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Forces are found that satisfy the covariance condition of Currie and Hill for Newtonian equations of
motion of two particles in four-dimensional space-time. Examples are given that can decrease, at any pre-
scribed rate, for large particle separation. Unfortunately these latter forces become complex and even
singular for certain regions of velocity space. The technique used is to simplify the covariance condition by
using four-vector variables as much as possible.

I. INTRODUCTION
' 'N Newtonian equations of motion the forces are func-
& - tions of the particle positions and velocities at one
time. Since time is a scalar under Galilei transforma-
tions, Galilei covariance is achieved by requiring the
forces to transform as tensors. But, since time is the
component of a vector under Lorentz transformations,
Lorentz covariance of Newtonian equations of motion
cannot be gained by simply ascribing tensor properties
to the forces. So, in the main, Newtonian equations of
motion were abandoned at the advent of special rela-
tivity. Now, sixty years later we find renewed interest in
the problem of Lorentz-covariant Newtonian equations
of motion. ' A major step was taken with the independent
discoveries by Currie' and by Hill' of differential con-
ditions, necessary and su%.cient, for Lorentz covariance
of Newtonian equations of motion. These conditions are
coupled nonlinear partial differential equations for the
forces and will be referred to in this text as the covari-
ance condition.

Known solutions of the covariance condition do not
include any physically interesting examples. Some are
for two-dimensional space-time. '4 The solutions of
Currie and Jordan for two particles in four-dimensional
space-time unfortunately have accelerations propor-
tional to the relative velocity, so that for collinear
motion there is no scattering.

The primary result of this work is the discovery of
several new solutions of the covariance condition for
two particles in four-dimensional space-time. The ac-
celerations are not in the direction of the relative ve-
locity and some examples have enough arbitrariness to
require asymptotic decrease at any prescribed rate for
large particle separation. However, accompanying the
arbitrariness in asymptotics is a restriction to certain
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regions of velocity space outside of which the forces
become complex and singularities appear.

An alternative program for obtaining Lorentz-
covariant equations of motion has been proposed by
Pearle. ' The Pearle equations are second-order differ-
ential equations for the particle positions in terms of
a Lorentz scalar variable s. For example, one could re-
quire that the proper times of the particles be equal
providing one scalar s to parametrize all world lines.
Then these clocks must be synchronized in order to
correlate particular points on the respective particle
world lines through the equations of motion. In the ex-
amples worked out by Pearle, ' this is accomplished by
setting s =0 at the instant the particles begin to interact.
Unfortunately, the Pearle dynamics are such that the
interaction will range from retarded or advanced to in-
stantaneous, depending on the Lorentz frame of the
observer. Thus his covariance condition is necessarily
broad enough to require that these be equivalent de-
scriptions of the dynamics. The Currie-Hill covariance
condition is more severe in that it requires an interac-
tion, instantaneous in one Lorentz frame, to have an
equivalent instantaneous interaction description in any
other Lorentz frame. Superimposed upon the Pearle
framework, the Currie-Hill covariance condition would
demand that particle clocks synchronized on equal-time
surfaces in two different Lorentz frames facilitate iden-
tical instantaneous dynamics.

In the spirit of Pearle's approach, we use four-vector
variables as much as possible and find a simpler set of
equations for the covariance condition. For the two-
body problem, there is a reduction from 18 to four
coupled equations for the forces. The price paid is the
loss of individual particle speeds as independent vari-
ables, so there are more solutions of the original
Currie-Hill covariance condition than of these simpler
equations. "

In the following sections we will rederive and solve
the covariance condition with four-vector variables.
Section II will introduce the notation and summarize
the derivation of the covariance condition. The equa-

' P. Pearle, Phys. Rev. 168, 1429 (1968).
P. Pearle (Ref. 5), Appendix A.

7 A reduction from 18 to six equations can be made without any
loss in the number of independent variables: R. N. Hill (private
communication). Thus by going to four-vector variables we are
actually eliminating only two equations.
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tions to be solved are reduced to a manageable form in
Sec. III and the solutions stated in Sec. IV. The paper
is most concisely summ. arized by the Newtonian equa-
tions of motion [Eqs. (2.1) and (2.5)], the covariance
condition [Eqs. (2.12) and (2.13)], and the new solu-
tions [Eqs. (4.9)—(4.14)7.

