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A semiquantitative calculation is performed for the specific heat of a plane, rigid, electric-dipole rotator
having classical interactions with thermal electromagnetic radiation including electromagnetic zero-point
radiation. The calculation is termed semiquantitative because of the introduction of an unevaluated param-
eter to account for the failure (at low frequencies) of a familiar approximation. The calculation seems of in-
terest for three reasons: (i) It provides a rough classical understanding of qualitative behavior which is
usually attributed to quantum interactions. (ii) It again emphasizes that in statistical thermodynamics
a consistent classical theory including electromagnetism must include electromagnetic zero-point radiation.
(iii) It is another step in a general program attempting to use electromagnetic zero-point radiation as an
alternative hypothesis to quanta. From the calculation, the specific heat of the rotator is found to vanish
with vanishing slope as the temperature T ~ 0, and to go smoothly over to the traditional classical value ~k
at high temperatures. Moreover, the rotator probability distribution with frequency, which departs from
the traditional classical theory at absolute zero, becomes the usual Boltzmann distribution in the limits of
high temperature or large moment of inertia. These results are in contrast to the classical calculation of
Fokker in 1914 involving the Planck spectrum without zero-point radiation, which found behavior in com-
plete contradiction with experiment —including infinite slope for the specific heat at T =0 and a failure to
approach —,k at high temperatures. Despite some qualitative features in agreement with experiment, it is
suggested that the new results cannot be compared directly with quantum theory or with molecular speci6c
heats, because the calculation involving classical radiation damping does not assure a separation of variables
from the internal molecular variables, which would also be influenced by electromagnetic zero-point
radiation.

I. INTRODUCTION
' 'T is presently a familiar suggestion in physics that
~ - the earliest indications of quantum phenomena are
to be found in connection with thermal phenomena.
Maxwell was apparently worried as early as 1869 about
the decrease in molecular specific heats at low tempera-
tures, ' and, of course, Planck' introduced the idea of
quanta in order to explain the spectrum of thermal
blackbody radiation. However, the early quantum
calculations were mixtures of classical ideas with
quantum hypotheses superimposed. Thus Planck calcu-
lated the average energy of an oscillator in a radiation
field using classical electromagnetic theory, and then
he quantized the energy levels of the oscillator. Although
Kinsteina rushed on to assign quantum aspects to elec-
tromagnetic radiation, Planck held back hoping to
preserve classical wave properties for radiation. It was
a calculation of Fokker4 in 1914 which convinced
Plancl' that it was impossible to assume classical

* Center for Theoretical Physics Postdoctoral Fellow; supported
in part by the National Science Foundation, Center for Theoretical
Physics, under Grant No. NSF GU 2061.' See the historical description given in the introductory text
by R. P. Feynman, R. B. Leighton, and M. Sands, The J'"eynnzan
Lectlres on I'hysics (Addison-Wesley, Reading, Mass. , 1963),
Vol. I, pp. 40-g, 40-9.' M. Planck, Verhandl. Deut. Phys. Ges. 2, 237 (1900).' A. Einstein, Ann. Physik 17, 132 (1905); 20, 199 (1906).

4 A. D. Fokker, Ann. Physik 43, 810 (1914).
5 M. Planck. , Sitzber. Deutsch. Akad. Wiss. Berlin, Kl. Math.

Phys. Tech. 512 (1915).Fokker's calculation carried such convic-
tion for Planck precisely because it gave a connection between
oscillator and rotator specilc heats which involved only electro-
magnetic theory, and was independent of the dubious hypothesis
of statistical mechanics.

The work of Fokker and Planck in Refs. 4 and 5, respectively,

.1.

properties for the interaction of radiation and matter.
Fokker showed that the speci6c heat of a classical
plane, rigid, electric-dipole rotator in equilibrium with
the Planck spectrum of electromagnetic radiation was
in direct contradiction with experiment. In the present
paper, we are repeating the calculation of Fokker with
the additional assumption that the universe contains
fluctuating temperature-independent (zero-point) elec-
tromagnetic radiation with a Lorentz-invariant spec-
trum. We now And that the use of a classical interaction
between radiation and matter is after all in rough
qualitative agreement with experimental observations.

In a series of recent papers, ' ' it has been suggested
that the hypothesis of classical electromagnetic zero-
point radiation in the universe might provide a basis
for a classical explanation of many phenomena which
are presently accounted for in terms of quanta. Assum-

ing the Lorentz invariance of the radiation spectrum,
one may derive, ' up to a multiplicative constant, the
energy spectrum ~hen per normal mode. This radiation
has been used to give a derivation of the Planck black-
body spectrum, ' an explanation of photon statistics, ~

and an understanding of the third law of thermo-
dynamics' entirely within the realm of classical electro-
magnetic theory. Moreover, it has been suggested that
this Quctuating zero-point radiation might lead to a

came to the writer's attention from the historical account by E.T.
Wittaker, A History of the Theories of Aether and ZLectricity: The
Modern Theories, 1900 19Z6 (Philosophical Li—brary, Inc. , New
York, 1954).

6 T. H. Boyer, Phys. Rev. 182, 1374 (1969).
7 T. H. Boyer, Phys. Rev. 186, 1304 (1969).
8 T. H. Boyer, Phys. Rev. D 1, 1526 (1970).
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Brownian motion in accord with that used by Nelson'
to give a derivation of the time-dependent and -inde-
pendent Schrodinger equations from Newtonian me-
chanics. Within the context of the new hypothesis and
also in the light of the historical situation mentioned
in the first paragraph, a calculation of the specific
heat of'a classical, plane, rigid, dipole rotator represents
a natural further step.

