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Hartle and Taylor have shown that the cluster law imposes certain restrictions on the allowed sym-
metries of erst-quantized systems of identical particles. We extend their results to show that all particles
which are neither bosons nor fermions and which obey the cluster law can be divided into two classes, those
of 6nite order, and those of in6nite order. For every positive integer p there are two types of 6nite-order par-
ticle, which we call parabosons and parafermions of order p. Ordinary bosons and fermions can be Gtted
into this scheme as particles of order 1. We conjecture that the Gnite-order particles can be identified with
the parafermions and parabosons of the second-quantized, para6eld theory. Infinite-order particles would
seem to have no analog in the second-quantized theory, as presently formulated.

I. INTRODUCTION

'N this paper we establish a simple classification of
& ~ the possible types of paraparticle (that is, particles
which are neither bosons nor fermions). Our results,
which extend the recent work of Hartle and Taylor, '
are based on a quantum-mechanical (that is, first-
quantized) point of view. '

IL CLUSTER LAW AND CONSEQUENT
RESTRICTIONS ON ALLOWED

SYMMETRY TYPES

The cluster law requires that two isolated experi-
ments which are suKciently well separated must not
interfere. For example, an experiment involving e
particles localized in London should be completely
unaffected by the presence or absence of m more par-
ticles localized on the moon, and vice versa.

Hartle and Taylor apply the cluster law to a system
of st+1 particles, one of which is far removed and iso-
lated from the rest. By requiring that any observation

*Supported in part by the U. S. Air Force Once of Scienti6c
Research, AFOSR Grant No. AFOSR-30-67.' J. B. Hartle and J. R. Taylor, Phys. Rev. IV8, 2043 (1969).

'By this we mean that we describe a system of I identical
particles with certain of the wave functions f(xi, . . . ,x„) of the
Hilbert space I.'(R'"). The alternative is the second-quantized
approach, in which one uses the vectors generated by the action
of Geld operators on a vacuum state. We emphasize this distinc-
tion because, even though the two points of view are known to be
equivalent for ordinary bosons and fermions, their relationship
is not well understood for the general paraparticle. See, for example,
Ref. 9 of A. M. L. Messiah and O. W. Greenberg, Phys. Rev.
138, B1155 (1965), and also the concluding remarks of this paper.

localized near the n particles should see some allowed
e-particle state, they establish the following result.

(a) If a particle has (I+1)-particle states correspond-
ing to the irreducible representation (IR) D(st+1,) ) of
the permutation group' S„+~, then it must have e-par-
ticle states corresponding to all IR D(n, v) of S„whose
Young diagrams can be obtained from that of D(I+1,X)

by removing one square.
We first generalize the result (a) so as to apply to

systems of tt+m particles divided into two isolated
groups of e and m particles. To this end we note that
(a) can be rephrased to say that there must be n-particle
states for all D(rt, v) of S„which are obtained when

D(rt+1,X) is restricted to S„by holding one variable
fixed. s Applied to (tt+m)-particle systems, the gen-
eralization of this result can be shown to be the
following.

(b) If a particle has (n+m)-particle states with
IR D(0+m, X), then it must have n-particle states
corresponding to al/ those D(rt, v) and m-particle states
corresponding to all those D(m, ts) such that the outer
Kronecker product D(n, v) &&D(m, ts) is contained in the
restriction of D(rt+m, X) to S XS .

In both of the results (a) and (b) one starts from the
assumed existence of some (n+m)-particle symmetry
and deduces the existence of certain symmetries for

'As is well known —see Ref. 1 or A. M. L. Messiah and O. W.
Greenberg, Phys. Rev. 130, 8248 (1964)—every pure state of a
system of rs identical particles is associated with some IR of the
permutation group S .

4 Indeed, this is the form in which the result is first proved in
Ref. 1.
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e- and m-particle systems. This reasoning can be
inverted. If we suppose that a given particle has
n-particle states of symmetry D(n, v) and nI-particle
states of symmetry D(nI, II), then according to the
cluster law there exists an (n+nI)-particle state which
consists of e particles in London with symmetry
D(n, v) and nI particles on the moon with symmetry
D(ns, p). It follows from the same arguments as lead to
(b) that this (n+nI)-particle state must correspond to
one of the IR D(n+nz, ) ) of S„+ which contain
D(n, v)&&D(nI, tr) when restricted to S &&S . That is,
the following obtains.

