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The m--m. amplitude in the low-energy region is parametrized in a crossing-symmetric way as the sum of
the p and f' resonance poles plus a polynomial background. The parametrization is flexible and capable of
producing amplitudes having quite different features in the energy region below 1 GeV. The parameters are
then varied so as to minimize the deviation from elastic unitarity on a set of closely spaced points. In addi-
tion, negative-moment finite-energy sum rules are used to connect the low-energy region with assumed
Regge asymptotic behavior in the I= 1, 2 amplitudes. With the mass and width of the f', the mass of the p,
and the slope of the p trajectory Axed, an approximate solution satisfying the constraints is found, yielding
a p width of 80~ 30 MeV. The solution displays the usual characteristics of the low-energy m-m amplitudes
suggested by other analyses, namely, small scattering lengths and a large I=0 5-wave phase shift near the
mass of the p. This resonantlike behavior is found without introducing an 5-wave pole in the parametriza-
tion, while the small scattering lengths are obtained as results of the numerical bootstrap, although no
current-algebra constraints are included. Our proposed solution is also found to satisfy various inequalities
proposed by Martin for the m m' scattering amplitude.

I. INTRODUCTION

'N this paper we investigate numerically the extent
~ - to which certain requirements of crossing symmetry,
unitarity, and asymptotic behavior determine the low-
energy m--vr scattering amplitude. The problem of x-x
scattering has been studied from many diferent
approaches, among these X/D methods and partial-
wave dispersion relations, current algebra, and rigorous
results of field theory. ' There are also attempts to
extract the amphtudes from data on pion production
and E decays. ' From this work has emerged a picture
of the general features of ~-m scattering: the existence
of the p and f resonances, the smallness of the S-wave
scattering lengths, and a large I=0 5-wave amplitude
near the mass of the p. More detailed knowledge as to
the numerical values of the scattering lengths or the
existence of an /=0 S-wave resonance is, as yet, not
available.

In the present investigation we work with the full
amplitude, hence avoiding partial-wave dispersion
relations, and try to see if the general features of m-x

~ Work performed under the auspices of U. S. Atomic Energy
Commission.

t Present address: Physics Department, University of the
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~ There are numerous studies of 7f--m. scattering in the literature.
A few which are typical of various diferent approaches are:
(a) G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960)
(we follow the notation of this article for kinematics and isotopic
spin); (b) S. Weinberg, Phys. Rev. Letters 17, 616 (1966);
(c) A. Martin, Nuovo Cimento 47A, 265 (1967); (d) E. P. Tryon,
Phys. Rev. Letters 20, 769 (1968).

'Many experimental analyses of single-pion production are
available in the literature, some recent ones being: K. Malamud
and P. Schlein, Phys. Rev. Letters 19, 1056 (1967};J. Pisut and
M. Roos, Nucl. Phys. B6, 325 (1968); S. Marateck, V. Hagopian,
W. Selove, L. Jacobs, F. Oppenheimer, W. Schultz, L. J. Gutay,
D. H. Miller, J. Prentice, E. West, and W. D. Walker, Phys. Rev.
Letters 21, 1613 (1968); a recent analysis of 71--~ scattering using
K,4 decays is presented in F. A. Serends, A. Donnachie, and G. C.
Oades, Nucl. Phys. $3, 569 (1967); a summary of both experi-
mental and theoretical results on ~-x scattering is contained in
Proceedings of the Conference on ~x and Em Interactions, Argonne
National Laboratory, 1969, edited by F. Loe8ier and E. Malamud
(to be published).

scattering follow from the constraints of crossing sym-
metry, unitarity, and asymptotic behavior. Our
program is a modest version of the following numerical
approach. Suppose one had an expansion of the vr-m

amphtude valid in a low-energy region of the Mandel-
stam sfg plane (for example, the circle of radius r in
Fig. 1). One may then impose the constraints of
unitarity and crossing symmetry numerically to any
desired accuracy on a set of closely spaced points in the
circle. %bile this will determine some of the parameters
of the expansion, it is well known that the amplitude
would not be uniquely determined. But by requiring
the expansion to satisfy conditions on the boundary of
the circle, it may be expected that one can determine
most of the features of the amplitude. The boundary
conditions in this case are related to the asymptotic
behavior in different directions of the stN plane.