To date, all of the calculations" using electromagnetic
zero-point radiation have given results in exact accord
with the results of quantum theory, though now the
results are obtained with a classical understanding.
There seem, however, to be qualitative differences in
the predictions of the two theories for systems of large
volume at low temperatures. However, systems of this
sort (such as liquid helium) are so complex as to be
momentarily insoluble in either a zero-point classical
or a quantum context. Coming to the present work,
there is rough qualitative agreement in the high- and
low-temperature limits between the present calculation
and quantum theory, but there is a discrepancy in the
intermediate-temperature range. We will explain later
that we do not believe this discrepancy represents a
true departure between the theories, but rather in-

volves a distinction as to what is a rigid rotator system.
In particular, we do not believe that the hydrogen
molecule for which rotational specific heats have been
measured at low temperature can be represented as
the rigid, electric-dipole rotator used in the zero-point
classical calculation here.

tion. The spectral distribution of energy is thus'

with the thermal energy density

=0
Pp ((a, T)—p (a),0))des = a.T'.

In equilibrium, the probability W(&o, T) that a rotator
has the frequency co satisfies the time-independent
equation

l9

W(a), T)f(a&)r —W(ce, T)(R)+——LW(a), T)(R')(=0. (2)
2 BM

', Ia&'W (cu, -T)dro, (3)

where l is its moment of inertia. The specific heat then
follows as

This equation is now known as the Fokker-Planck
equation. Here f(co) is the effective angular velocity
damping coefficient of the rotator due to emission of
radiation, (R) is the average (angular) impulse acquired
by the rotator in time r, and (R') is the mean-square
impulse. Once the probability distribution W(a, T) has
been. obtained from (2), the average energy E of a
rotator is

II. CALCULATION OF ROTATOR
AVERAGE ENERGY

1. Outline —Use of Fokker's Calculation

Our evaluation of the interaction of a classical, rigid,
electric-dipole rotator with electromagnetic radiation
follows the outline provided by Fokker4 more than half
a century ago. We will find, however, that the introduc-
tion of electromagnetic zero-point radiation not only
alters the results in Fokker's work, but also brings
some important changes in the allowed calculational
approximations.

We consider an ensemble of plane, rigid, electric-
dipole rotators in classical blackbody radiation at tem-
perature T including electromagnetic zero-point radia-

s E. Nelson, Phys. Rev. 150, 10'19 (1966)."See Refs. 6 and 7. There is also a series of calculations initiated
by H. B. G. Casimir which, although phrased in terms of quantum
electromagnetic zero-point energy, have an immediate reinterpre-
tation in terms of classical electromagnetic zero-point radiation
by use of the stress-energy tensor technique given by T. H. Boyer
LPhys. Rev. 1'74, 1631 (1968)j. See H. 3. G. Casimir, Proc.
Koninkl. Ned. Akad. Wetenschap. 51, 793 (1948);J. Chim. Phys.
46, 407 (1949); T. H. Boyer, Phys. Rev. 174, 1764 (1968); 180,
19 (1969); 185, 2039 (1969); Ann. Phys. (N. Y.) 56, 474 (1970).
See also T. W. Marshall, Nuovo Cimento 38, 206 (1965).

The entire problem devolves into the evaluation of
the quantities f(a), (R), and (Rs) by the use of the
classical electromagnetic interactions of a rigid, electric-
dipole rotator and electromagnetic radiation. The analo-
gous calculation for the case of a dipole oscillator is now
familiar from Planck's analysis. " Thus Planck found
that an oscillator of frequency co had an average energy

(5)

where p(&o, T) is the energy per normal mode in the elec-
tromagnetic field. Actually, Planck's fully classical
calculation does not take the route through Eq. (2).
Hence Fokker4 repeated the classical oscillator calcu-
lations using (2) with the instantaneous oscillator energy
as the parameter of interest; he found that the analysis
again led to Planck's result (5).

2. Angular-Velocity-Deyendent Damying

The evaluation of the parameter f(a&) is straightfor-
ward and will be obtained first. A classical rigid dipole
rotating in the xy plane with angular velocity co emits

~~ M. Planck, Theory of Heat Radiation (Dover, New York,
1959).
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radiation in the form"

u2 f1 p —pr2
F=

Cf

Go 1 )(,P8=—
C P'

(7)

The fluctuating radiation in which the rotator is im-
mersed can be written as a superposition of transverse
plane waves

E(x,t) = P d'k o(k, X)f)(Q)„T)

XcosLQ,t-k xyP(k, ~)], (11)
where

p =p(i sino)t+ j coso)t) . (&) B(x,t)=P d'k
kXo(k, X)

f) (Q)„T)

Computing the Poynting vector (c/4~)EXB and inte-
grating over all space, the energy radiated per unit
time is

@r ad —3p o) /c (9)

The energy radiated can be regarded as associated with
a retarding torque

f(o)) = h„o/o) =-,'p'o)'/c'. (10)

3. Fluctuating Impulse Due to Fluctuating Radiation

The evaluation of the mean impulse (R) and the
mean-square impulse (R') experienced by the oscillator
during a time interval w is considerably more compli-
cated. Indeed, our calculation is incomplete on one
fundamental point.

The impulse received can be separated into two basic
parts, one depending upon the average angular velocity
~ of the oscillator during the time interval, and a second
contribution independent of co which becomes im-
ports, nt at low angular velocity. The mean impulse (R)
will vanish as co ~ 0 since the fluctuating impulse which
is independent of co will be as often positive as negative.
However, the mean-square impulse (R') does not
vanish as co —+ 0. Thus at high frequency of rotation,
there are strong frequency-dependent impulses, whereas
at low frequencies of rotation, the frequency has little
inhuence on the random impulses.

In the calculation to follow, we are using the approxi-
mations of Fokker's work, and so are able to evaluate
only the high-frequency contribution to (R'). We will
show later that whereas the approximation does not
affect Fokker's conclusions, it omits an additional con-
tribution in the presence of electromagnetic zero-point
radiation which is crucial to understanding the rotator
speci6c heat at low temperatures.

