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Forces are found that satisfy the covariance condition of Currie and Hill for Newtonian equations of
motion of two particles in four-dimensional space-time. Examples are given that can decrease, at any pre-
scribed rate, for large particle separation. Unfortunately these latter forces become complex and even
singular for certain regions of velocity space. The technique used is to simplify the covariance condition by

using four-vector variables as much as possible.

I. INTRODUCTION

N Newtonian equations of motion the forces are func-
tions of the particle positions and velocities at one
time. Since time is a scalar under Galilei transforma-
tions, Galilei covariance is achieved by requiring the
forces to transform as tensors. But, since time is the
component of a vector under Lorentz transformations,
Lorentz covariance of Newtonian equations of motion
cannot be gained by simply ascribing tensor properties
to the forces. So, in the main, Newtonian equations of
motion were abandoned at the advent of special rela-
tivity. Now, sixty years later we find renewed interest in
the problem of Lorentz-covariant Newtonian equations
of motion.? A major step was taken with the independent
discoveries by Currie! and by Hill? of differential con-
ditions, necessary and sufficient, for Lorentz covariance
of Newtonian equations of motion. These conditions are
coupled nonlinear partial differential equations for the
forces and will be referred to in this text as the covari-
ance condition.

Known solutions of the covariance condition do not
include any physically interesting examples. Some are
for two-dimensional space-time.®* The solutions of
Currie and Jordan? for two particles in four-dimensional
space-time unfortunately have accelerations propor-
tional to the relative velocity, so that for collinear
motion there is no scattering.

The primary result of this work is the discovery of
several new solutions of the covariance condition for
two particles in four-dimensional space-time. The ac-
celerations are not in the direction of the relative ve-
locity and some examples have enough arbitrariness to
require asymptotic decrease at any prescribed rate for
large particle separation. However, accompanying the
arbitrariness in asymptotics is a restriction to certain
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regions of velocity space outside of which the forces
become complex and singularities appear.

An alternative program for obtaining Lorentz-
covariant equations of motion has been proposed by
Pearle.® The Pearle equations are second-order differ-
ential equations for the particle positions in terms of
a Lorentz scalar variable s. For example, one could re-
quire that the proper times of the particles be equal
providing one scalar s to parametrize all world lines.
Then these clocks must be synchronized in order to
correlate particular points on the respective particle
world lines through the equations of motion. In the ex-
amples worked out by Pearle,® this is accomplished by
setting s =0 at the instant the particles begin to interact.
Unfortunately, the Pearle dynamics are such that the
interaction will range from retarded or advanced to in-
stantaneous, depending on the Lorentz frame of the
observer. Thus his covariance condition is necessarily
broad enough to require that these be equivalent de-
scriptions of the dynamics. The Currie-Hill covariance
condition is more severe in that it requires an interac-
tion, instantaneous in one Lorentz frame, to have an
equivalent instantaneous interaction description in any
other Lorentz frame. Superimposed upon the Pearle
framework, the Currie-Hill covariance condition would
demand that particle clocks synchronized on equal-time
surfaces in two different Lorentz frames facilitate iden-
tical instantaneous dynamics.

In the spirit of Pearle’s approach, we use four-vector
variables as much as possible and find a simpler set of
equations for the covariance condition. For the two-
body problem, there is a reduction from 18 to four
coupled equations for the forces. The price paid is the
loss of individual particle speeds as independent vari-
ables, so there are more solutions of the original
Currie-Hill covariance condition than of these simpler
equations.”

In the following sections we will rederive and solve
the covariance condition with four-vector variables.
Section IT will introduce the notation and summarize
the derivation of the covariance condition. The equa-

5 P. Pearle, Phys. Rev. 168, 1429 (1968).

6 P. Pearle (Ref. 5), Appendix A.

7 A reduction from 18 to six equations can be made without any
loss in the number of independent variables: R. N. Hill (private
communication). Thus by going to four-vector variables we are
actually eliminating only two equations.
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1 TWO-PARTICLE FORCES FOR RELATIVISTIC NEWTONIAN . ..

tions to be solved are reduced to a manageable form in
Sec. IIT and the solutions stated in Sec. IV. The paper
is most concisely summarized by the Newtonian equa-
tions of motion [Egs. (2.1) and (2.5)], the covariance
condition [Egs. (2.12) and (2.13)7], and the new solu-
tions [Eqgs. (4.9)-(4.14)].