II. COVARIANCE CONDITION

In this section, the covariance condition will be de-
rived for the two-body problem in four-dimensional
space-time. A major simplification of the resulting equa-
tions is achieved by a restriction to four-vector vari-
ables. This is not necessary to formulate the covariance
condition, as is evident from the original papers of
Currie' and of Hill. ' The price for this simplification is
the loss of individual particle speeds as independent
variables. The generalization of this approach to the
e-body problem is also given.

Consider Newtonian equations of motion for a system
of two particles,

(2.1)
5,,[n.o(t.)—F.,(t„t,)]~

„=„
&.(t.) =I".(t~ to) I ~i=~, (a= 1, 2).

the particle world lines. They are to be understood and
will be explicitly indicated when convenient. It is noted
that the individual particle speeds occur only in the
variables u~ Q2, U~ x, and u2 x.

The dynamics given by Eq. (2.1) is Lorentz covariant
if all inertial observers connected by I.orentz transfor-
mations have the same equations of motion. To convert
this statement into an analytical expression, we follow
Currie' and HilP and Lorentz-transform Eqs. (2.1) to
a frame moving with an infinitesimal velocity with
respect to our original frame. Then, after converting to
the coordinates of the new frame, we find that our equa-
tions are no longer at equal time. This is remedied by
expanding in Taylor series about an equal-time surface
in the new coordinate system. The equations of motion
then dictate the vanishing of an expression which we call
the covariance condition.

For completeness the details of this analysis are given
in Appendix A. The resulting covariance condition for
the two-body problem is

In this equation, the accelerations are

n, =du, (dr, , (2.2)

d
—( 1) [x1i(tl) x2i(t2)] Faj(tlyt2)

tl=t2; ag b

x.a = (t.,x.) (2.4)

is the space-time position of particle u. The forces F,
are written as functions of their implicit arguments, the
time coordinates of the particles. More explicitly, to
incorporate the correct tensor properties under transla-
tion and rotation we write

~.(ti, to) =(—1) +'[»(t~) —»(to))f.(t~, to)

+ul(tl)g (tl t2)+u2(t2)h (tl t2) (2 5)

where w, is the proper time of the ath particle. The
velocities u, are the space components of the four
vectors

u J'=dx, a/dr„ (2.3)
where

(2.8)

In the next section, we will see that this is equivalent to
a set of four coupled equations for the functions f„g„
and h, . But 6rst we must dehne the terms. The fourth
component of the acceleration of the uth particle is

ciao =duao(dr a (2.9)

for u, o (1+u ') '". The f——ourth component of the force
F~o is

F o(ti, to) = (—1) "'xof.(4,t2)+uiog. (ti, to)

+uooh. (tg, to) (2.10)

and the derivative with respect to the implicit variable
to is, for example (a= 1),

where f„g„andh, are necessarily rotational scalars
and therefore are functions of the rotational scalars F, (t, t )
made from the three-vectors x~—x2, u~, and u2. The
innovation made here is to require the functions f„g„
and h, to depend upon only the four scalars

4$» 8

p,=o J]g Qggtt,

QQ» 8
+ — - Fg, (tg, to). (2.11)

dt2 BQ»
py=uy s& $3=x's~

p2 =Q2' s, $4 =uj ' Q2,
(2.6) Now by taking iN j in Eq. (2.8), we see that both sides

of the equation must vanish separately, yielding

obtained from the four-vectors x&—= x~&—x~&, u~&, and
Q2&. The dot product means aild

0 Dao(ta) Fao(ty&to)
I ty=t2 (2.12)

a'~ =ao~o —R (2 &)

Since under this four-scalar generalization u, ' ~ Q, u,
= 1 (a= 1, 2), the particle speeds are lost as independent
variables as mentioned earlier. For simplicity of nota-
tion we have dropped the arguments t parametrizing

0= F.(tg t )
~~b ti=t2; a7'-b

(2.13)

~a(t) =I'a(4)tO .t.) I ~,=~,...=~,=i (2.14)