To test the feasibility of such an approach, we have
made a simplified-model calculation of the x-m ampli-

FIG. 1. Diagram of the Mandelstam st plane for ~-x scattering
illustrating the positions of the p pole and the inelastic KK
threshold.
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218 F. ARBAB AND J. T. DONOHUE

tude. Lacking a simple expansion for the amplitude,
we parametrised it in the low-energy region (below

1 GeV) in a crossing-symmetric way. The param-
etrization, which contains poles in some low partial
waves, p and fs, plus a polynomial background in the
center-of-mass momenta in the three channels, is
Qexible enough to produce widely varied forms of the
first few partial waves for different values of the param-
eters. These parameters were then varied so that the
S-, P-, and D-partial-wave projections satisfied elastic
unitary approximately at a set of points, the other
partial waves being negligibly small in the region under
consideration. The boundary conditions were incor-
porated by assuming Regge asymptotic behavior, and
requiring that the I= 1, 2 exchange amplitudes satisfy
certain negative-moment finite-energy sum rules. More-
over, four of the parameters —the mass and width of
the f' and the mass of the p together with the slope of
the p trajectory —were fixed, since we could not expect
our present program to determine all of the parameters.
A solution was found whose properties are discussed in
detail in Sec. III. The width of the p was found to be
80~30 MeV, and the solution showed the general
features of small scattering lengths and a large I=0
S wave near 1 GeV. It is interesting to note that the
scattering lengths obtained were small even though no
current-algebra constraints were included. This may
indicate that those properties of strong-interaction
amplitudes usually connected with current algebra
could be consequences of the general bootstrap program.

Our approach contains various defects, two of which
concern the question of uniqueness and the cutoff of
the integrals in the finite-energy sum rules. It is
diS.cult to study questions of uniqueness using a
numerical method such as ours. Although we managed
to find only one solution satisfying our conditions, we
cannot claim any uniqueness. Nevertheless, we feel
that the existence of a solution to our constraints is in
itself of interest, especially as it is similar in form to the
amplitudes found by various other investigations.

The second defect, the problem of the low cutoff on
the finite-energy sum rules, is practical rather than one
of principle. Ideally one would like to place the cutoff
at some energy believed to be asymptotic, e.g., &2
GeV. However, to describe the amplitude from threshold
to such energies would entail a parametrization con-
sideraly richer than ours, including several resonances,
inelastic thresholds, and other complications. In order
to avoid these difficulties we invoke the concept of
average duality to justify taking a cutoff just below
the fe mass. It is clear that a more ambitious program
could take a higher cutoff and eliminate this problem.

The details of the parametrization and the con-
straints are given in Sec. II, while the properties of the
solution are presented in Sec. III.

II. DISCUSSION OF METHOD

A. Parametrization

We wish to parametrize the scattering amplitude in.
the low-energy region of the sttt plane (Fig. I, with
r I GeV') and numerically investigate the conse-
quences of the constraints of unitarity, crossing sym-
metry, and asymptotic behavior. Ideally we would like
to use a convergent expansion of the amplitude in this
region. However, in the absence of a single expansion
we simply choose a parametrization which is flexible
enough to allow for a reasonably complicated behavior
of the first few partial waves. One such choice for the
full amplitude is the sum of a few low-spin resonances
plus a polynomial background. The background poly-
nomial is in the variables q&, q„and q, the center-of-
mass mom enta in the I,, s, and I channels

fqt = '(4tt' -t)'")—
It is well known that one cannot require both exact

crossing symmetry and exact unitarity from a finite-

parametrization of the scattering amplitude. For
example, a partial-wave series with a finite number of
terms can be exactly unitary but must violate crossing.
symmetry. We find it more convenient for our numerical
approach to choose a parametrization which is exactly
crossing-symmetric. By varying the parameters, we-

then need to enforce approximate unitarity and
asymptotic behavior in one channel (e.g. , the t channel)
only.

We thus parametrize the three scattering amplitudes
for xm-+mw as a sum of resonance poles in the three
channels plus a finite polynomial in q„q&, and q„ in a
crossing-symmetric way. The amplitudes are written as

A '(t, s) =G'(t, s) +B'(t,s),
where I denotes isospin in the t channel. The function
Br(t,s) is the polynomial background and can be
written crossing-symmetrically in the following way':

B'(t,s) =5bt+bs{3q,+(q,+q„))+be(4(q,+q„)+2q&)
+b4(3qP+ (q.'+q '))+bs{3qt'+ (q.'+q. ') }
+be{4(q.'+q ')+2qP}+br(3q~'+(q, '+q~'))
+ha{4(q,'+q„4)+2qP }+b&(2tt'qP q&'—
+3q,'(q, '+q„')+q, 'q.'(q, +q„))
+bra(3q~'+(q '+q '))

+bu{2qts+4(q. '+q '))+ . .
' This parametrization was obtained as follows: The 2, 8, and