(c) If a particle has n-particle states of symmetry
D(n, v) and nI-particle states of symmetry D(nI, tr), then
it must have (n+nI)-particle states corresponding to
at least one of those IR D(n jIn, )) of S ~ which con-
tain D(n, v)&&D(ns, p) when restricted to S„&&S .

Ke shall discuss below how the representations with
this property can be determined in practice. Meanwhile
we describe the application of results (a)—(c).
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III. CLASSIFICATION

Associated with every species of particle is a family
of Young diagrams corresponding to the allowed multi-
particle symmetry types of the particle in question.
For example, the allowed states of an ordinary fermion
correspond to all diagrams with just one column, those
of a boson to all diagrams with just one row. We now use
the three results above to classify all possible families
of allowed symmetries, starting with a definition:
A particle will be said to have finite column order p
if it has states associated with some Young diagram of

p columns, but no states associated with any diagram
of more than p columns.

Ke make a corresponding definition for a particle of
finite rotv order. With these definitions it is clear, for
example, than an ordinary fermion has column order
1 and a boson row order 1, and that these are the only
particles of order 1.

If a particle has neither finite row order nor finite
column order, then it must have states with diagrams
of arbitrarily many rows and states with diagrams of
arbitrarily many columns. We say that such a particle
has infinite order.

For particles of finite order, we can prove the follow-

ing result.

I
I
I

mi
I
I

I

ii

I
I
I I

+)I I
I

I I
I

I

(")'
FIG. 2. A particle of infinite order must include all of these

diagrams among its allowed symmetries.

However, as we show in the Appendix, the only such

diagram with no more than p columns is the rectangular

diagram of p columns and n rows. )See Fig. 1 (iii).$
Accordingly, the particle must have states associated

with this diagram. Finally, by removing squares from

this diagram we establish that the particle must have

states associated with any diagram of p or fewer

columns. LSee Fig. 1 (iv).) Q.E.D.
It remains to consider particles of infinite order. These

are not as easily classified as those of finite order. They

must include among their allowed diagrams both single

rows and single columns of arbitrary length, that is,

D(n, s) and D(nt, a) with n and nI arbitrary. t See Figs.

2 (i) and 2 (ii).jThe only representations which contain

D(n, s) ()&Dna, a) are the "I;shaped" diagrams of

(d) Any particle of column (or row) order p must in

fact have multiparticle states corresponding to every

Young diagram with p or fewer columns (or rows).
This result means that there is actually only one

possible family of allowed symmetries for a particle of

column (or row) order p—namely, that one containing

utl Young diagrams of up to p columns (or rows). We

can refer to the unique type of particle with column

order p as a parafernzion of order p; that of row order p
we can call a paraboson of order p.

We prove the result (d) for a particle of column order

p as follows.
The particle has states corresponding to some dia-

gram with p columns. Consider, for example, diagram

(i) of Fig. 1 for the case p= 3. By removing squares we

can reduce this diagram to a single row of p squares

)see Fig. 1 (ii)). Thus from the result (a) above, our

particle must have states associated with this latter

diagram, which corresponds to the totally symmetric

p-particle representation D(p, s). We next note that

according to the result (c) above, the particle must have

(n&&p)-particle states (with n an arbitrary integer)

associated with at least one of the representations

containing

D(p, s)&&D(p, s)&& &&D(p,s) (n factors).

(Iv)

-2P (2p-l} , p

Fra. 1. Diagrams illustrating the chain of reasoning used to
establish the result (d) (for the case p =3). Fro 3. Diagrams of those IR of Sm„which contain D(p, s) XD(P,s).
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Figs. 2 (iii) and 2 (iv). (See Appendix. ) Since I and m

are arbitrary we can conclude the following.

(e) A particle of infinite order must include among its
allowed symmetries all symmetric, all totally anti-

symmetric, and cl/ "I.-shaped" diagrams.
We have not attempted to classify further the par-

ticles of infinite order. Since the product of two L-shaped
representations is always contained in an I.-shaped
representation, one possible in6nite-order particle is
one which allows the symmetries of (e) but no others.
There are certainly other possibilities. At the other
extreme, for example, is a particle with states corre-

sponding to all IR.