For an e-particle system with equations of motion
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the generalization of Eq. (2.5) for the forces is

n n

F,(tl, t2 t„)= Q [ Q (xb —x,)f, b t+ubgzbf. (2.15)
b=l c=1;b&c

The covariance condition, as shown in Appendix 8, is
just the I-particle generalization of Eq. (2.8),

~„E., F.—,(t„t," t.) I „=„...=,„j
P (X. Xb), —F.,(—tl, t, tb t„)

such that Eqs. (2.1) become

421 Fl(tl t2)
~

t =t, =(»—ylul)f+(u2 —y4ul)g, (3.4)

422 E2(tl t2)
~

t =t (x y2u2)F+(ul y4u2)G

(3.5)

The differential condition (2.13) can be written for
a 1

0=122—F 1(t,lt )2

A2 t'1=52

tl=t2=" ~=t~

(2.16)

8 8= Q ~

—242„—+.F2„F1
tt=o ~ BXtt 8242tt

(3.6)

III. FURTHER SIMPLIFICATION

The covariance conditions for the two-body system
with Lorentz-scalar variables for the functions f„g„
and h, are Eqs. (2.12) and (2.13). Equations (2.12) are
purely algebraic and provide two linear constraints on
the functions f„g„andh, . The remaining six differ-
ential equations, (2.13), are readily reduced to four
coupled equations for f„g„andh, . In addition, a suK-
cient set of two coupled equations follows from the as-
sumption of an additional linear constraint on f„g„
and h, . It is this last set of equations that has yielded
the largest and most interesting set of solutions.

In order to reduce Eqs. (2.12) and (2.13), we first
note that Eqs. (2.1) and (2.12) imply

Nl '421 Nl (&ttfl+ttlttgl+N2ttttl)

y 1f1+g1+y 4k 1

or

Likewise,
gl = —(ylfi+y4h1) .

N2 '412 =0~ h2 =y1f2 y4g2~—(3.1)

(3.2)

For convenience we relabel

where (x,—xb), is the ith component of (x,—xb). Equa-
tion (2.16) exhibits a major difficulty of this approach
to relativistic classical mechanics. For m&3, both sides
of Eq. (2.16) must vanish separately and one obtains
the zeroth component of the force equation,

~.o(t.) =F.o(ti, t2 t-)
~ t,=t2=".t„(42&3) (2 17)

8ut for N&3, Eq. (2.17) is no longer necessary for the
solution of Eq. (2.16). However, Eqs. (83), (88), and
(82), with the last rewritten in the 0' frame, combine
with Eq. (810) to provide a general proof of Eq. (2.17)
for all m. The restriction to four-sealer independent
variables forces the equations of motion to take a four-
vector form.

In the next sections we will further simplify Eqs.
(2.12) and (2.13) and exhibit some solutions.

B B
+2y2—+LF(yl —y2y4) —G(1—y4')7 (3 g)

By& By4

Now by looking at the projections of Eq. (3.7) in direc-
tions perpendicular to x, u&, and u2, respectively, one
finds that the coefficients of xi„u~I„andN2I, must vanish
separately. Further, since the coeKcient of nU, vanishes
as a consequence of the vanishing of the other two coeS-
cients, we are left with

O=Df+gF,

O=Dg+f+g(y4G y2F).

The corresponding equations for a=2 are

0=X)F+Gf,

0 =SG+F+G(y4g+yl f),
with

B B
&= —

t 1+f(yo —yl')+gb —yly4) 3——y.
By2

B B

(3.9)

(3.10)

(3.11)

(3.12)

—2y, —
Lf(y2 —y,y4)+g(1 —y4')g . (3.13)

By& By4

For "identical" particles, f +F and g
—b G un—der the

exchange yl-+ —y2 and Eqs. (3.9) and (3.10) become
equivalent to Eqs. (3.11) and (3.12). The solutions dis-
cussed in Eqs. (4.1)—(4.7) are all of this type.

