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Transverse Electrical Conductivity of a Relativistic Gas in an
Intense Magnetic Field
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(Received 19 December 1969; revised manuscript received 9 February 1970)

The transverse electrical conductivity is computed for a system of degenerate relativistic electrons in a
strong magnetic Geld H =10"—10"G. As suggested by pulsar models, such Gelds exist in nature in collapsed
bodies, like neutron stars. The present computation is valid in the outer regions of the star where the scat-
terers are not degenerate, while the electrons are taken to be at zero temperature. The scattering mechanism
is assumed to be the electron-ion Coulomb scattering. Numerical values of the transverse conductivity are
given in the range 10'&PI&10"G, and a comparison is made with the longitudinal and zero-Geld conduc-
tivities. It is found that for densities 10 &p&5&&107, 0'll =200p and 0-p=30.~. As the density increases, both
O.q and 0-11 tend to O.p,

I. INTRODUCTION

HE problem of the electrical conductivity 0 of
a relativistic degenerate electron gas has been

considered recently in two cases: one involving high
density and no external magnetic field, ' and a second
case involving high density with a magnetic field
parallel to the electric field. ' In both computations, the
scattering mechanism was thought to be impurity
scattering, as described by a screened Coulomb electron-
ion potential. The impurity system was allowed to
form a sublattice with a certain ion-ion correlation
strength' I'=23Z'"p6''T6 ', where p6 is the matter
density in units of 10'p, g/cm'(p, =Z/A) and T6 is the
temperature in units of 10' 'K. Another possible mech-
anism giving rise to electrical resistivity is the interac-
tion of the electrons with the lattice vibrations. ' The
dominance of one mechanism with respect to the other
is simply dictated by the temperature. As is usually
done in problems of Ohmic conductivity, the electric
field was treated as a perturbation. Accordingly, in
Refs. 1 and 2, the conductivity was computed by making
use of the Boltzmann transport equation. However,
when the electric Geld is perpendicular to H, the
Boltzmann transport equation approach cannot be
applied, since the diagonal elements of the components
of the velocity operators perpendicular to H vanish.
This problem was recognized long ago, and the solution
has been to use the density-matrix approach. A full
discussion of this point is given in Ref. 4. This method
is also used in the present paper. As expected on physical
grounds, the presence of a magnetic 6eld changes o-

from a scalar to a tensor. While the definition of 0-11

is straightforward, the "transverse" conductivity is
dehned by means of the relation4
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if B is along s, and 8 is in the y direction. Contrary to
0-», which depends solely on the scattering process, the
O.,„component is due entirely to the drift velocity
nD/c= (E&&B)/8'. Since this velocity is independent of
the charge of the particle, there is no net current in the
x direction, i.e., 0. „=0, if the ions are free to move.
This situation is encountered in a plasma, while it is
violated if the ions exhibit a crystalline structure.

A magnetic Geld along the s axis does not change the
free motion of the electron in this direction, but
strongly modifies the transverse motion. This results in
an increase in the transverse resistivity with respect to
the longitudinal case. A sizable difference is found be-
tween 0.«, oo, and o& for H=H~ and 10&p6(50 (see
Table VI). It is, however, to be expected that at very
high densities p)10"—10" g/cm', such a difference
would eventually disappear. This general trend has been
found to be a common feature of all the astrophysical
processes whose occurrence is not linked to the existence
of a magnetic field. '

In Sec. II the wave function and eigenvalues of an
electron in crossed electric and magnetic fields are
derived, as well as the matrix element of the velocity
operator to be employed in the subsequent section. In
Sec. III the density-matrix approach and the relevant
matrix elements are examined brieQy. In Sec. IV the
final expression for o-& is deduced. Numerical values of
o.

& for a certain range of densities and magnetic fields are
left for Sec. V, as well as a discussion of the possible
astrophysical relevance of this computation.