Xcosl Q),t —k x+)p(k, lr)], (12)
where

c(k,l)) k=0, c(k,X) g(k, l)') =5)), , Q) ——clkl. (13)

The random phase )P(k, l).) is used" because of the fluc-
tuating character of the radiation. The energy per
normal mode is given by the Planck radiation spectrum
with zero-point radiation

Q2 02 AQ
ppor)= —))'(ar)= +-',pa). (14)

The rotator is assumed to be an electric dipole of
moment p and moment of inertia I, free to rotate about
the s axis in the xy plane. The equation of motion for
the dipole is

d {Io)) = (p XE).= pE, sinH+pE„—cosH, (15)

where

p =p(i cosH+ j sinH)

(17)

At large angular velocities of the rotator, it is useful

to separate out the average angular velocity co during a
short time interval v and write

8=8o+o)t+rJ, 0(t(r.
The equation of motion (15) can then be rewritten as

Id 0 2
= —p p d'k fj(Q, T) cos(Qt+1t)Le, sin(8, +~t+o) e„cos(Ho+~t+—o)] (19)

or

Id 0 2——=+P P d'k fj(Q, T)[((cosa)~e {sinL(Q—o))t+)P —Hp) —sin/(Q+o))t+)P+Ho]}
dt2

—(sino)~ e,{cosr (Q —o))t+)P —Ho]+cosL(Q+o))t+)P+Ho]))+(o, ~ c„, Ho
—& Ho —~sr) j. (20)

12 Unrationalized cgs units are used. Our results di8er from those of Fokker by factors of 4~.
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In the approximation, valid for large co, that we wish to obtain only the part of the ixnpulse dependent upon co,

we may ignore the nonlinear character of the differential equation (20). We may approximate cosa.—1 and sino.—0
during the time interval r. Integrating (20) twice with respect to time, keeping terms only to first order in t, and
recalling from (18) that 0 =0 at t =0, we have

P & p sin[(Q —p))t+}P—gp] —sin(}P—
Hp)

o=——p d'k 'fj(Q, T)—
I )}.=1 (Q —(p)'

sin[(Q+(p) t+}p+gp]—sin (}p+gp)
+(p, ~ p„, 8() ~ 8()—-', ir) . (21)

(Q+(p)'

In this same approximation, it is appropriate to compute the angular impulse R during the time interval r
by inserting this value of 0 into the right-hand side of (20) with the approximations coso~1, sin(r~(r. Thus,

2 fg
dip x d'i }j(BT) —(sin((p —)1+ii—iii —( —,8, —e)}+(. „,9, ti,—,'))

) =1 2

+ [2 p&f cos[(Q &d)t+}P gp]+ (co ~ (p& gp + gp))+(p& & p})& gp + gp p7I) ]X d'}p' f) (O', T)

e, sin[(Q' —&P)t+}P'—8p]—sin(}P' —gp)X— —( —,iio —iio))+(. .. e &o—', ) i»)
2 (Q (p)

In evaluating (R), we must average over the random phases }P(k,X) and }P(k',l).'), over all directions k, k', and
over the random starting angle 80. With these considerations in mind, we have

p'2 2

dt —p p d'tp d'k' f) (Q, T)f) (O', T) cos[(Q—(p) t+}p—8,7
X=1 ) '=1

sin[(Q' —PP) t+}P'—8p] —sin (}P'—gp) —((p~ —(p, gp~ —gp) +(p. —+ p„, gp —+gp ——',ir) . (23)
(Q' —p))'

The time integral involves

t=r

dt {—cos[(Q—p)) t+}p—gp] sin(}p' —gp)+ —,
' sin[(Q —(d) t+}p—8,+ (Q' (p) t+}p' g,]- —

1=0
+-', sin[(Q —(P) t+}P—

gp —(Q' —(P) t —}P'+gp]) (24)

sill [p (Q (p) r] siii [2 (Q+(p) T]X— (26)
(Q —(p)' (Q+(d)'

Now integrating over all direction k, and substituting
for I)'(Q, T) from (14), we have

dQ —p (Q, T)(R) =47r—

X—
sin'[-', {Q—) ] sin'[p (Q+&p) r]

(27)
(Q—(d)' (Q+p))'

After integrating, and expanding the arguments of the
sine and cosine functions, we average specifically in }p as

(sin}P(k, l}.) sin}P(k', li') ) = (cos}P(k,li) cos}P(k',X'))
= -,'5P (k —k') 8),i, (25)

(sin}P(k, l).) cos}P(k',X) ) =0.
The expression then collapses to

2 2

(g) = Q dPP l)2(Q T) (p 2+ p 2)

The evaluation of the frequency-dependent contribu-
tion to (R') up to terms first order in r involves the
approximation (r =0 on the right-hand side of Eqs. (19)
and (20). Thus, ta,king the terms in the first large
bracket in (22),

R Qd'k 1)(Q,T—)

px cos Q' gp) cos[(Q (p) r+t/i 8()]—
X

2 0

(28)
Accordingly forming R' and then averaging over }p, }p',
and t30,

pp
CO

(E')—4m— dQ -', p(Q, T)
n=o

sin'Pp (Q—(p) i 7 sin'[ —', (Q+(p) r]
X + . (29)

(Q —&p)' (Q+(p)'
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are sharply peaked at Q=co. Thus the integral in (29)
picks out values of p(Q, T) near Q=~. Correspondingly,
the integral in (27) picks out Bp(Q, T)/BQ near Q=co,
since (sin'xr)/x' is an odd function of x. It is convenient
for this latter consideration to expand p(Q, T) near Q =co,

(30)

The basic integral needed is

(31)

The resulting values for (R) and (R') a,re thus

7r2p' 8p (co,T)
(R)— r, (32)

(R')=( ~2'p'/ I3)p(~, T)r. (33)

These are the results" obtained by Fokker in 1914.
Although the integrals (27) and (29) indeed have the
contributions in (32) and (33), the evaluations become
inaccurate as ~ —+ 0 when v is held fixed. Also the high-
frequency convergence must be considered. These con-
siderations become particularly important for the elec-
tromagnetic spectrum of (1) in which electromagnetic
zero-point radiation has been included.