II. COVARIANCE CONDITION

In this section, the covariance condition will be de-
rived for the two-body problem in four-dimensional
space-time. A major simplification of the resulting equa-
tions is achieved by a restriction to four-vector vari-
ables. This is not necessary to formulate the covariance
condition, as is evident from the original papers of
Currie! and of Hill.2 The price for this simplification is
the loss of individual particle speeds as independent
variables. The generalization of this approach to the
n-body problem is also given.

Consider Newtonian equations of motion for a system
of two particles,

Ola(fa) =Fa(tht2) ! t1=ty ((1 = 1: 2) . (21)
In this equation, the accelerations are
ta=dU,/dra, (2.2)

where 7, is the proper time of the ath particle. The
velocities u, are the space components of the four
vectors

UH =dx,*/dTa, (2.3)
where

%"= (fa,Xa) (2.4)

is the space-time position of particle a. The forces F,
are written as functions of their implicit arguments, the
time coordinates of the particles. More explicitly, to
incorporate the correct tensor properties under transla-
tion and rotation we write

Fa(tlyt2) = (_ 1)a+1[xl(t1) _X2(t2):|fa(t1,l2)
Fui(t1) ga(tn,te) Fua(ta) ha(tryts)

where f., g, and %, are necessarily rotational scalars
and therefore are functions of the rotational scalars
made from the three-vectors X;—Xs, u;, and us. The
innovation made here is to require the functions f,, g,
and %, to depend upon only the four scalars

(2.5)

Yi=ui*¥x, Ys=x-X%,

(2.6)

Ye=Uz2-X, YVi=U1-Ugz,

obtained from the four-vectors x*=ux1*—x2*, u:*, and
us*. The dot product means

a-bzaobg—a-b. (27)

Since under this four-scalar generalization 1.2 — %4 %,
=1 (a=1, 2), the particle speeds are lost as independent
variables as mentioned earlier. For simplicity of nota-
tion we have dropped the arguments ¢, parametrizing

2213

the particle world lines. They are to be understood and
will be explicitly indicated when convenient. It is noted
that the individual particle speeds occur only in the
variables #1-#s, U;-X, and ug-X.

The dynamics given by Eq. (2.1) is Lorentz covariant
if all inertial observers connected by Lorentz transfor-
mations have the same equations of motion. To convert
this statement into an analytical expression, we follow
Currie! and Hill? and Lorentz-transform Egs. (2.1) to
a frame moving with an infinitesimal velocity with
respect to our original frame. Then, after converting to
the coordinates of the new frame, we find that our equa-
tions are no longer at equal time. This is remedied by
expanding in Taylor series about an equal-time surface
in the new coordinate system. The equations of motion
then dictate the vanishing of an expression which we call
the covariance condition.

For completeness the details of this analysis are given
in Appendix A. The resulting covariance condition for
the two-body problem is

il aao(ta) — Fao(tryte) 1| et

d
= (=1 [21:(t1) —x2:(t2) F—Fa;(t1,t2) }
diy

t1=t2; a#b

(2.8)

In the next section, we will see that this is equivalent to
a set of four coupled equations for the functions fq, ga,
and /.. But first we must define the terms. The fourth
component of the acceleration of the ath particle is

(2.9)

for #40=(14u,%)2 The fourth component of the force
Fag iS
Foo(tsts) = (— 1) o falta,lo) Fot108a(t1,02)

Fusoha(t,te)  (2.10)

and the derivative with respect to the implicit variable
lo is, for example (a=1),

Qgo=dta0/d7,

d

—F1(t,te)

o dasy 8 dus, 9
8 Xop Uzp
—Z[

——:IF”(tl,tz). (2.11)
dlz 6902” dtz 6%2;;

#=0

Now by taking i j in Eq. (2.8), we see that both sides
of the equation must vanish separately, yielding