Algebraic relations proved in Appendix C, which
reduce the four equations (3.9)—(3.12) to two equations,
are

for F~„—=F,„(ttl)2~ t,=t, . Carrying out the differentiation
of (3.6) and using (3.4) and (3.5), we obtain

o =»(Df+gF) »bb 1D—f+y4Dg+y4f
+gLG+F bi —yoy4) —G(1—y4') j)

+»bLDg+f+gb4G y2F)j —(3 7)
for

B B
D =y4 +D+F(yo —y2') —G(yl —y2y4))—

Byy By2

f1=f f2=F—
g2=—G,

(3.3)
f=t'lgt
P =c2G

(3.14)

(3.15)
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for

C], =
1

(d'" —yly4+y2)

(d'"—y1+y2y4)
y3

(3.16)

(3.17)

to solve. This has indeed been the case, and the follow-
ing solutions are exhibited proving at least the self-
consistency of the covariance condition with the addi-
tional requirement of four scalar variables. All of these
examples are solutions of Eqs. (3.9)—(3.12), while only
the third is also a solution of Eqs. (3.19) and (3.20).

(1) f=F=0, (4.1)
d =y1 +y2 +y2(y4 1) 2y1y2y4 ~

Then Eqs. (3.9)—(3.12) become

(3.18)
g =G= tb/(y42-1) 't2

(here a is an arbitrary constant);

(4.2)

where

0 = (D+F/cl) f,
o =(~+f/")F,

(3.19)

(3.20)

D =y4 + +2y2
~y ~ y2 ~y3

|'1 8 8
Fd't2~ ———+, (3.21)

(C2 ~y2 ~y4

8 8 8
' +y4 +2y1

( 1 8 8
+fd't2~ ——— —

~
~ (3.22)

kC, ayl ay41

Thus Eqs. (3.14), (3.15), (3.19), and (3.20) provide us

with sufficient conditions for the covariance of (3.4) and

(3.5) with a system of two coupled equations as opposed
to the four equations (3.9)—(3.12) which are both neces-

sary and sufhcient for covariance.
Unfortunately the radical d"' appearing in Eqs.

(3.16) and (3.17) is pure imaginary for a range of the
particle velocities u~ and u~. Thus, in general, these re-
duced equations have complex forces for solutions.
Another set of equations reducing the four equations
(3.9)—(3.12) to two equations is obtained by replacing
cl and c2 by their complex conjugate in Eqs. (3.14)—
(3.22) ~

IV. SOLUTIONS

The existence of solutions of the covariance condition
has already been demonstrated. For the case of one

space and one time dimension there is the simulta-
neously Galilei invariant interaction' 4 and the constant
force example. ' For three space dimensions, Currie and
Jordan' have published a set of solutions arising from
the separate vanishing of the linear and nonlinear parts
of their equations. Vnfortunately, these solutions have
accelerations parallel to the relative velocity of the two
particles, so the direction of the relative velocity cannot
change during the course of the interaction. Another set
of solutions to the covariance condition is found when
one of the two particles is given an infinite mass. '

The motivation for this study was a desire to incor-
porate the simplicity afforded by tensor notation and
hopefully arrive at a more reasonable set of equations

(2) f=g= 1/(1 —y4 —yl),
F=G = 1/(1 y4+y2);—

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(3) g =f/~1,

f=~(~2)(1+y4)/d"',

G =F/c2,

F=~( )(1+y )/d",
where a and b are arbitrary functions of c& and c2, re-
spectively. The functions c&, c2, and d are given by Eqs.
(3.16)—(3.18).

For d'tt' pure imaginary, an additional set of solutions
is given by Eqs. (4.5)—(4.8), with c1 and c2 replaced by
their complex conjugates.

These examples, though proving the existence of
solutions of Eqs. (3.9)—(3.12), (3.19), and (3.20), are
still pathological as far as physics is concerned. Ex-
amples (1) and (2) are nonvanishing for arbitrarily
large particle separation. Although example (3) can be
given any rate of asymptotic decrease through the arbi-
trary functions a(c1) and b(c2), the forces become singu-
lar for equal velocities through the vanishing of d at
this point. In addition, the forces become complex,
since for regions of velocity space the variable d"' is
pure imaginary. So the search for physical solutions of
the covariance condition must continue.