4. Discussion of Ayyroximations in
Fokker's Calculations

It is crucial for the low-temperature behavior of the
rotator that we consider the results obtained by Fokker
in the light of the approximation employed. At the
very outset it was assumed that the rotator Brownian
motion could be treated in a "linearized" approximation
in which the change in the rotator position during the
time interval r was computed by integrating an ex-
pression for the torque which was valid only when the
rotator experienced a vanishingly small torque. That
more complicated nonlinear behavior may become irn-
portant is evident when we substitute the radiation
spectrum (1) into the integrals (27) or (29), and notice
that the integrals are divergent for large frequency.
Of course, for any physical rotator, the finite size will
provide a high-frequency cutoff. However, it is never-
theless apparent that the frequency-dependent results
(32) and (33) do not represent the entire contribution
to the Brownian motion. The region in which the

At this point, we must evaluate the integrals in Eqs.
(27) and (29). Only terms first order in r are of interest
for use in Eq. (2). For ~)0 and co7.))2~, the functions

sin'L:', (Q —a&) rj sin'L.", (Q —a)) 7 $
and

(Q —co)'

results (32) and (33) are most susceptible to error is in
the limit of low frequencies, m —+ 0. We notice that in
this limit, (R)—+0 independent of p(co, T), corresponding
to the subtraction in the integrand of (27). This is
indeed appropriate since at co=0 there is no preferred
direction of rotation. On the other hand, (R') does not
vanish at co ~ 0, but rather still includes the divergence
provided by the electromagnetic zero-point energy. At
low frequency, we expect that nonlinear behavior of the
Brownian motion becomes crucial.

In the case of Fokker's work involving the Planck
radiation spectrum without zero-point energy, the
failure of the approximations at low frequencies is
immaterial. In the first place, we notice that the in-
tegrals in (27) and (29) are absolutely convergent. It
is true that for any temperature T, the probability
density W(&u) at low frequencies is in error owing to the
failure of the approximations to (R) and (R'). How-
ever, what causes the failure of the approximations is
the further fluctuation effects of higher-frequency elec-
tromagnetic waves which, in the absence of zero-point
energy, involve only a finite density of electromagnetic
energy. However, the energy of the oscillator goes as
-,'Ice', and hence the low frequencies do not contribute
significantly to the average energy. When the tempera-
ture T is decreased so that frequencies co' which were
formerly unimportant now are contributing the major
portion of the energy, the accuracy of the values for (R)
and (R') at cv' in (32) and (33) has also improved
because the general level of radiation has been reduced
and the corrections at these frequencies became propor-
tionately smaller. At no point do we find a temperature
for which the average rotator energy calculated using
(32) and (33) is entirely erroneous.

The presence of fluctuating radiation at zero tempera-
ture entirely alters our understanding of the Brownian
motion of the rotator at low frequencies of rotation.
The level of zero-point radiation is fixed independent of
T, and hence the approximations in (32) and (33) fail
at a fixed value of frequency which is independent of
the temperature. Now when the temperature T de-
creases so that the thermal energy in the spectrum
falls at frequencies below this cutoff frequency, the
value using (32) and (33) for the thermal contribution
to the rotator energy is entirely erroneous. If we are to
be able to calculate the average rotator energy and
specific heat at low temperatures, then we must intro-
duce corrections into the calculations for (R) and (R').

The calculation of the corrections seems to represent
the major failure of this work. We have not yet been
able to handle the nonlinear aspects of the Brownian
motion equation (19).At the moment, we will provide
only a heuristic argument. In agreement with the
vanishing of the integral (27) at co=0, we expect that
there is no frequency-independent contribution to (R);
any random force which is independent of co will not
show any preference in direction. On the other hand,
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cog~A/I. (35)

A cutoff frequency of this magnitude is precisely what
we would speak of in the qumtisatioe of the angular
momentum of the rotator. Also in line with the heuristic
connections to quantum theory, the divergence in the
value for (R') in the linear approximation corresponds
to A~ —+ oo for 60=0, in agreement with the Heisenberg
uncertainty relation 68A~I A. Thus we believe that
the determination of the Brownian motion corrections
to (R') in (33) brings us up against the fundamental

we interpret the divergence of (R') in (29) as sympto-
matic of a need to handle the nonlinear aspects of the
mean-square impulse. At low frequencies, we expect a
contribution to (R') which is independent of frequency.
If we assume that (R') is proportional to the dipole
moment p squared, then the available constants re-
quire that

(R2)
~ „0——X (2p b4/3 I c ) (34)

with X an unknown numerical constant. This corre-
sponds to a cutoff frequency in the inhuence of the
zero-point spectrum in (33) at

2~'p' 2p'Pi4
(R') = p(co, T)r+h

3I 3I4c'
(36)

with X an unknown parameter.

III. ROTATOR ENERGY AS FUNCTIONAL OF
CLASSICAL RADIATION SPECTRUM

1. Stationary Probability Distribution in Frequency

The Fokker equation (2) provides the differential

equation for the stationary distribution of the rotation
frequencies. Thus substituting (10), (32), and (36), the

understanding of quantum particIe motion as due to
electromagnetic zero-point radiation.