IL DIRAC EQUATION IN CROSSED ELECTRIC
AND MAGNETIC FIELDS

We first consider an electron of mass m and charge e
in an external homogeneous magnetic field H, directed
along the s axis, and a constant electric field E, directed
along the y axis. By solving the Dirac equation, in the

5 L. Fassio-Canuto, Phys. Rev. 187, 2141 (1969); V. Canuto,
C. Chiuderi, and C. K. Chou, Astrophys. Space Sci. (to be
published).
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gauge A„=—( H—y, 0, 0, —Ey), we obtain the following
energy eigenvalues (here h=c= 1):

'—
1/p 2+m2(1+2ng' —1))1/2+pp (2)

where

n=0, 1, 2, . . . , ~, p—= (p„p,), g=H/H„

H, =m2c2/ek=4. 414)&10126, g=~1, P=E/H, (3)

~
—21P2

When E—+ 0, the eigenvalues reduce to

0 "$p 2+m2(1+2ng)]l/2

which is the standard form of the energy eigenvalues of
an electron in a magnetic field. '

To find the eigenfunctions, a complete set of com-
muting operators must be specified These may bes

3C, p„p„and p, = —s (iV+eA). In this case the
eigenfunctions are'

(n,p, s,p)=~(Z+I+ p N)e &'"e""*'+"""~ (5)

where

where P, Q, and R are given in terms of the coefficients
C; appearing in the spinors. Ke mention here only the
expressions needed in the following discussion. These are

P (s,s')=Ci(n, s)C4(n+1, s')+C2(n, s)C2(n+1, s'),
R„(s,s) =-', .

III. EVALUATION OF DENSITY MATRIX

As stated in the Introduction, the density-matrix
technique will be used to compute the average value of
the electron current. In the independent-particle ap-
proximation, each electron is described by a normalized
wave function 1'(r, t) solution of the equation

imp/gt =Kg

Expanding f(r, t) in a complete set of orthonormal time-
independent functions p„(r), we have

P(r, t) =P a„(t)p„(r).

The density matrix is defined as'

'-=&~-(t)~-*(t)), (12)
2Fg' ——y& 1,

(gg 2~ 1)1/2(y+~ 2~2g 1(p P4)]

C,H„(&)
C2H„ 1(&)
C2H„( ).C~. ,(~),

'C4H 1(&)
c,H. (g
C,H„1(&).CiH (&) J

(Q)=T (pQ) (13)

The time variation of the density matrix is governed by
the equation

Ci(n, s)=Ci aA, C2 ——saB, C2 ——g——sbA, C4 ——qbB,
2a'= 1+pm& ' 2A'= 1+sp, (p,'+2m'ng) '/' (8)—
2b'=1 —pm' ' eB'=1 sp, (p,'+2—m'ng) '"

t9p
i =—['P—,K].

Bt

To evaluate the matrix elements of p, we will pursue the
same method given in Ref. 4, to which we refer for more
details. The Hamiltonian K can be written as

II„are the Hermite polynomials normalized to unity,
and

(6) where the brackets indicate the operation of statistical
average. The macroscopic value of any physical quan-
tity Q is then given by

$2= gi/2(t, pL,L,) '. K=%2—eEy+ U=BCi+ U, (14)
The matrix elements of the velocity operators n, and n„
in the scheme of the eigenfunctions (5) are needed.
Since we are interested in linear effects in the electric
field E, we can expand the eigenfunction (5) to the first
order in P. Putting

ny=n ~zng~

we have, after some algebra,

~RS n+Q S

= (P„(s,s')8„,„',+P/R„(s, s')g„,„
+Q„+2(s,s')g„' „+2])g„,', (9)

&OS n Q s
= (P„,(s',s)g„.„,+P)R„(s',s)b„. „

+Q--2(s', s)g-, =2])g..', (1o)

V. Canuto and H. Y. Chiu, Phys. Rev. 1'73, 1210 (1968};1'73,
1220 (1968); 173, 1229 (1968).

P. N. Klepikov, Zh. Eksperirn. i Teor. Fiz. 26, 19 (1952).

where p& is the correction to the density matrix due tc
the scattering in the presence of the electric field. As
explained in Ref. 4, the matrix elements of po are given
by

( p Pl~ol 'p' '~)=fo(-')g-, -b. , 'b. ," (16)

