
of the electron in the hydrogenlike atom,

and

(gD 2Ar="3%he,(n,0), n=1,2,3,..., I<n—1 (67)
where
1 14+1 ? 172
e(ml)= {(1——2~ ———)]:(W—}-Z)— —(l—l—l){” .
n 2141 n?

The function of states for this case is €.(1,))>V3; in
particular,

er(n) = (2-Fn2)12
(1 +2n
2n—1

for I=1Ilnin=0

1/2
) for I=lnax=n—1.

15 The integrals over the associated Laguerre polynomials are
readily evaluated by means of their generating functions (Ref. 10).
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Similarly, one shows that €0, €;;=0 for 757, and
6¢=0.

(d) By means of the solution for the time-dependent
(one-dimensional) motion of a free particle, Eq. (55),
one verifies that

(g2)=2G1/a(), ((x—(=)H=3a().

Accordingly, the uncertainty relation, Eq. (62), be-
comes, for the particle in free motion,

(g2 ran=1. (68)

Finally, a momentum component () could be defined
by the expression

2mQ:)'?,  Qi=— (#/2m0) (V/p)/V/p,

to form the uncertainty relation
CmgQi) 2Ax;= $hei(s). (69)

This uncertainty relation corresponds to that for the
diagonal conjugate variables, Eq. (62).

Equation (58) indicates that the momentum transfer
responsible for the indeterminacy phenomenon is given
by the quantum momentum

(70)

According to the quantum-hydrodynamic considera-
tions presented, the minimum uncertainty products
result from the interior quantum stresses of the micro-
physical system. Perturbations due to the measuring
process (which have neither been defined nor taken into
account) are not essential for the indeterminacy phe-
nomenon. Since Q«7? the responsible mechanism is
obviously a nonlinear interior interaction. As a model
for this nonlinear quantum interaction, the conception
of a polarized vacuum reacting back on the polarizing
particle is at hand.'® Similarly, a hidden turbulence
(excited by the presence of the particle) kicking the
particle to and fro in a random manner could lead to an
explanation of the nonlinear quantum force.!” In both
models, the mechanism giving rise to the uncertainty
phenomenum in quantum systems would be similar to
that in classical stochastic systems,'® e.g., a colloidal
particle in Brownian motion (for which ApAx=MD;
M =particle mass, D= diffusion coefficient).!®

q=131%4V Inp.

V. DISCUSSION

The hydrodynamic approach to quantum mechanics
is equivalent to wave mechanics. For static systems, and
for dynamic systems with simple symmetry properties,
the nonlinear hydrodynamic equations can be reduced
to (not complex) linear differential equations. For non-
stationary systems, a similar reduction to (not complex)

16 A, A. Sokolov and W. S. Tumanov, Zh. Eksperim. i Teor. Fiz.
30, 802 (1956) [Soviet Phys. JETP 3, 958 (1957)].

17D, Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).

18 . Bopp, Ann. Physik 17, 407 (1965).

19 R, Fuerth, Z. Physik 81, 143 (1933).
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linear differential equations is evidently not feasible
even in simple cases. The quantum-hydrodynamic con-
siderations have led to (1) an original insight into the
physics of microphysical systems, (2) a different con-
ception of the origin of the indeterminacy phenomenon,
and (3) a novel formulation of the uncertainty principle.

In connection with the results presented, the following
further mathematical and physical aspects of the
hydrodynamic model of quantum mechanics are to be
discussed.

(a) For nonstationary quantum systems, the hydro-
dynamic fields p(r,f) and v(r,t) can be represented by
series involving the eigensolutions p,(r) and v,(r) for
the stationary states (¢) of energy E,. The correspond-
ing series representation of the nonstationary wave func-
tion is!

Y1) =22 cquq(r)e el (71)

in accordance with the linearity of the wave equation.
[The expansion coefficients ¢, are determined by the
initial value of the wave function ¢(r,0).] By Eq. (3),
the wave functions #,(r) for the stationary states are
related to their hydrodynamic fields p4(r) and v,(r):

img [T
q(1) =[pg(r) ] eXP(";/ V(1) 'dr> . (72)

0

The constant r, is the position vector of an arbitrary,
nonsingular fixed point [the corresponding constant
phase factor does not change the physical content of
#4(r)]. By substituting Eq. (71), with Eq. (72), into the
general relations

p=y¥"y and pv=— (ih/2m))[Y* W —yV*],

one obtains the desired series representations for the
nonstationary hydrodynamic fields [ #indicates summa-
tion over terms ps=q]:

o) =5 |e52 05 (0)+ 32 | collcal Lop (Dpa )]