In conclusion, the examples satisfying the covariance
condition will be converted back to particle velocities
and positions and given in their Newtonian form. The
particle accelerations ab =d2xb/dt2 are related to nb by

0tb= (1+Ub )L(ub'ab)ub+ab7 q

and the solutions (4.1)-(4.8) become

(1) a1= (112—Q1 ' N2U1), (4.9)
P(N1 24 )2 —171t2

Cp = (ill —N1 ' 242U2) (4.10)
L(241 242)2 —17 t2

for a constant;

(2) u1 ——(1—241.242+X U,)
—'

+EX+U1(x'U1 N1'N2) 1U27 y (4.11)

422 = (1—241 242 —X U2)
—'

XL X U2(x'U2+N1'242)+U17; (4.12)
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(=[1+(x u&)'+(i u2)'+(*" u~i u&)'

(»—u&+i u~i u)0']'", (4.15)

(3) -.= (1/t) (1+»»)~(1/rn)
Xpx+uy(i ' uy —f'» ' Q0) +fu0j, (4.13)

n, =(1/()(1+up u0)b(1/rl)
X$ + u2(+ ' u2+'gttl' tt2)+ltu1j (4 14)

for

APPENDIX A: COVARIANCE CONDITION
FOR TWO-BODY SYSTEM

The covariance condition is the statement that Eqs.
(2.1), as recorded by observer 0 of Fig. 1, also describe
the particle dynamics for all observers related by
Lorentz transformations. For example, observer 0' of
Fig. 1, related to 0 by a Lorentz transformation, sees
the world lines x '(t') and velocities u, '(t') described by
the force equation

@+i'(u2—Qy B0uy)),
1—(» u,)'

a,'Lt'3=F, 'L4 t0 jI & '=& '=&' (A1)

[$—i (u~ —u~ m0u2)$,
1—(» ' Q0)

r= ix), x=ri,

(4.16)

and a, 6 are arbitrary functions of their respective argu-
ments. An additional set of solutions is also obtained by
substituting —$ for $ in Eqs. (4.16).
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V. SUMMARY

Ke have attempted to demonstrate the usefulness of
a tensor formalism even when the equations are not
manifestly covariant. The Newtonian equations of
motion are cumbersome at best, when discussed in the
framework of Minkowski space. But nonetheless, their
very existence, and the possibility of an alternative,
more easily solved relativistic dynamics than light-cone
and other action-at-a-distance approaches, ' makes the
quest interesting and maybe even worthwhile.

The primary success here has been the reduction of
the covariance condition for the two-body problem from
18 to four coupled nonlinear partial differential equa-
tions for the forces. This has been done at the expense of
two independent variables, the speeds of the individual
particles u~' and u~'. In addition, an algebraic relation
was discovered which further reduced these four coupled
equations to a sufficient two equations. Solutions have
been found for both the four and two coupled equations,
though some are physically disqualified for lack of an
asymptotic condition and others become complex or
singular. It is emphasized that the equations solved here
are in all cases sufficient but not necessary for the Currie-
Hill covariance condition. This is because of the restric-
tion to Lorentz-scalar variables that was used to sim-

plify the equations. Hopefully, this simpler set of
equations will yield to further analysis and lead to more
interesting solutions of the covariance condition.

X~ ~ X~ =X0+et~, (A2)

t, —+ t,'=t,+rx, . , (A3)

Thus, if we consider the effect of an infinitesimal Lorentz
transformation on Eq. (2.1), we obtain

Cl(tl) ~ Cl (tl) = rL1(tl) +RQ10(tl) (A4)

$ ~ tan ')
It

where F,'Ltq', t0')~~, ~, is the same functions of its
arguments as J,(tr, t0)

~ ~,=~, but with the particle posi-
tions and velocities as observed in 0' along an equal-
time surface in O'. For the observer 0, the acceleration
at event 3fj on the world line of particle 1 is determined

by the particle positions and velocities at 31j and 3f&.
However, the observer 0' sees an acceleration at 3/II

that is determined by particle positions and velocities at
till, and 1V. Thus, for a=1, the force of Eq. (A1) is ob-
tained from the force of Eq. (2.1) by replacing all posi-
tions and velocities at the events 3I~ and JI2 in 0 by
their corresponding positions and velocities at Mq and
2V in 0'.