U. Fano, Rev. Mod. Phys. 29, 74 (1957).
"W. Kohn and J, M. t.uttinger, Phys. Rev. 108, 590 (1957).

where BCO is the sum of the kinetic and magnetic parts of
the Hamiltonian' and U is the electron-ion potential.
Following a procedure first introduced in Ref. 10, E is
replaced by Eev', where v is a small positive number
which later will be allowed to be zero. This has the
effect of disconnecting the electric field at t= —~, in
such a way that at 3= —~ the system can be assumed
to be in a state of thermal equilibrium. Accordingly, p
is written as

p= po+ pic~,
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where fo(e ) is the Fermi distribution function. It then
follows that the matrix elements of po are independent of
the electric field. Substituting Eqs. (14)—(16) into Eq.
(9) and taking the matrix elements at t= 0, we find

(e„„—e„„iv)(—npsp I pil n p s p)
= Lf,(.„„o) f —(.„.„.o) j(npsp I

v
I
n'p"'p&

+( P pll:p vll 'P"'p).

From this we derive, for p= p',

(e„„' e„—v' iv—)(nspp I pi I
n'ps'p)

=cafe(e v') f(.—;.')7(npspl vln'p"p)

+(npspl fp, v jln'ps'p).

Solving the two preceding equations (to the lowest
order in V) and taking the limit v -+ 0, we finally get

this way we obtain

(nPsp I pi
I

n'Ps'p&

=imp(e„v' —e„vo) ' p (npso
I
v ln"p'""o&

nil y"S"

X (n"p "s"0
I
V In'ps'0) (p —p,")

8 // /t0
&n y

XP(e.,' —e.-„-')+5(e.„'—e.-, .')). (1S)

To the same order in V, the matrix elements of p~ with
n=n' and p= p' vanish.

IV. TRANSVERSE CONDUCTIVITY

The average values of the current density components
can now be calculated directly from the definition, Eq.
(13). Introducing the quantities J+ defined by

(npsp I
piln'ps'p) =Ar(e„,v' —e„„') '

(npsp
I
v n"p"s"p) (n"p"s"p

I
v

I
n'ps'p) we have

J~=J,~iJ„,

(J~)= (e/Q) Tr(pn+) (Q= volume of the system).X(Lfs(e-') fo(e-—"v-') 35(e-v e-"'—)
+Lf (e, ,o) f,(, „„o)jg(e, e „„)} (17) Selecting now the terms linear in P and using Eqs. (9)—

(11) and (16), we obtain
The above expression depends on E through the 8
functions and the matrix elements of t/'. Since we are
interested in linear effects in the field, the matrix
elements of pi can be expanded to the first order in p. In

TABLE I. f(v,e) as a function of p —1 (y in units of mc'), for
f/=H/M~=10 4. Here 2.50(—5)—=2.50&&10 ', etc.

2ep
(J~)= p p (nps0

I ps I

pn" 0s&R„(s,s")
Q npS nltpt/S/I

2e
X5, 5„„+—p g (npsOI piln"p"s"0)

Q n ~ s nl/y/ts//

2.50(—5)
5.00(—5)
7.50(—5)

1.25(—4)
1.50(—4)
1.75(—4)

2.25 (—4)
2.50(—4)
2.75{—4)

3.25 (—4)
3.50{—4)
3.75(—4)

4.25(—4}
4.50(—4)
4.75{—4)

5.25(—4)
5.50(—4)
5.75 (—4)

6.25(—4)
6.50(—4)
6.75(—4)

S(.,0)

4.21(5)
1.7o(5)
1.02 (5)

2.11(6)
1.03 (6)
6.88(5)

2.22 (6)
1.37(6)
1.04 (6)

2.25 (6)
1.56(6)
1.28(6)

2.30(6)
1.72(6)
1.46(6)

2.37 (6)
1.85(6)
1.61(6)

2.45(6)
1.98(6)
1.75(6)

7.25(—4)
7.50(—4)
7.75 (—4)

8.25 (—4)
8.50(—4)
8.75(—4)

9.25 (—4)
9.50(—4)
9.75(—4)

1.02(—3)
1.05 (—3}
1.07 (—3)

1.12 (—3)
1.15(—3)
1.17(—3)