0=aqo(ta) = Faolt1t2) | (1, (2.12)

and

d
O= —Fa(h,lz) (213)
dat

b

t1=12;a7b
For an n-particle system with equations of motion

() =Fallnta - 10) | tymtyeromtymt (2.14)
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the generalization of Eq. (2.5) for the forces is
Fa(tlytf : 't'll):Z [ Z (xb—xc)fabc+ubgab]- (2.15)
b=1 c¢=1;b<c

The covariance condition, as shown in Appendix B, is
just the n-particle generalization of Eq. (2.8),

6ij[aa0—Fa0(If1,t2' i tn) I t1=tz---=t,,]
n d
=[2 (Fam ) F(tfa- 1o -m]
b=1 dity

)
ti=lg=reo=ty

(2.16)

where (x,—®s); is the 7th component of (x,—x;). Equa-
tion (2.16) exhibits a major difficulty of this approach
to relativistic classical mechanics. For 2<3, both sides
of Eq. (2.16) must vanish separately and one obtains
the zeroth component of the force equation, '

aao(ta) =Fa0(t1,f2‘ . ‘tn) l fy=tg=eertp (nSS) . (2.17)

But for #>3, Eq. (2.17) is no longer necessary for the
solution of Eq. (2.16). However, Egs. (B3), (B8), and
(B2), with the last rewritten in the 0’ frame, combine
with Eq. (B10) to provide a general proof of Eq. (2.17)
for all #. The restriction to four-scaler independent
variables forces the equations of motion to take a four-
vector form.

In the next sections we will further simplify Egs.
(2.12) and (2.13) and exhibit some solutions.

III. FURTHER SIMPLIFICATION

The covariance conditions for the two-body system
with Lorentz-scalar variables for the functions f,, g,
and %, are Egs. (2.12) and (2.13). Equations (2.12) are
purely algebraic and provide two linear constraints on
the functions fa, ge, and %,. The remaining six differ-
ential equations, (2.13), are readily reduced to four
coupled equations for f,, g, and %,. In addition, a suffi-
cient set of two coupled equations follows from the as-
sumption of an additional linear constraint on f,, g,,
and %,. It is this last set of equations that has yielded
the largest and most interesting set of solutions.

In order to reduce Egs. (2.12) and (2.13), we first
note that Eqgs. (2.1) and (2.12) imply

O0=u1- 01 =ur(%, frtus,ga-tuusuhy)
=y1f1+g1+y4h1
) or

3.1)

3.2)

g1=— (y1f1+y4h1) .
Likewise,
2 aa=0— ha=ysfo—y4gs.

For convenience we relabel

flEf:
hlng

fZEF:

3.3
6=G, (3.3)
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such that Egs. (2.1) become.
a1 =F(t1,t2) ’ ti=ty = (X—y1uy) f+(uz —ya)g, (3.4)

@ =Fa(t1,l) | 1yt = — (X—y2us) F+ (11— yu,)G.
(3.5)

The differential condition (2.13) can be written for
a=1:

d
0= Mzo—“Fl (ll,tg)
dty

t1=t3

3 d i}
= Z (“%2,,—— +F2‘, >F1 (3.6)
Xy Uy

u=0

for Fou=Fou(t1,t2) | t=t,- Carrying out the differentiation
of (3.6) and using (3.4) and (3.5), we obtain

O0=w1(Df+¢gF) —un{y:Df+yiDg+ysf
+elG+HF(y1—y2y0) —G(1—y) ]}
+u2k[Dg+f+g(y4G—yzF)] (3- 7)

for
<] <]
D =Y +[1 +F(y3 -y22) —G(y1 —y2y4)]——
M 3y
J 9
F2yr— +[F(y1—y2ys) —G(1—y2) ]—. (3.8)
9ys Y4

Now by looking at the projections of Eq. (3.7) in direc-
tions perpendicular to X, ui, and u,, respectively, one
finds that the coefficients of x, %1, and #s;, must vanish
separately. Further, since the coefficient of #;; vanishes
as a consequence of the vanishing of the other two coeffi-
cients, we are left with

0=Djf+gF, (3.9)
0=Dg+ f+g(yiG—y2F). (3.10)
The corresponding equations for a=2 are
0=DF4GY, (3.11)
0=9G+F+G(yig+y1f), (3.12)
with
a d
=—[1+fs—y)+e(y2—yy) I— —ys—
1 9ys
a d
—2y— —[f(r2—yy)+g(1—yH)]—. (3.13)