In any event, we believe that it is not unreasonable
to expect that (R') ~ const as co-+ 0. This is the only
requirement in order to understand the qualitative
behavior of the specific heat of a classical rigid rotator
as T —& 0. Thus we will return to Fokker's equation (2)
with the radiation spectrum (1), the value for f(a&) in

(10), that for (R) in (32), and that for (R2) given by

42b

l.5—
CURVES I. 7=0

2. T=0.3 '&~

2Ik
a. RAYLEIGH - JEANS SPECTRUM

( BOLTZMANN OISTRIBUTION)

b. PLANCK SPECTRUM WITHOUT

ZERO - POINT RAD IAT I ON

FIG. 1. Frequency distribution
of a plane, rigid, electric-dipole
rotator in equilibrium via classical
electromagnetic interactions with
classical radiation for various spec-
tra of electromagnetic radiation.

0.5

0

~ ~

~ ~ ~~ ~ g ~~ ~
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0.5
b

0.4

FIG. 2. Frequency distribution of the ro-
tator is found to approach the Boltzmann dis-
tribution at high temperature provided
electromagnetic zero-point radiation is pres-
ent. In the absence of zero-point radiation,
the discrepancy in the distribution remains
proportionately large.

W(cu, T)

O. l

0.0
0.0 I.O 2.0 3.0 4.0 5.0 6.0

4~-
7.0 8.0

a. Rayleigk Jeans Radiatioe Sp-ectrum

As a point of comparison, it is of interest to intro-
duce the Rayleigh-Jeans spectrum pas into Eq. (38).
This corresponds to P =0 and

pas(~, T) = ((o' n'/)ck ,T (39)

equation is

2p & 2x p Bp 1 4n p Bp
W r W —r+ —W-

3C 3I 807 2I — 3 BM

4m'p' 4p'fi' BW-
+ p+ X r =0. (37)

3 3I C BM

Solving the first-order differential equation for W(or, T),
we find

(0 =Co —Ico dc' l
W(co, T) =const exp

0 7r2c'P
p (~',T)+XA'/x'13c' ji

(38)

At this point, we see that the choice of the thermal
radiation spectrum p(&u, T) determines the probability
distribution W (&o,T).

giving the Boltzmann distribution 8'g ..

Wn(&o, T) =const exp( —-,'I&a'/kT) . (40)

(See I'ig. 1, curve 2a.) This is precisely the traditional
classical energy distribution falling off with the Boltz-
mann factor exp( —energy/kT).

Indeed, Fokker's calculation might also be reversed.
Starting at the traditional classical rotator energy dis-
tribution (40), we arrive via use of (37) at the Rayleigh-
Jeans radiation law (39). Thus the Rayleigh-Jeans law
can be derived using classical theory from the Boltz-
mann distribution function for a rotator. In 1914,
this was interpreted as another blow against classical
theory. However, recently it has been pointed out the
ideas of energy equipartition fail for any particles having
electromagnetic interactions. Thus the traditional argu-
ments which lead to the Boltzmann distribution involve
the assumption that the rotator does not radiate as it
rotates. A careful classical treatment~ of statistical
equilibrium including radiation actually leads to the
Planck blackbody spectrum including electromagnetic
zero-point radiation.
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b P. lanck Spectrum wi thout Zero Po-i nt
Radhati orI,—I"okker's Result

The early quantum derivations of the Planck radia-
tion spectrum pp did not include zero-point energy, but
rather were of the form

2.0

I.5—

2I E

I I

o. RAYLEIGH - JEANS

b. PLANCK WITHOUT ZERO- POINT

c. PLANCK WITH ZERO-POINT
i. X=o ii. X =O.ol
iii. ) =0.25 iv. LIm T —. ~

e ~ ~
0 ~

4 ~
~e ~

~2~3 eked/kT
(41) I.O

Assuming that the radiation is classical, this spectrum
can be inserted in Eq. (39) to obtain Fokker's result 0.5

( IkT
Wp(co, T) =const exp~—

h'

I
~erl(atkT+

~

(42)
h)

(See Fig. 1, curve 2b.) At high frequencies, the distribu-
tion falls to zero very rapidly, falling as the exponential
of an exponential.

c. Planck Spectrum with Zero Point acadia&-'on

In earlier work, ' it has been pointed out that classical
electromagnetic theory leads naturally to the Planck
radiation spectrum including electromagnetic zero-
point radiation. Thus this is the radiation spectrum
with which we hope to obtain agreement with experi-
ment. Inserting the spectrum (1) into Eq. (38), we
obtain

(See Fig. 1, curves 1ci, 2ci, and 2cii.) Only in the limit
A. —+0 have we obtained an analytic expression for
Pj'pz (~)

Wpz~ &(co, T) =const(cosh(A~/2kT) j 4 ~ '"'. (44)

(See Fig. 1, curves 1ci and 2ci.) In the limit T~O,
this is

Wpz ~ & (cu,0) =const exp( —2Icu/h) .

(See Fig. 1, curve 1ci.)

(43)

2. Behavior of Probability Distributions W(~, T)

The probability distributions W(a&, T) for the various
assumed electromagnetic radiation spectra are pre-
sented in Figs. 1 and 2. At the absolute zero of tempera-
ture, the probability distributions for thermal radiation
without zero-point radiation are 8-function distributions
at co =0. Thus the Boltzmann and Fokker distributions
should be imagined as along the 8" axis in Fig. 1. How-
ever, in the presence of zero-point radiation, the rotator
is subject to fluctuations even at the absolute zero.
Thus for the Lorentz-invariant zero-point spectrum
of (1), the rotator probability distribution is as curve

Wpz &~~ (~,T) =const

co'=a)

&& exp . (43)
„. o —,'her" coth(ha)'/2kT)+-, 'Xh'/I'

0.0 0.5 I.O I.5
2Ik T2

2.0 2.5

FIG. 3. Average energy of the dipole rotator as a function of
temperature for various electromagnetic radiation spectra.

1ci provided we neglect the correction at small fre-
quencies by taking X=0.