1.22(—3)
1.25 (—3)
1.27(—3)

1 32(—3)
1.35(—3)
1 37(—3)

f(~0)
2.54(6)
2.10(6)
1.88(6)

2.62(6)
2.21(6)
2.00(6)

2.70(6)
2.31(6)
2.11(6)

2.78(6)
2.40{6)
2.21(6)

2.86(6)
2.49(6)
2.31(6)

2.94(6)
2.58(6)
2.40{6)

3.01(6)
2.70(6)
2.54(6)

where N, is the total number of electrons. Changing
n —+ n+1 and interchanging s and s" in Eq. (20), we
finally get

(J,) =ePN, /Q, o,„=J,/E =eN, /QIJ,

ep
(J„)= i pg—(—(npsOI piln+1 ps"0)

Q nu ss"

(21)

—(n+1 ps"
I » I

np s0&}J„( ,ss")

p p I'„(s,s")Im(npsOI pi I
n+1ps"0). (22)

Q np ss"

XI' (s,s")o„",„+io„"v
e 28
+—p p (npsOI piln+1ps"0)I'„(s, s").

Q n, y s, s/l

(19)
Analogously,

ePN, 2eP
(J)= +-

Q Q

XP P (nPsOI piln —1 Ps"0&I'„ i(s",s), (20)
nI/ sst/
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Introducing Eq. (18) into Eq. (22), we obtain

Jy 2&e (8fp

Z 2 ~.+L.;-.. '(p. p'—)I

XL8(--,..- ..)+8(-..-., )7 Z ~-(,")
2.49(—3)
4.98(—3)
7.46(—3)

f(i,e)

1.13 (3)
5.27(2)
3.46(z)

7.00(—2)
7.42(—2)
7.47(—2)

f(l,e)

1.S1(4)
1.41 (4)
1.25(4)

TABLE III. Same as Table I, for 8 =H/Hp= 10 '.

XRe( (nps0 I
V

I
e'p's'0& (n'p's 0

I
V

I
n+1 ps "0&), (23)

where we have introduced the notation
p 0+n, y; n', ~i =~n, ~
—~nr, ~i ~

4xe'Z &' 1
(npsI VIn p s ) p e &R—.I

Q a 1q2

I'r =8..—..+..4.—..+..I Ti(nIn'&+Ts(n —1In' —»7
(25)

(24)

Tr=—Tr(en'ss') =CrC~'+CsCs',
(26)

Ts= Ts(nn'ss') =CsCs'+C4C4',

(eIe') =+(n,n')I e 'l" "'&4(—)"'8(e—e')

Using Eqs. (21) and (23), the transverse conductivity
or, Eq. (1), can be computed once the scattering
mechanism is specified. For Coulomb scattering, the
relevant matrix elements have been computed in Ref. 2,
and they are given by

1.24( —2)
1.49(—2)
1 73(—2)

2.22 (—2)
2.47 (—2}
2 71(—2)

3.20(—2)
3.44(—2)
3.68(—2)

4.16(—2)
4.4o(—2)
4.64(—2)

5.12 (—2)
5.36(—2)
5.59 (—2)

6.o7 (—2}
6.30(—2)
6.54(—2)

9.76(3)
5.06(3)
3.53 (3)

1.41(4)
8.43 (3)
6.42(3)

1.62(4)
1.06(4)
8.47(3)

1.73(4)
1.20(4)
9.93(3)

1.78(4)
1.29(4)
1.10(4)

1.80(4)
1.36 (4)
1.18 (4)

7.93 (—2)
8.17(—2)
8.40(—2)

8.86(—2)
9.O9(—2)
9.32(—2)

9.77(—2)
10.00(—2)
0.10(0)

0.11(0)
0.11(0)
0,11(0)

0.12 (0)
0.12 (0)
0.12 (0)

0.12 (0)
0.13(0)
0.13(0)

1.81 (4)
1.45(4)
1.3O(4)

1.S1(4)
1.49(4)
1.35 (4)

1.82 (4)
1.52 (4)
1.39(4}

1.82(4)
1.55(4)
1.43 (4)

1.83 (4)
1.57 (4)
1.47 (4)

1.84(4)
1.60(4)
1.50(4)

+e-*&"'-"&4(—)"8(e'—n) —(—)"8 7, (27)

(28)

TABLE II. Same as Table I, for e=H/H, = 10 '.