9ys 9ys

For ‘“identical’ particles, f— F and g— G under the
exchange y1— —v, and Egs. (3.9) and (3.10) become
equivalent to Egs. (3.11) and (3.12). The solutions dis-
cussed in Egs. (4.1)-(4.7) are all of this type.
Algebraic relations proved in Appendix C, which
reduce the four equations (3.9)-(3.12) to two equations,

are
(3.14)

(3.15)

f=61g,
F=62G
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for
1
= (@2 —y1yst+ys), (3.16)
s ,
Ca= (@2 —y1+y2y4) , (3.17)
Y22 —ys3
and
d=y1*+y22+y3(y—1) —2y1y9y4. (3.18)
Then Egs. (3.9)-(3.12) become
0=(D+F/ey)f, (3.19)
0=(D+f/c))F, (3.20)

where

i) <] <]
D=y— +— +2y—
dy1 9y Y3

19 d
—Fd1/2<— — ——) , (3.21)
Ca 6}12 ay4

(a 2,
D=—{—+yir— yr—)
Y1 9y 9ys

14 a
+fd”2(— —_—— ——) . (3.22)
c10y1 Oy

Thus Egs. (3.14), (3.15), (3.19), and (3.20) provide us
with sufficient conditions for the covariance of (3.4) and
(3.5) with a system of two coupled equations as opposed
to the four equations (3.9)-(3.12) which are both neces-
sary and sufficient for covariance.

Unfortunately the radical d'/? appearing in Egs.
(3.16) and (3.17) is pure imaginary for a range of the
particle velocities u; and u.. Thus, in general, these re-
duced equations have complex forces for solutions.
Another set of equations reducing the four equations
(3.9)-(3.12) to two equations is obtained by replacing
¢1 and ¢; by their complex conjugate in Eqgs. (3.14)-
(3.22).

IV. SOLUTIONS

The existence of solutions of the covariance condition
has already been demonstrated. For the case of one
space and one time dimension, there is the simulta-
neously Galilei invariant interaction®* and the constant
force example.® For three space dimensions, Currie and
Jordan3 have published a set of solutions arising from
the separate vanishing of the linear and nonlinear parts
of their equations. Unfortunately, these solutions have
accelerations parallel to the relative velocity of the two
particles, so the direction of the relative velocity cannot
change during the course of the interaction. Another set
of solutions to the covariance condition is found when
one of the two particles is given an infinite mass.?

The motivation for this study was a desire to incor-
porate the simplicity afforded by tensor notation and
hopefully arrive at a more reasonable set of equations
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to solve. This has indeed been the case, and the follow-
ing solutions are exhibited proving at least the self-
consistency of the covariance condition with the addi-
tional requirement of four scalar variables. All of these
examples are solutions of Eqgs. (3.9)-(3.12), while only
the third is also a solution of Egs. (3.19) and (3.20).

1) f=F=0, (4.1)
§=G=0/(yi— 1)1 (42

(here a is an arbitrary constant);
(@) f=g=1/(1=ys—y0), (4.3)
F=G=1/1—ysty2); (44)
Q) g=f/a, (4.5)
f=ales)(1+y4)/d"2, (4.6)
G=F/c,, 4.7
F=b(c))(1+y4s)/d"?, (4.8)

where @ and b are arbitrary functions of ¢; and ¢, re-
spectively. The functions ¢y, ¢s, and d are given by Egs.
(3.16)-(3.18).

For d'/? pure imaginary, an additional set of solutions
is given by Eqgs. (4.5)-(4.8), with ¢; and ¢, replaced by
their complex conjugates.

These examples, though proving the existence of
solutions of Egs. (3.9)-(3.12), (3.19), and (3.20), are
still pathological as far as physics is concerned. Ex-
amples (1) and (2) are nonvanishing for arbitrarily
large particle separation. Although example (3) can be
given any rate of asymptotic decrease through the arbi-
trary functions a(cy) and b(cs), the forces become singu-
lar for equal velocities through the vanishing of d at
this point. In addition, the forces become complex,
since for regions of velocity space the variable d/2 is
pure imaginary. So the search for physical solutions of
the covariance condition must continue.