The presence of thermal radiation displaces the prob-
ability distributions from their T=O values. Thus the
Boltzrnann curve u and Fokker curve b spread out from
the 8"axis. The Fokker curve drops much more sharply
than the Boltzmann curve because of the exponential
of an exponential falloff. In the presence of zero-point
radiation, the increased temperature modifies only the
low-frequency shape of the distribution. Curves 1ci and
2ci indicate the change in shape when no correction is
made for the failure of our approximations at low fre-
quencies, X=O. The effect of making the correction at
low frequencies is indicated by curve 2cii. Here we have
used a large value of X (=0.25) to show clearly that
the probability distribution will be flattened at low
frequencies and that low temperatures affecting only
the low-frequency portion of the curve will not bring
any significant alteration in the shape of the probability
distribution from that actually holding at T=O. It is
this suppression of the inhuence of thermal radiation
at low temperatures which we find accounts for the
vanishing derivative of the rotator specific heat at low
temperatures.

The arguments of traditional classical theory are
expected to be valid at high temperatures and at large
moments of inertia. Thus it is of considerable interest
to follow the distribution curves to higher temperatures
as in Fig. 2. Since the importance of low frequencies
becomes negligible for high temperatures, it is possible
to ignore the low-frequency correction given by the
parameter X and to consider the curves for X=O. Corn. -

paring curve 2ci of Fig. 1 and curves 1c and 2c of
Fig. 2, we find that the rotator probability distribution
in the presence of thermal radiation including zero-point
radiation goes over very rapidly to a Boltzmann dis-
tribution with increasing temperature or increasing
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rotator moment of inertia. This is just as it should be
to give contact with traditional classical theory. The
need for electromagnetic zero-point radiation with the
assumed spectrum (41) is demonstrated by following
the curves labeled b which give Fokker's results. The
Fokker curve does come nearer to the Boltzmann curve,
but the proportional discrepancy in the abscissa remains

large. Indeed, in Fig. 3 we find that the average energy
given by the b curve does not approach the traditional
classical ~kT. If the traditional classical arguments are
to hold at high temperatures, then a consistent classical
theory requires the presence of electromagnetic zero-

point radiation.

3. Rotator Average Energy and Specific Heat

Once having obtained the frequency spectrum
W(&o, T), it is an easy matter to obtain the rotator

average energy as

(~(T)&=
-p

,'Ice'-W ((v, T)Av

=0
W(o), T)d&u. (46)

We have evaluated the necessary integrals analytically
only in the case Wpz "&(~,0), finding

(E„«&{0))=~'/4I. (47)

However, the average energy (E(T)) was obtained for
other values of T and other electromagnetic spectra by
numerical integrations. The results are plotted in Fig. 3.
The rotator specific heat is obtained as the slope of the
specific-heat curve and is plotted in Fig. 4.

In Fig. 3, the straight line a shows the traditional

classical average energy -', kT. The result b obtained by
Fokker using the Planck spectrum without zero-point

radiation falls increasingly far below this line as the
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FIG. 4. Specilc heat of the dipole rotator as a function of temperature. These curves are the derivatives of the curves in Fig. 3.
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temperature T increases. On the other hand, in the
presence of zero-point radiation, the rotator has a
zero-point energy at T=0, and then increases to
eventually meet the asymptote s'kT+A'/4I shown as
curve civ,

(Eps&"& (T) ) -', k T+5'/4I as T +ao . — (48)

The approximation parameter X changes the zero-point
energy but does not affect the asymptotic limit as
shown in the curves ci, cii, and ciii.

The behavior of the specific heat is given in Fig. 4.
The line a corresponds to the traditional classical value
—', k. Again we find that the Planck spectrum without
zero-point radiation cannot give behavior in accord
with experiment. The specific-heat curve b has an
infinite slope at temperature T=0, and falls far below
the value —,'k at high temperatures. In the presence of
electromagnetic zero-point radiation, the specific heat
of the rotator is given as in curves ci, cii, and ciii. The
curve ci makes no correction for the erroneous approxi-
mation at low frequencies and shows an infinite slope
at 7=0.The presence of the zero slope at T=0 depends
specifically on a nonzero value for the parameter A,

corresponding to our qualitative arguments in Sec. II 4.
At high temperatures, all of these c curves goes over to
the traditional classical —,'k.

It seems relevant to comment further upon the
infinite slopes at T=O for the specific-heat curves b

and ci. In the case of Fokker's calculation using the
Planck spectrum without zero-point radiation, this
infinity corresponds to the 8-function singularity of the
probability distribution Wp(&v, T) as T-+0. In the
presence of zero-point radiation, the infinite slope arises
from an erroneous approximation at low frequencies.
The singular behavior corresponds to a discontinuous
change in the form of the probability distribution at
T=O for A. =O. Thus, as seen in curves 1ci and 2ci of
Fig. 1, the probability distribution at co=0 has slope
—1 for T=O but slope 0 for any T)0. The correction
of the approximation (X)0) gives the probability dis-
tribution slope 0 even at T=0.Unfortunately, however,
we have not yet been able to evaluate the parameter X.

The behavior of the average energy or specific-heat
curves at high temperatures is also of considerable
interest. It is seen that the use of the Planck spectrum
without zero-point radiation does not give the average
energy —,'kT or specific heat 2k at high temperatures
where we expect the traditional classical values to be
appropriate. Thus the presence of the zero-point energy
is crucially important in bringing the high-temperature
region into agreement with experiment. This situation
is in contrast to that for a harmonic oscillator. In this
latter case, the absence of the zero-point radiation made
no difference in the specific heat or, except for an
additive constant, in the oscillator average energy.
In part this difference is characteristic of the fact that
a rotator is a more delicate system than an oscillator.