Xcos(@pdd +Qpo (1) +dpe)  (73)

and

PV () =5 | ¢4 oo OV, @)
3 3 |callcal Cop@pa@ V@) +vo()]

o=
X 08(@pgl +Lpa (1) F¢pa)+ —— 2| ¢allcq]

Z’WLO »,q

X{Lpo () 12VLpo(x) 12 —[oq (1) J*VLop (1) J'1%}

Xsin(wpdd +Qpq(1) +b5a),  (74)
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where

Wpq= (Ep_Eq)/h P (75)
Sm®=—;[£%®—w®}ﬁ, (76)
bpa= (1/20 In (Cp*cq/cpcq*) . (77)

The series in Egs. (73) and (74) are nonlinear and
transcendental in accordance with the nonlinearity of
the hydrodynamic field equations (5) and (6). Ac-
cording to Eqgs. (73) and (74), a nonstationary quantum
system corresponds to a stationary mass and current
density (p=g¢ terms) which are superimposed by
oscillations (p7¢ terms) at the quantum frequencies
wpq LEq. (75)] of the transitions between states p and g.
The phase of the oscillations is Aue=Que(r)+ug
[Egs. (76) and (77)], i.e., changes with position.

In simple cases, the hydrodynamic fields of non-
stationary quantum systems can be obtained by a
straightforward solution of the nonlinear field equations
(5) and (6), as has been shown by means of the example
of the particle in free motion. A more systematic
mathematical approach would consist in applying the
similarity methods of classical mechanics.?

(b) The quantum-hydrodynamic uncertainty rela-
tions are necessarily different from those of wave me-
chanics because ((mv;)?)qu=(p:2)wm. Actually, an un-
certainty relation analogous to that of wave mechanics
does not exist at all. For example, in the case of the
motion of a free particle [Egs. (55) and (56)], there
results

A(me) - Ax=3mo(h/me); ie., A@mw)-Ax— 0

for t — 0.

The minimum uncertainty products, Egs. (59) and
(62), have been shown to be a direct consequence of the
interior quantum stresses. These quantum stresses are,
in their possible effects, equivalent to momentum
stresses, since the momentum is conserved in any
process [Eq. (5)]. The expectation values of the
hydrodynamic momentum me; and of the wave-
mechanical momentum operator §; are equal, i.e., (mqv;)
=(p;) [Eq. (10)]. Accordingly, {(m;) is observable,
since (p;) (ordinary wave-mechanical momentum) is
observable.

According to Eq. (59) or Eq. (62), the expectation
values of the quantum stresses can be determined
experimentally from the measurement of the minimum
product of the corresponding conjugate momentum and
position uncertainties of any microphysical system in
any quantum state (s). Thus, it is seen that the expecta-

» L. I. Sedov, Similarity and Dimensional Methods in Mechanics
(Academic, New York, 1959).
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tion values of the interior quantum stresses exhibit
themselves in the experimentally observable minimum
indeterminacy in microphysical measurements.

In this connection, it should be noted that the mo-
mentum stresses psp; [Eq. (57)], are caused by two
types of quantum stresses,

pp="o+qgq.

The stresses o;; and ¢.¢; differ in an essential respect
since they have a vanishing and nonvanishing expecta-
tion value, respectively :

T=—h)VVp/p, (#)=0.

The stresses ¢;¢; with nonvanishing expectation value
[Eq. (58)] are responsible for the momentum un-
certainties in an observation, while the stresses oy;
cannot produce an observable momentum change of the
particle. In a submicroscopic theory, it should be
possible to relate the stresses o;; to “the particle itself”
and the stresses ¢;g; to “a hidden medium.”

The quantum-hydrodynamic uncertainty relations
for the diagonal conjugate variables [Eq. (62)] are
comparable with the uncertainty relations of wave
mechanics. It can be shown that the minimum quantum-
hydrodynamic uncertainty products [determined in
accordance with Eq. (62)] are numerically equal to the
minimum wave-mechanical uncertainty products (Ap;
and Ax; determined by the methods of wave mechan-
ics!) for any quantum system, as it should be (otherwise,
at least one of the two formulations of the indeterminacy
principle would not agree with experiment).

In conclusion, it is noted that the hydrodynamic ap-
proach to quantum mechanics has been applied suc-
cessfully to Bose system at low temperatures. [ Equa-

.tion (7), e.g., describes the peculiar quantized rotation

in superfluids? similar to the quantized rotation in the
hydrogenlike atom.]| Further, the quantum-hydro-
dynamic approach seems to be also promising in other
areas, e.g., for the hydrodynamic description of high-
energy processes,? nuclear-force models,** and atomic-
electron structures.?
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