In conclusion, the examples satisfying the covariance
condition will be converted back to particle velocities
and positions and given in their Newtonian form. The
particle accelerations as=d?x/d* are related to ap by

ap=14u)[(up-as)ustas],
and the solutions (4.1)-(4.8) become

(1) Q= am(ﬂ2“%1'%2ﬂ1), (49)
a
= Em(ul—ul'uzlb) (4.10)
for @ constant;

(2) Q= (1 —uy-us+X- ul)_l
Xx+ui(x-ui-u-u)+us], (4.11)

a2=(1——u1-u2—x~u2)‘1
X[—x—uo(x-ugtus-us)+ui]; (4.12)



2216

) er=(1/54u1-us)a(l/rn)

X[aﬁ-—!—ul(a‘:-ul—g‘ul-uz)—i—g'ug], (413)
= (1/&) (14u1-u2)b(1/7%)
X[—f—uZ(ﬂAﬁ'112"‘77%1'142)‘}‘77111] (414)
for

=14 u)?+ (& us)* 4 (£ ust-u,)?
—(%1'152+f'ulf}‘uZ)2jll2, (415)

e
1 (4.16)

n= —————[E=2 (W —u1-usu12) ],

1—(’1/£1'%2>2
r=\x|, x=r%&,

and @, b are arbitrary functions of their respective argu-
ments. An additional set of solutions is also obtained by
substituting —¢ for £ in Egs. (4.16).

V. SUMMARY

We have attempted to demonstrate the usefulness of
a tensor formalism even when the equations are not
manifestly covariant. The Newtonian equations of
motion are cumbersome at best, when discussed in the
framework of Minkowski space. But nonetheless, their
very existence, and the possibility of an alternative,
more easily solved relativistic dynamics than light-cone
and other action-at-a-distance approaches,® makes the
quest interesting and maybe even worthwhile.

The primary success here has been the reduction of
the covariance condition for the two-body problem from
18 to four coupled nonlinear partial differential equa-
tions for the forces. This has been done at the expense of
two independent variables, the speeds of the individual
particles u;? and u,% In addition, an algebraic relation
was discovered which further reduced these four coupled
equations to a sufficient two equations. Solutions have
been found for both the four and two coupled equations,
though some are physically disqualified for lack of an
asymptotic condition and others become complex or
singular. It is emphasized that the equations solved here
are in all cases sufficient but not necessary for the Currie-
Hill covariance condition. This is because of the restric-
tion to Lorentz-scalar variables that was used to sim-
plify the -equations. Hopefully, this simpler set of
equations will yield to further analysis and lead to more
interesting solutions of the covariance condition.
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APPENDIX A: COVARIANCE CONDITION
FOR TWO-BODY SYSTEM

The covariance condition is the statement that Egs.
(2.1), as recorded by observer O of Fig. 1, also describe
the particle dynamics for all observers related by
Lorentz transformations. For example, observer O’ of
Fig. 1, related to O by a Lorentz transformation, sees
the world lines x,/(¢') and velocities u,’'(¢") described by
the force equation

aa,[t,] = Fa,Dl,yh/] l ty'=ty'=t'

where F,/[i1,t2']] =i is the same functions of its
arguments as Fo(f1,t2) | s,=1, but with the particle posi-
tions and velocities as observed in O" along an equal-
time surface in O’. For the observer O, the acceleration
at event M on the world line of particle 1 is determined
by the particle positions and velocities at My and M.
However, the observer O’ sees an acceleration at My
that is determined by particle positions and velocities at
My and N. Thus, for a=1, the force of Eq. (A1) is ob-
tained from the force of Eq. (2.1) by replacing all posi-
tions and velocities at the events My and M, in O by
their corresponding positions and velocities at M1 and
NinO'.