Under an infinitesimal Lorentz transformation, all
four-vectors transform like the particle positions,

The author is grateful to T. F. Jordan for suggesting
this problem, much fruitful discussion, and a critical
reading of the manuscript. Also, valuable discussions
with C. Shukre are gratefully acknowledged. FIG. 1. Two-body. scattering problem.
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becomes
Fl(tl, 4)

~
«=~2 ~ Fl'(ti, t2)

~
«=~2

nl(tl) +&(210(tl) Fl(tl)tl) + &P10(tl~tl)
Fl(tl)t2)

~ « t2=+&P10(tl)t2)
~ tl=f2, (AS)

where

n10(tl) (1(2110)ul' nl(tl)
1

+e' (xl K2)(«') Fl Ltl tt2]

A6
which to O(e2) is equivalent to

t2=tl'

and

P10(tl)t2)
~ «=~, = (»0gl+2t20ttl) (1,, «) ~

«=12 (A&)

The Lorentz-transformed Fl'(tl, t2) of Eq. (AS) is de-

pendent upon the event coordin. ates at Ml and M2 (see
Fig. 1), as observed from 0'. 8ut the acceleration ob-
served at M& by 0' must be due to a force dependent
upon the event coordinates at 3f~ and Ã if our definition
of covariance is to mean anything. In addition, the equa-
tion of motion as seen by 0' must be parametrized by
the time t' of O'. To carry out these instructions, we
note first that a parameter transformation is facilitated
by Eq. (A3),

Now eliminating e from Eq. (A12), we obtain

t)(j[(210(tl) P10(tlt tl)]

(&1( 2 2() (tz) Plj(tl&4)
df2 tl=t2

(A13)

the covariance condition for the two-body problem with
the restriction to I.orentz-scalar variables.

nl(tl) +RQ10(tl) Fl(tlqtl) +eP10(tl)tl)

d
+E' (Xl X2) (&y) Fl(tl)4) . (A12)

d~2 tl=t2

for

Fl'(tl, t2) =Fl'(tl(tl'), t2(t2'))= Fl'[tl', 4'] (AS)
APPENDIX B: COVARIANCE CONDITION

FOR n-BODY SYSTEM

t.(t.') =t.' —e x.(t.')+O(e2) .

The force obtained in this manner is still dependent
upon events M~ and 3I2 only with the time, position,
and velocity values as observed by O'. To obtain a force
dependent upon the events 3Ej and N in 0', we express
Fl'[tl', t2'] as a, Taylor series about the event E,

Fl'[tl', t,']
=F1'[tl', tl' —e (xl —X2)((„)]

=F,'[tl', tl'] —e (xl —x.,)(„,)
—F,'[t, ', t,] . (A9)
d4 t2=tl'

Thus, with Eqs. (AS), (AS), and (A9), we obtain a rela-
tion between the force dependent upon events M~ and
%~ as seen from 0 and the force dependent upon events
3f& and S as observed by 0',

Fl'[tl', t,']

For the e-body system the Newtonian force is given

by Eq. (2.15),

F.(t t„l.. . ,t„)=p[ g (X0—x,)f„0.+u0g, 0], (81)
b=l c=l; b&c

where f,0, and g, 0 are taken to be functions of the
I.orentz scalars formed from the four-vectors

{(X,—X,)~(X,—X0)„,(20. 2t&)~2t,„,N—,~N&„)

for e, f, ))t, 4=1, 2, . . . , 22.

The equations of motion in the 0 coordinate frame of
Fig. 2 are [Eq. (2.14)]

n.(t) =F.(tl, t2 t„)
~
«=(,=...=,„=, (a=1, . . . , 22). (82)

By covariance we must have the same equation in the
0 coordinate frame of Fig. 2 connected by an infinitesi-

Xo

Fl [tl )t2 ]+e (xl K2) ((1') Fl [tl )t2]
d/2

Fl(tl tl) +eP10(tl tl)
d

+& ' (Xl X2) («') Fl [tl )t2]
dt, )

t2=tl'

t2=t1'
(A10)

The acceleration at M~ as observed by 0' can be
parametrized by t' again by use of (A3):

nl'(tl) =nl'(tl(tl')) =—nl'[tl']. (A11)