2.50(—4)
5.00(—4)
7.50(—4)

1.25 (—3)
1.50(—3)
1.75(—3)

2 25(—3)
2.50(—3)
2.75 (—3)

3.24(—3)
3.49(—3)
3.74(—3)

4.24(—3)
4.49(—3)
4.74(—3)

5.24(—3)
5.48(—3)
5.73 (—3)

f(t,e)

2.35 (4)
1.04(4)
6.58 (3)

1.59(5)
8.07(4)
5.56(4)

1.97(5)
1.20(5)
9.24(4)

2.05(5)
1.40(5)
1.15(5)

2.07(5)
1.52 (5)
1.29(S)

2.07(5)
1.6o(s)
1.40(5)

7.22 (—3)
7.47(—3)
7.72(—3)

8.22(—3)
8.46(—3}
8.71(—3)

9.21(—3)
9.46(—3)
9.70(—3)

1.02(—2)
1.04(—2)
1.07(—2)

1.12(—2)
1.14(-2)
1.17(—2)

1.22 (—2)
1.24(—2)
1 27(—2)

f(& ,t&)

2.08(5)
1.72(s)
1.56(5)

2.10(5)
1.7s(s}
1.63(5)

2.12 (5)
1.83 (5)
1.69(5)

2.14(S)
1.87(5)
1.74(5)

2.17(5)
1.92(5)
1.80(5)

2.20(5)
1.96(S)
1.85 (5)

e(npn') = (n!n'!) "'e "'tl~+"'&" sFp( —n n') —1/t), —
2(H/II, )X, st=ad, '+g„', y=arc cot(q„/q. ),

8(x) =1, x)0
=0, x(0.

z.39(—2)
4.77(—2)
7.16(—2)

0.12(0)
o.14(o)
0.16(0)

0.20(0)
0.22 (0)
0.24(0)

0.28(0)
0.30(0)
0.32(0)

o.36(o)
0.38(0)
0.40(0)

o.43(o)
0.45(0)
0.47(0)

0.50(0)
0.52(0)
o.s3 (o)

f(1,~)

4,ss(1)
2.35 (1}
1.57 (1)

5.81(2)
3.06(2)
2.15(2)

1.03 (3)
6.00(2)
4.52 (2)

1.37 (3)
8.52 (2)
6.68(2)

1.63 (3)
1.06(3)
8.s9(z)

1.S3(3)
1.24(3)
1.03 (3)

1.98(3)
1.39(3)
1.17{3)

p 1

0.57(0}
0.58(0}
0.60(0)

0.63 (0)
0.64(0)
0.66(0)

0.69(0)
0.70(0)
0.72(0)

0.75(0)
0.76(0)
0.77(0)

0.80(0)
0.82(0)
0.83 (0)

0.86(0)
0.87(0}
0.88(0)

0.91(0)
0.92(0)
0.94(0)

f(I P)

2.10(3)
1.52 (3)
1.30(3)

2.19(3)
1.63 (3)
1.41(3)

2.26(3)
1.72 (3)
1.S2 (3)

2.32(3)
1.81(3)
1.61 (3)

2.3s(3)
1.88(3)
1.69(3)

2.42(3)
1.96(3)
1 77(3)

2.46(3)
2.02(3)
1.ss(3)

2pp is the generalized hypergeometric function. "Substi-
tuting Eq. (24) bacp in Eq. (23), sununing over the final

spin states, averaging over the initial spin states,

TABLE IV. Same as Table I, for 8 =H/H, = 10

6.23 (—3)
6.48(—3)
6.73 (—3)

2.07(5)
1.67(5)
1.49(S)

1.32 {—2)
1.34(—2)
1 37(—2)

2.23(s)
2.01(S)
1.9o(s)

"Higher Trenscendenta/ Fgnctions (Bateman Manuscript Proj-
ect), edited by A. Erdblyi (McGraw-HiR, New York, 1953),Vol. I,
C118p. 6.
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sunning over the ion position through the relation