IV. CONCLUSIONS

We have seen that all particles of finite order can be
classi6ed into parafermions and parabosons of orders

p= 1, 2, . . . . This scheme closely resembles that of the
particles of second-quantized, parafield theory. Indeed,
Kamefuchi and Ohnuki' have shown that the e-particle
wave functions associated with a paraferrni (or para-
bose) Geld of order p support a representation of S„
containing every IR with p or fewer columns (or rows).
This suggests that the 6rst- and second-quantized

paraparticles can be identified in the same way that
6rst- and second-quantized fermions and bosons can.
We plan to show in a later paper that this is so.'

The infinite-order paraparticles apparently do not
correspond in any natural way to the particles of
parafield theory.
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APPENDIX: PROOFS

We have to determine which representations
D(n+m, 7) of S„+ contain, when restricted to S„XS,
a given product representation D(e, v)XD(m, u). The
simplest procedure is to utilize a prescription given in

'S. Kamefuchi and Y. Ohnuki, Ann. Phys. (N. V.) 51, 337
(1969).' R. H. Stolt and J. R. Taylor, Nucl. Phys. (to be published). It
is tempting to claim that the identification is immediately obvious.
Of the various obstacles which actually stand in its way we men-
tion two: (1) In the first-quantized approach states are represented
by many-dimensional subspaces, or generalized rays —a redun-
dancy which does not appear in the second-quantized approach,
(2) The permutation operators of the two theories are not the
same. As we shall show, both of these difhculties can be overcome—the first using the result of Ref. 1 that there is an equivalent
formulation of the first-quantized theory without the redundancy
of the generalized ray, the second using the two kinds of permuta-
tion introduced by P. V. Landshoff and H. P. Stapp, Ann. Phys.
(N. Y.) 45, 72 (1967)i

Hamermesh~ for determining which D(e+m, 7) occur
in a certain reducible representation of S„+ which
Hamermesh calls the outer pro-duct represemtatiovl, . This
representation is defined as follows: If we have e
particles in the IR D(e, v) and nz more particles in the
IR D(m, IJ), then as regards permutations of the n
particles among themselves, and of the m particles
among themselves, the total system gives the repre-
sentation D(e,v)XD(m, u) of S„XS . However, if we
consider permutations which mix the e particles with
the m particles, then the associated representation is
a representation of S„+, and in general is reducible.
This reducible representation is denoted by Hamermesh
as the outer-product representation. Those IR
D(e+nz, X) of S„+ which are contained in the outer-
product representation are found by a simple prescrip-
tion which is given by Hamermesh' and which we state
below (for the relevant case). Now, some simple
algebra shows (what is perhaps intuitively clear) that
D(e+yg, X) is contained in the outer-product representa-
tion formed from D(e, v) and D(m, p) if and only if
D(n, v) X D (m, p) is contained in the restriction of
D(n+nz, )) to S XS .8 Thus we can immediately
apply the prescription of Hamermesh to the problem
at hand.

We consider the case where the second representa-
tion contains only one row; that is, D(m, u) =D(m, s).
)This case is sufhcient for the proof of the results (d)
and (e).) For this case, the prescription tells us that
the representations which contain D(e,v)XD(m, s) are
those whose diagrams can be obtained by adding the
squares of D(m, s) to the diagram of D(n, v) in any wa, y
such that no two squares are added to the same column.
LSee Fig. 3 for the case D(e, v) =D(m, u) =D(p, s).)

In the proof of the result (d) we need to determine
those representations which contain

D(p, s)XD(P,s)X . .XD(P,s) (n factors).

From repeated application of the above prescription it
is clear that none of these diagrams can have more than
e rows, and hence that all must have p or more columns.
In particular, the only diagram with just p columns
is the eXp rectangle of Fig. 1 (iii). This completes
the proof of the result (d).

In exactly the same way we can prove that the only
IR containing D(e,s) XD(m, a) are the I.-shaped
representations of Figs. 2 (iii) and 2 (iv), and thus
complete the proof of the result (e).

Finally, it is a straightforward matter to use the
general prescription of Hamermesh to prove that the
product of two J.-shaped representations is contained
in an L-shaped diagram, as asserted at the end of
Sec. III.

7 M. Hamermesh, Group Tlzeory (Addison-Wesley, Reading,
Mass. , 1962), p. 249.

This is actually a special case of the l'robenius reciprocity
theorem.