Under an infinitesimal Lorentz transformation, all
four-vectors transform like the particle positions,

(A1)

€
X, — X, =X+ el,, (A2)

€
ta—t =tate-X,. (A3)

Thus, if we consider the effect of an infinitesimal Lorentz
transformation on Eq. (2.1), we obtain

ai(t) —8—> et (1) = e1(t) fean(ty) , (A4)
’
t /" -
/ t
N
I\ M
™ t,=t,
’
- - ‘5
=177 7| # = tany]
X

Fi1c. 1. Two-body scattering problem.
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€
Fl(ll;tﬂ) l t1=te > Fl’(tlat2) ‘ t1=tg

=Fi(ts,12) | n—vsFeFro(t,ta) | umra, (AS)

where

ao(ty) = (1/%10) 1+ @1(t1) (A6)

and
(AT)

The Lorentz-transformed Fi'(f1,t2) of Eq. (AS) is de-
pendent upon the event coordinates at M; and M (see
Fig. 1), as observed from O’. But the acceleration ob-
served at M; by O’ must be due to a force dependent
upon the event coordinates at M; and IV if our definition
of covariance is to mean anything. In addition, the equa-
tion of motion as seen by O’ must be parametrized by
the time ¢/ of O’. To carry out these instructions, we

note first that a parameter transformation is facilitated
by Eq. (A3),

F]'(il,lg) = Fll(h(il/),lz(tzl))E F1’[i1,,t2l:|

Fro(t,te) | tymty = (tb10g120%1) (11,19 I ti=ty -

(A8)
for
ta(td) =t —e-x,(t,)+0(e?).

The force obtained in this manner is still dependent
upon events My and M, only with the time, position,
and velocity values as observed by O’. To obtain a force
dependent upon the events M and NV in O’, we express
F/[t/,ty] as a Taylor series about the event N,

Fi/[t',ty ]
=F/[t/,t/ —¢- (x1—%2) (1) ]

d
=F/[t/t/]—e (Xl*xz)<w);ll—Fl'Dl',tz] (A9)
22

to=1t1"

Thus, with Egs. (AS), (A8), and (A9), we obtain a rela-
tion between the force dependent upon events M; and
M as seen from O and the force dependent upon events
M, and N as observed by O/,

F/[t' 0] J
=F/[t 0/ J+e (X1—%2) (ry—F [t 12 ]
dtZ to=t1’
=Fy(t1,t1) +eF10(t1,t1)

d
+e- (X1—X») <u'>gt*F1'[t1’,t2] (A10)

to=t1’

The acceleration at 3; as observed by O’ can be
parametrized by ¢ again by use of (A3):
o () =)' () =e'[1"]. (A11)

Now with (A4), (A10), and (Al11) the covariance
condition

o [0 ]=F/[t/,t."]

2217
becomes
ai(t) +earo(t) =Fi(t,tr) +eFo(ty,ta)

b
to=t1"

d
+&- (X1—X,) (u')d—tFllDl',fﬂ
2
which to O(?) is equivalent to

a1(ty) Feano(ty) =Fi(ts,t) +eF10(ts,t)

d
+e- (X1—%2) y—F1(ta,t2) (A12)
dts 1=tz
Now eliminating e from Eq. (A12), we obtain
diilaro(t) —Fro(tstr) ]
= (1:—2%24) (cy—F 15(f1,2) , (Al13)
dty

ti=tg

the covariance condition for the two-body problem with
the restriction to Lorentz-scalar variables.

APPENDIX B: COVARIANCE CONDITION
FOR n-BODY SYSTEM
For the #-body system the Newtonian force is given
by Eq. (2.13),

Fa(il,tz,...,tn)=zn:[ i (X5 —X,) favet+Usgas], (B1)

b=1 c¢=1;b<c

where f.p. and gep are taken to be functions of the
Lorentz scalars formed from the four-vectors

{(xe—xf)“(xh_xb)u, (%a—xs) thnyy UettUsu}
for e, f,hk=1,2,...,n.