N2', Ni

e
—/(q R q'Rp)

a=1 P=l
(29)

ds G(s,i,N')/L. (s,22,22')

and, finally, integrating over the final momentum states,
a long algebraic calculation, leads to

0

4g2n2(mc2~ Ã;//H ) "
f(/, 0),

~2 (A j QEHl

/mc2) X. a)-'
o „=n/ /X2-

&ai n ai

(30)

(31)

pF(22,22') =-
i (@2 g 2) (~2 g,2)]1/2 (33)

u„2= 1+2228'/H, =1+2N8,

+ /Es G+(s,22, 22')A+(s, 22,N'), (32)
0

FrG. 1. The function f (/I„//)
versus p, (in units of mc'), for
8=H/H2=10 '.

l

f(, 8}
) l'2

l

I

t

I

I

I

l

I

l

l

I

I

I

I

I

I

I

I

l

I

l

l

t

I

I

l

f~
I

I

I
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FIG. 2. The function f(p, //)

versus p, (in units of mc'), for
//= II/H2 1. ——

1.5 2.0 2.5

s"'
G+ (S,22,22') =

{g+(1/28)P(~2 II 2)1/2~ (~2 G,2)1/2)2}2

(34)
The appearance of the chemical potential /M—=p/2/2c2 is a
consequence of the choice of the distribution function
2("),

fe(")= 8(" r),— —
86

which represents a degenerate electron gas. The ana-
lytic form of the functions A+ is given in the Appendix.

V. NUMERICAL RESULTS AND CONCLUSIONS

The function f(/2, 8) has been computed numerically,
g,nd the results are given in Tables l—V as a func-

tion of p, —1 and 8=H/H2 in the range 10 4&8&1,
2)&10 '(p —1(5. The division of the results into
groups of three is related to the discontinuous character
of the function f(/2, 8) Lsee Eq. (33)g due to the density
of final states. In each jump the function f(/1, 8) de-
creases smoothly with p, and therefore, only three
values were selected.

The behavior of f(/1, 8) as a function of /ti for fixed 8 is
illustrated in Figs. 1 and 2. Finally, in Table VI we
compare the longitudinal' and transverse conductivity,
0-&1 and OL, and the one without magnetic Geld. ' Because
of the discontinuities shown in Figs. 1 and 2, the num-
bers selected in Table VI must be understood as average
values.

The conclusion, therefore, is that longitudinal con-
ductivity 0.« is greater than the one without a magnetic
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TABLE V. Same as Table I, for f/= H/H, = 1. ACKNOWLEDGMENTS

0.18(0)
0.37 (0)
0.55(0)

0.86(0)
0.98(0)
1.11(0)

1.34(0)
1.44(0)
1.54(0)

1.73 (0)
1.82(0)
1.91(0)

2.08(0)
2.16(0)
2.24(0)

2.36(0)
1.30 (0)
0.99(0)

6.23 (1)
3.36(1)
2.41(1)

1.48(2)
8.50(1)
6.37 (1)

2 31(2)
1.40{2)
1.09(2)

3.06(2)
1.94 (2)
1.54(2)

2.94(0)
3.00(0)
3.06(0)

3.18(0)
3.24(0)
3.30(0)

3.41(0)
3.47(0)
3.53 (0)

3.64(0)
3.69(0)
3.74(0}

3.85(0)
3.90(0)
3.95(0)

4.69(2)
3.27 (2)
2.75(2)

5.05 (2)
3.62(2)
3.09(2)

5.35 (2)
3.94(2)
3.40(2)

5.60{2)
4.22 (2)
3.69 (2)

5.81(2)
4.47(2)
3.96(2)

We wish to thank N. Rushfield, F. Gertler, and A.
Iapidus for the numerical computations, and Dr. R.
Jastrow for the hospitality of the Institute for Space
Studies.