Now with (A4), (A10), and (A11) the covariance
condition

nl [tl ]=F1 [tl FIG. 2. n-body scattering problem,
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and
421(tl) ~ 421 (tl) =421(tl)+e4210(tl) (84)

Fl(tl, t2, . . ,t„)~. Fl'(tl, t2, . . ,t„).
Fl(tl, t2 ~ ~ ~, t )+ eFl (0ltt2 ~ ~ ~ t ) (35)

for

F10(tlit2i itn)

mal Lorentz rotation to the 0 frame,

+tt [t ] Ftt [tl it2 i ~ ~ ~ itn ]tl =t'2= ~ ~ tn'=t'

(a=1, . . . , tt). (83)

The force of Eq. (82) is the same function of positions
and velocities from the events Ml, 352, . . . , 3I„asseen
from 0 as the force of Eq. (83) is of the events cV1,

E2, . . . , S„asseen from 0'.
Under an infinitesimal Lorentz transformation, we

have for particle 1

the covariance condition for the e-body problem with
the restriction to Lorentz-scalar variables.

APPENDIX C: ALGEBRAIC RELATION

In this appendix we will prove that Eqs. (3.9), (3.14),
and (3.15) imply Eq. (3.10). The proof that Eqs. (3.11),
(3.14), and (3.15) imply (3.12) goes through in the
same manner. Thus we have the contention

O=Df+gF
f=clg 'm O=Dg+f+g(y4G y2F) —(C1)
F=C2G

for D given by Eq. (3.21).
The algebra of the proof is simplified by the following

choice of variables:

» =3'2 3'3 )

n n

( X00—X.0)f.„+I„g.,]. (86)
b=l c=lt b(c

'f2 =PI/4 —P2,

3 =p'4 —1) ~ =yay4 —yly2.

(C2)

In the same manner as for the two-body case we trans-
form to the time parameters of 0' by use of Eq. (A3),
with a=1, 2, . . ., e:

Fl ("1("1)it2(t2 )i itn(tn ))=Fl [tl it2 i ~ itn ] (37)

In this notation we have for cl and c2 of Eqs. (Cl)

cl = (1/t 1)(d"'—r2) c2 = (1/Sl) (d —$2)

for d=r22 rls=—s22 sls. —(C3)

But the force of Eq. (87) is still in terms of the positions
and velocities at the events XII, 352, . . . , SI„,though in
the language of the 0' coordinate frame. To obtain a
force explicitly dependent upon the events MI, E2, . . . ,
N„in 0', we express Fl'[tl', t2', . . .,t„']as a Taylor series
about the events E2, S3, . . ., E„, In addition,

Dg= f g(y G —y»— —
= —g[cl+(y4 —c2y2) G]

The right-hand side of Eq. (C1) can be written

(C4)

F,'[t,',t, ', . . . ,t.']
n

=F1'[tl', tl', . . .,tl'] —2 p (xl —x/.)—
did

XFl [tl i. . .itl it&, tl i. . . itl ]tk=tt

Df=D(clg) = gF = —c2gG, —
Dg = (g/cl) (Dcl+c—2G) .

(C5)

The proof of (C1) consists of demonstrating that Eqs. .

(C4) and (C5) are equivalent.
A direct calculation yields

Thus with Eqs. (33), (85), and (8/) we have for
Eq. (88)

[Fl(tlit2i tn) +'EF10(tlit2i ' tn) ]I tt=tt= "tn'
n d

=421'[tl'] —2 p (xl —x2)—
k=2 dt~

/t c2d'"G
Dc, =c,

~
c,——

1+y.

which, upon substitution into Kq. (C5), gives

(C6)

XFl [tl i. . .itl i4i "1 i. . .itl ] (89) ( dl/2

Dg= —g cl —c2GI
&1+y, c,)

(C7)

or, with (84) and (32) and neglecting terms to 0(22),

~tj[Q10 F10(tlit2i ~ ~ itn)]tt=t2=" =tn
The algebraic relation

+Ii +Ici
d4

&2/2 —P'4 =&2

1yy4 cl

XF(t ljt ,l. .2. , , .t.k. , ) t,= t,=.t. . „,t(81O) can be proved to yield the final expression, Eq. (C4).