The equations of motion in the O coordinate frame of
Fig. 2 are [Eq. (2.14)]

a,(t) =F(ti,tz - 1a)] ty=ty=reo=ty=t

By covariance we must have the same equation in the
O’ coordinate frame of Fig. 2 connected by an infinitesi-

(e=1,...,n). (B2)

X,
Xo ,°
1
/ 4
l t
N —
! N2 3/ -—
[} M t
’—I/ Mz M3 Mn ,
! %
! -
[} _-=-""
1 - -

F16. 2. n-body scattering problem.
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mal Lorentz rotation to the O frame,

&a/[t,] =Fa,[tll,t2’, e ,in,]tl'=t'2_~_...¢”l=g'

(e=1,...,m). (B3)

The force of Eq. (B2) is the same function of positions
and velocities from the events M1, M, ..., M, as seen
from O as the force of Eq. (B3) is of the events M,
Na,..., N, as seen from O'.

Under an infinitesimal Lorentz transformation, we
have for particle 1

a1(t) — er/ (t) = @1(ty) Feaso(ty) (B4)

and
Fl(tl,tz, e ,tn) i Fll(tl,tz, e ,tn)

=F1(l1,t2, e ,tn)+£F10(t1,f2, cee ,Ifn) (BS)
for

Flo(tl,tg,. . ,tn)

=£[ ZM: (%s0—%c0) favet2v0gar]. (B6)

b=1 c=1;b<c

In the same manner as for the two-body case we trans-
form to the time parameters of O’ by use of Eq. (A3),
with e=1, 2,..., n:

B/ ((t)) b2ty - - a6 )=F [0 8. . ot ]. (BT)

But the force of Eq. (B7) is still in terms of the positions
and velocities at the events My, Mo, ..., M,, though in
the language of the O’ coordinate frame. To obtain a
force explicitly dependent upon the events My, N, ...,
N, in O, we express F1'[t1,te/, . . . .’ ] as a Taylor series
about the events Vg, N3,..., NV,

Fll[t]_’,fz’, e ,ln’] P
=F1/I:t1,7t1,; . ')tl/_]—s' Z (xl—'xlc)d—

k=2 %
XELLH, ot ity o oty Jumr . (BS)

Thus with Egs. (B3), (B5), and (B7) we have for
Eq. (B8)

[Fu(tsts,. . .tn)FeF10(ta,tey. o obn)]] timtameeetn
n d
=a/[t']—e 3 (xi—%)—
k=2 dty

XELLH, ot ity - ot ]

tp=t1’

(B9)

or, with (B4) and (B2) and neglecting terms to O(e?),

5”'[0!10—171001,&, e ytn)]t1=tz=-~~=tn

n d
= Z (xli—xki)—
k=2 dix

XE1i(tytaye o osliye - - Jln) timtameeemtn, (B10)

JAMES G. WRAY 1

the covariance condition for the #-body problem with
the restriction to Lorentz-scalar variables.

APPENDIX C: ALGEBRAIC RELATION

In this appendix we will prove that Egs. (3.9), (3.14),
and (3.15) imply Eq. (3.10). The proof that Egs. (3.11),
(3.14), and (3.15) imply (3.12) goes through in the
same manner. Thus we have the contention

0=Df+gF
f=eg
F=CzG

= 0=Dg+f+g(yG—y:F) (C1)

for D given by Eq. (3.21).

The algebra of the proof is simplified by the following
choice of variables:
s1=y2"—Ys,
S2=Y1—Y2V4,
W=Y3ys—Y1Y2.

r1=y1"—ys,
r2=Y1Y4—Y2,
z=9,2—1,

(C2)

In this notation we have for ¢; and ¢, of Egs. (C1)

a=(1/m)(@"2=r), cr=(1/51)(@"=s)

for d=ry®—riz=s2—s13.

(C3)
The right-hand side of Eq. (C1) can be written

Dg=—f—g(y.G—yl’)
= —gler+(a—c2y2)G]. (C4)
In addition,
Df=D(c1g) = —gh'=—cG,

(CS)
Dg=—(g/c1)(DerteaG) .

The proof of (C1) consists of demonstrating that Egs. .
(C4) and (CS5) are equivalent.
A direct calculation yields

CzdI/ZG
Da=a(a= "), (c6)
1+y4
which, upon substitution into Eq. (CS), gives
arz 1
Dg= —g[Cl—CzG(‘—"‘ - —")} . (C7)
I+y:
The algebraic relation
ar? 1
Czyz—y4=62<——‘ - *) (C8)
1+y4 C1

can be proved to yield the final expression, Eq. (C4).