4 11
—2= (21r/lr))(

—
2p(p2 —1)1/2 (A2)

APPENDIX

Additional details on the functions appearing in the
final formulas for the transverse conductivity, Eqs.
(32)—(34), are presented below. The integral containing
G in Eq. (32) is divergent if 22=22. To avoid this

divergence we have introduced a screening factor in the
Coulomb potential. This has the eBect of changing the
denominator of Eq. (34) in

g+ (1/20) {[(p2 42 2)l/2~ (p2 g,2)1/2]2+2 D
—2) (A1)

where rD ', for a degenerate gas, is given by'

2.39(0)
2.46(0)
2.53 (0)

2.67 (0)
2.74(0)
2.81(0)

3.70(2)
2.43 (2)
1.97 (2)

4.24(2)
2.88(2)
2.38 (2)

4.05(0)
4.10(0)
4.15(0)

4.24{0)
4.29(0)
4.34(0)

6.00(2)
4.71(2)
4.21(2)

6.17(2)
4.93 (2)
4.45(2)

TAaLE VI. Comparison between the longitudinal conductivity
0 &1, the transverse conductivity aq, and the conductivity 0 f) without
magnetic Geld, for e=H/H4 = 1.

0 „X10—»
(sec ')

OOX10 "
(sec ')

0. X10"
(sec ')

field by a factor =20, at least in the range 10&p6& 50.
The latter is in turn greater than o-& by a factor of the
order of 3, in the same range. Magnetic fields as high as
10" G are now believed to be present in collapsed bodies
like neutron stars, as suggested by the accepted models
of pulsars. Slightly lower fields will exist in the outer

part and on the surface of such stars. Our calculations
are likely to be relevant in those regions, where the
protons are not degenerate and the temperature of the
electron gas is sufficiently low to make it completely
degenerate.

The integrals appearing in Eq. (39) can be evaluated

analytically in terms of the exponential integral func-

tion. The analytic form of the integrals, however, turns

out to be exceedingly complicated, and numerical
evaluation is preferable.

The analytic form of the functions A~, Eq. (32), is

given in Eq. (A3): The terms K,+, i=1, 2, . . . , 8,
appearing in the expression for A+ come from the
summations over the spin variables, and the functions

%(n, ,42') are defined in Eq. (27):

Ag= [p (p A ) ] [Kl Ql+It 2 Q2 1~ 2Q2 It4Q4]H1

+ [—p+- (p'+a')'/']-'[Z, Q, '+as Q, '

—E2Q2' —EsQ4']H2, (A3)

H 1
—=H (22 —22' —1)—H (42' —ll),

H, —=H (n —22') —H (42' —ll —1),

H(x) =0 for x(0
=1 for x&0,

Q, =+(n.—1I22 )e(/2 I42)

Q, =balf(22 —2 ~22' —1)4(/2' —1 ~n 1), —

Q =4(n' —1~22 1)% (n —1~22'), —

Q4 e(24 2~ 22' ———1)e (—22'
~
22),

Q2'=Q2(22 —+ n+1/22'),
8.0

14.7
22.6
31.6
41.6
52.4

69.37
74.08
71.93
72.61
76.48
81.56

3.14
3.12

3.32

3.49
3.59
3.45

1.68
1.13
1.00
0.97
0.98
1.01

e [41 /4p4(p2 g2)]
&& ( '—1)'"( '( '—~')+p(p' —~')"'

—e[(p' —A' —1)(p' —1)(p' —~-') (p' —~-')]"')

[g /4p4(p2 g2)] (p2 g2 1)1/2

X (p'(p'+1) —e(p' —1)[(p'—4l.') (p' —~.')]'"),
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&2'=[&-/4/'( ' ~')7(t ' 1—)'"
)( {p2(~2 g2) p (~2 g2) 1/2 (p2 g 2)

&&[(t '—1) (t
'—~'—1)7'"},

E4 [a„a——„.a„,/4/s'(/12 —62)7 (t12—1) (tts —52—1)'"
LV =2H/H„

& '= [a.+ /4/ '(/"+~')7{/" (/"+ 1) (/'—1)—
x [(~2 /2 2) (~2 a, s)71/2} (~2++2 1)1/2