Thus, an oscillator responds at its own natural fre-
quency and samples the radiation field only at this
frequency, whereas the rotator has no natural frequency
and hence responds to the radiation at all frequencies.
In the case of an oscillator, zero-point radiation repre-
sents a single additive energy underneath the thermal
energy at the fixed oscillator frequency. For a rotator,
zero-point radiation provides a varying amount of
energy at various frequencies underneath the thermal
radiation at these frequencies. The agreement at high
temperatures of the rotator specific heat with the
traditional classical —,kT is a further confirmation of the
appropriateness of the hypothesis of electromagnetic
zero-point radiation corresponding to a Lorentz-in-
variant spectrum, —,'A~ per normal mode.

IV. RELATIONSHIP OF CALCULATION TO
QUANTUM THEORY AND TO

EXPERIMENT

The foregoing calculation seems of interest even in
the approximate form presented because it suggests
that classical electromagnetic interactions will give a
qualitative picture of an electric-dipole rotator specific
heat which gives the traditional 2k at high temperatures
and falls to zero at low temperatures. However, we
would like to do far more than this. Ideally, we would
like to obtain the specific heat of an arbitrary plane,
rigid rotator and then compare the calculation with the
quantum-mechanical treatment of a plane, rigid rotator,
and also with relevant experimental data. Indeed,
Fokker argued that at equilibrium the specific heat of a
plane, rigid rotator was exactly the same whether or
not it was also a rigid electric dipole. We should notice
in particular that nowhere in our results for the dipole
rotator probability distributions or energies do we
find the electric-dipole moment p. In equilibrium, the
dipole moment disappears from the equations because
there is a balance between the absorption and emission
of energy, both of which processes depend upon p. How-

ever, the fact that the system in the calculation was
an electric dipole was crucial in determining the radia-
tion damping behavior of the system, and it is by no
means clear that this damping behavior is not crucially
different at low temperatures from that holding for
some other electromagnetic system. We will find that
a naive comparison of our calculation with quantum
theory and with experiment is unsatisfactory on
several levels.

In quantum theory, "a plane, rigid rotator satisfies
the time-independent Schrodinger equation

(49}

"P. l"'ong, Elementary QnanAnn Mechanics (Addison Wesley, -
Reading, Mass. , 1962), pp. 339-341.
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g(T) p ~ e E /s—T/p e z ls—r (51)

and the speci6c heat follows from differentiation with
respect to T. Figures 3 and 4 include curves giving the
quantum average energy and specific heat. The curves
are qualitatively different from the results of the zero-
point classical calculations reported in the previous
sections of this paper. In particular, the specific-heat
curve d of Fig. 4 shows a very high maximum which is
totally absent (within the approximations used) from
the zero-point classical curves ci, cii, and ciii.

The discrepancy becomes all the more disturbing
from the point of view of using zero-point energy as an
alternative hypothesis to quanta when we consult the
experimental data. Hydrogen in three forms H2, D2,
and HD remains gaseous down to sufFiciently low tem-
peratures to show the eRects of the rotational specific
heat. ' In the case of HD, the quantum maximum in the
specific heat (which persists in a more subdued form
in a three-dimensional rigid rotator) seems to be found
experimentally. "

However, the experimental work on H~ and D2
provides us with a crucial reminder. The specific-heat
data on H2 and D2 cannot be made to fit the quantum
curve d.' Rather, it is found that there are ortho and
para forms of hydrogen neither of which satisfies the
rigid rotator spectrum (50). The internal structure of
the molecule must be accounted for before separating
out the rotator motion. Thus we are reminded that there
is no such thing in nature as a rigid rotator. Atomic
systems are made up of electrons and nuclei, and it is to
these particles that the Schrodinger equation applies.
In the separation of variables in the equation it may be
found that the system behaves to some approximation
as if it were a rigid rotator.

It has been pointed out by an increasingly large
number of writers" that quantum mechanics bears
a strong affinity to a theory of Markov processes. In
particular, the time-dependent and time-independent
SchrOdinger equations have been derived from classical
Newtonian mechanics on which there has been super-
imposed a random walk. It is our heuristic idea that

"R.H. I"owler, Statistical Mechanics, 2nd ed. (Cambridge U. P.,
Cambridge, England, 1966), pp. 82—89."K. Clusius and E. Bartholome, Z. Elektrochem. 40, 524
(1934); Z. Physik. Chem. (Leipzig) B29, 162 (1935)."E. Nelson, Phys. Rev. 150, 1079 (1966).This article contains
a list of references. There is more recent work by, among others,
T. Dankel Lthesis, Princeton University, 1969 (unpublishedl],
and E. Santos LNuovo Cimento B59, 65 (1969l]. See also T. W.
Marshall, Proc. Roy. Soc. (London) A2'76, 475 (1963); Proc.
Cambridge Phil. Soc. 61, 537 (1965).

and accordingly has the energy eigenvalues

E~=(A'/2I)m', m=0& +1, &2, . . . . (50)

The average energy for a rotator at temperature T is
then given by quantum statistical mechanics as

perhaps the origin of the random motion should be
assigned to Auctuating electromagnetic zero-point
radiation. At the moment, there seem to be formidable
obstacles to carrying through this proposal as a mathe-
matical proof. However, it is relevant to interpret our
calculation for a rigid rotator in the light of these
heuristic ideas. Just as quantum theory is required to
account for the internal structure of the rotator mole-
cule while allowing separation oR of the rotator vari-
ables, so too electromagnetic zero-point radiation is
expected to provide the Ructuations giving the mole-
cular structure as well as affecting the rotator behavior.
However, the analysis through zero-point radiation
specifically involves the absorption and then the emis-
sion of radiation. In the previous classical calculation,
we have assumed that all emission of radiation arose
from the rotation of the dipole and that there was no
emission connected with the charged-particle structure.
It is not at all clear that a detailed analysis of atomic
particles subject to zero-point radiation would have a
separation of the internal and rotational motions which
took the permanent dipole form assumed here. For this
reason, we believe that the classical calculation does
not represent the same situation as a quantum rigid
rotator in its application to explaining molecular
specific heats. "