& '=[a (t '-1)"'/4/ '(t '+~')7
y {~2 (p2+ g2) +~[~2+t) 271/2

e[(tt2 1)(tt2+Q2 1) (/12 a 2) (tt2 /2, 2)71/2}

&2= [&- (t
' 1)"—/4/ '(/ '+~')7

)(' {~2(~2+g2) p[~2+ t) 271/2

(/12 a 2)[(~2 1) (/12++2 1)71/2}

& =L - - - /4/'(t'+l)')7(t'-1)(t'+~'-1)"'
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Hartle and Taylor have shown that the cluster law imposes certain restrictions on the allowed sym-
metries of erst-quantized systems of identical particles. We extend their results to show that all particles
which are neither bosons nor fermions and which obey the cluster law can be divided into two classes, those
of 6nite order, and those of in6nite order. For every positive integer p there are two types of 6nite-order par-
ticle, which we call parabosons and parafermions of order p. Ordinary bosons and fermions can be Gtted
into this scheme as particles of order 1. We conjecture that the Gnite-order particles can be identified with
the parafermions and parabosons of the second-quantized, para6eld theory. Infinite-order particles would
seem to have no analog in the second-quantized theory, as presently formulated.

I. INTRODUCTION

'N this paper we establish a simple classification of
& ~ the possible types of paraparticle (that is, particles
which are neither bosons nor fermions). Our results,
which extend the recent work of Hartle and Taylor, '
are based on a quantum-mechanical (that is, first-
quantized) point of view. '

IL CLUSTER LAW AND CONSEQUENT
RESTRICTIONS ON ALLOWED

SYMMETRY TYPES

The cluster law requires that two isolated experi-
ments which are suKciently well separated must not
interfere. For example, an experiment involving e
particles localized in London should be completely
unaffected by the presence or absence of m more par-
ticles localized on the moon, and vice versa.

Hartle and Taylor apply the cluster law to a system
of st+1 particles, one of which is far removed and iso-
lated from the rest. By requiring that any observation

*Supported in part by the U. S. Air Force Once of Scienti6c
Research, AFOSR Grant No. AFOSR-30-67.' J. B. Hartle and J. R. Taylor, Phys. Rev. IV8, 2043 (1969).

'By this we mean that we describe a system of I identical
particles with certain of the wave functions f(xi, . . . ,x„) of the
Hilbert space I.'(R'"). The alternative is the second-quantized
approach, in which one uses the vectors generated by the action
of Geld operators on a vacuum state. We emphasize this distinc-
tion because, even though the two points of view are known to be
equivalent for ordinary bosons and fermions, their relationship
is not well understood for the general paraparticle. See, for example,
Ref. 9 of A. M. L. Messiah and O. W. Greenberg, Phys. Rev.
138, B1155 (1965), and also the concluding remarks of this paper.

localized near the n particles should see some allowed
e-particle state, they establish the following result.

(a) If a particle has (I+1)-particle states correspond-
ing to the irreducible representation (IR) D(st+1,) ) of
the permutation group' S„+~, then it must have e-par-
ticle states corresponding to all IR D(n, v) of S„whose
Young diagrams can be obtained from that of D(I+1,X)

by removing one square.
We first generalize the result (a) so as to apply to

systems of tt+m particles divided into two isolated
groups of e and m particles. To this end we note that
(a) can be rephrased to say that there must be n-particle
states for all D(rt, v) of S„which are obtained when

D(rt+1,X) is restricted to S„by holding one variable
fixed. s Applied to (tt+m)-particle systems, the gen-
eralization of this result can be shown to be the
following.

(b) If a particle has (n+m)-particle states with
IR D(0+m, X), then it must have n-particle states
corresponding to al/ those D(rt, v) and m-particle states
corresponding to all those D(m, ts) such that the outer
Kronecker product D(n, v) &&D(m, ts) is contained in the
restriction of D(rt+m, X) to S XS .

In both of the results (a) and (b) one starts from the
assumed existence of some (n+m)-particle symmetry
and deduces the existence of certain symmetries for

'As is well known —see Ref. 1 or A. M. L. Messiah and O. W.
Greenberg, Phys. Rev. 130, 8248 (1964)—every pure state of a
system of rs identical particles is associated with some IR of the
permutation group S .

4 Indeed, this is the form in which the result is first proved in
Ref. 1.