V. CLOSING SUMMARY

Although elementary quantum-mechanics textbooks
cite the experimental behavior of blackbody radiation
and of specific heats of material particles at low tem-
peratures as evidence for quantum theory, it is now
not clear that this evidence is conclusive. Although
quantum theory seems to provide a satisfactory theory
of these phenomena, it is also true that classical theory
including electromagnetic zero-point radiation allows
an equally good explanation of blackbody radiation
and of oscillator specific heats. In the present paper,
we have pointed out that this same classical theory
may go far to explain rotational specific heats. Within
the approximations applied, the results of the calcula-
tion for an electric-dipole rotator are qualitatively
diRerent from those of the quantum theory of a plane,
rigid rotator. However, it is proposed that actually the
zero-point classical and the quantum notions of a plane,
rigid rotator are distinct. Comparison with experimental
molecular specific heats does not yet seem possible for
the zero-point classical calculation performed here.

Aside from the crucial question of describing physical
phenomena, it is also of interest to see the development
of a classical theory encompassing electromagnetism
and statistical thermodynamics. It is found here just
as in the earlier thermodynamic analysis of an ideal

7 After enquiring further into the relationship of electromag-
netic zero-point radiation and charged-particle Brownian motion,
the author hopes to return to reconsider the question of molecular
rotational specific heats.
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gas that a consistent classical theory which accepts the
equipartition theorem for high temperatures or massive
particles seems to require the idea that the universe
contains electromagnetic zero-point radiation with a
Lorentz-invariant spectrum.

)Vote added im mam@seri pt: Macroscopic Obsertiatiots of
Zero-I'oi et RaChoti on. The question has been raised as to
whether the hypothesis of classical electromagnetic zero-
point radiation used here may not lead to contradictions
with familiar experimental observations. The observa-
tions which might be affected by zero-point radiation
can be separated generally into two classes —those in-
volving electromagnetic interactions and those involv-
ing the gravitational effects of energy concentrations.

In dealing with electromagnetic effects, there are two
characteristics of zero-point radiation to keep in mind.
Firstly, the radiation is completely incoherent. This
means that the rapid Quctuations tend to cancel each
other out and no instrument involving many electrons
will measure a current due to zero-point radiation. The
contrast in behavior between the coherent radiation
(often in the back of one's mind in classicaI theory)
and the incoherent zero-point radiation is analogous
to the effects on a bridge of a band of men walking in
step or walking out of step. Coherent radiation will
give rise to net currents in a conductor just the way
the band of men marching in step will bring the bridge
into an over-all vibration pattern. The incoherent radia-
tion gives rise only to Quctuations of individual particles
just as the men marching out of step will give rise to
local vibrations of small parts of the bridge but not to
a net vibration of the entire bridge. Thus a small
amount of coherent radiation will be observable in elec-
tromagnetic detectors, whereas the large energy of
zero-point radiation will not be. The zero-point radia-
tion will merely give rise to local Quctuations super-
imposed upon any coherent radiation.

Thermal radiation is incoherent radiation, and hence
one may consider the effects of zero-point radiation
upon detectors of thermal radiation. Here we must
mention the second aspect of zero-point radiation which
affects its electromagnetic detection. This is the assump-
tion that zero-point radiation is homogeneous and iso-
tropic in the universe. Therefore, one cannot create a
net transfer of zero-paint energy from one region of
space to another. Since the spectrum of zero-point
radiation is Lorentz invariant, one cannot observe the
radiation by changing to a relatively moving inertial
frame. The delicate balance in the average energy in
various regions of space and in various coordinate
frames may be compared to the great uniformity of the
average pressure on all of the walls of a box containing
Avogadro's number of gas molecules; this uniformity
exists despite the fact that large gas-particle velocities
are involved. It is noteworthy in the zero-point radia-
tion spectrum that the energy density per unit frequency

interval increases with the increase in frequency of the
electromagnetic waves. This is analogous to an increase
in the energy of particles in an ideal gas coupled with
an increase in the number of particles, so that the
energy Quctuations per unit volume do not increase in
proportion to the energy.

From these considerations it appears that zero-
point radiation will not affect the ordinary detectors
of classical electromagnetic radiation. Rather, the
Quctuations in radiation will lead to Quctuations of the
granular structure of matter which are averaged out in
macroscopic observations. In the future, we hope within
appropriate approximations to show quantitatively
that the Quctuations of electromagnetic zero-point
radiation may be regarded as the source of the Quctua-
tions used by Nelson" and others to derive from
Newtonian mechanics the Schrodinger equation appli-
cable to atomic physics.

The gravitational effects of the energy in electro-
magnetic zero-point radiation remain obscure. However,
it does not seem reasonable at this time to reject the
idea of zero-point radiation on this basis. After all, the
electromagnetic energy singularities of point charges
should also give rise to gravitational singularities, and
we excuse these singularities by remarking that the
gravitational aspects of elementary particles are not
yet fully understood. It is noteworthy that Casimir"
has speculated on the possibility of compensating
Coulomb energy divergences in quantum field theory
with the zero-point energy divergence of the electro-
magnetic field. Also, Wheeler" has noted that electro-
magnetic zero-point fluctuations (whether regarded as
classical or quantum) will lead to negative energies of
gravitational attraction. He suggests: "Individually the
components of the vacuum energy are enormous and
collectively they compensate. "
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of frequency co, use classical electromagnetic interactions, and find
that the analysis of A. Einstein and L. Hopf [Ann. Physik 33,
1105 (1910)] is modified so as to give the Planck spectrum without
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