C amplitudes of Chew and Mandelstam LRef. 1(a)g are param-
etrized by 2 (t,s)= ba+bsq~+bs(qa+qu)+b4qP+bsqP+b~(q. '+q„')
+ ~, and 8 and C are obtained by interchanging t ~s and
t+-+ I, respectively. The isospin amplitudes in the t channel are
then the appropriate combinations of A, 8, and C. This param-
etrization could actually be considered as an expansion around the
oB-mass-shell point g, =g„=g~ ——0, the expansion being restricted
to the surface qP+q, 2+q '=2@,'. However, the convergence of
this expansion outside the Mandelstam triangle is questionable,
because of the possible existence of an essential singularity on the
second sheet. For this reason we consider our expression merely
as a Rexible parametrization of the background and not a con-
vergent expansion.
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B'(t,s) =2bi+b2(q, +q„)+b,(2q, +q, +q„)+b4(q,2+q ')
+be(q. '+q ')+4(2q~'+q. .s+q ')+»(q.'+q ')
+bs(2q~'+q'+q ')+b9(q~'(q. '+q ')
+qs qu (qs+q~) j+ bio( qa+q~ )

+bii(2qF+q~'+q ')+
B'(t, ) =(b —b )(q —q-)+b (q.' —q-')

+(b —b6) (q
' —q-')+(» —b ) (q' —q-')

+4(q '(q '—
q ') —

q 'q-'(q —q-) &

+(bo—b )(q' —q ')+ "

Gp =gr- +gr-+Cp,
s—mp' Q —mp'

Gp =2gp +kgp +Cp ~

s—mp Q —mp2

Gp'=gp ggp
t mp' mpI' p—(q,/q p—) s —m p'

3 (s —u)' —16q,4

GD gD
t m~' mi) I—"D (q,/q—D)

+2gp +Cp',
Q —mp

+3gD

3 (t u)' 16q—,4 —3 (t s)' 16q 4— —
+C 0

s —mD Q —mD

GD'= 3gD

3 (t—u)' —16q,' 3 (t —s)' —16q„4
+Ca',

where q&
——

2 (4ti' —t)'", with q&
—— i

~

—q, (
in the t-channel

physical region.
The function Gr(t, s) is the sum of the contributions

of the resonance poles in the low-energy region. We
explicitly write here the contributions of a P-wave pole
(p meson) and an isospin-zero D wave pole -(fo meson).
Other resonances can also be easily included.

Defining qp and q~ by qp=-', (mp' —4ti')'" and

qD = 2 (mD' —4p')'", we write

where we have made use of the relations between g and
I' for narrow resonances

Ke then have

gp ———43mp21 pqp 3,

gD
————,', mD2rDqD

—'.

Cp = tp( —q, (q.' —q.')+(u' —q,') (q.—q.)
+2 (q-' —q') j

Cp' ——]pL2(t ' —q,.') (q.+q.)—(q, '+q-') j,
2 .iQ 0

In practice, we included the counterterm only for the
p resonance, since the counterterm for the D-wave
f' would involve q', which we have neglected in the
parametrization of the background.

(ii) Crossed poles In the c. rossed-resonance terms the
widths are neglected, being of order I'/m. This slight
deviation from exact crossing symmetry greatly simpli-
6es the calculation of t-channel partial waves on which
unitarity is imposed and does not strongly aRect our
results. LHowever, see (v) of Sec. III.)

(iii) Background terms Cert.ain combinations of
q&"q, q

~ do not occur in the parametrization of the
background, e.g., q&q, . This is because such terms
together with their crossed terms would yield a threshold
behavior in the imaginary part of the partial waves
which is slower than the required q&"+'.'

(io) Double counting The fact t.hat our parametriza-
tion contains sums of poles from different channels may
bring up the question of double counting. Ke wish to
emphasize that because we do not write the amplitude
simply as a sum of poles but also include the polynomial
background, and since the amplitude is made unitary
to a certain degree, we avoid the problems connected
with double counting.

exactly cancels out the incorrect threshold behavior of
the simple Breit-Wigner form. For the P-wave pole,
we can define a constant $p by

&p ', g p——'/-mpqp',

s—mD Q —mD

GD 3gD

3 (t u)' 16q,' —3 (t —s)' 16q„4— —
+CD'.

S—mD

The following points will clarify some of the aspects
of the above parametrization and define the different
symbols.

(i) resonance terms The denomin. ators in the Breit-
Wigner resonance forms contain only one power of q
multiplying the width I'. For resonances other than
S-wave this means the threshold behavior of the
imaginary part is slower than the necessary q&"+'

behavior. Instead of inserting a factor q&2'+' in the
denominator which entails unwanted additional poles,
we add a crossing-symmetric polynomial C(q„q,) which

B. Unitaxity

The parametrization given above may be expanded
in partial waves. For low energies, and barring extremely
large values of the coefficients b;, only the lowest partial
waves will be important. While it is clear that our finite
parametrization does not allow the partial-wave
amplitudes to be exactly unitary, we can choose the
parameters such that S-, P-, and D partial wave
amplitudes are approximately unitary. I.et r be the
maximum value where we expect our parametrization
to hold. Ke then choose a set of points t, ranging from
threshold to r, and define a measure of the deviation

4 The fact that certain combinations like q, qt do not appear has
been discussed by J. Iliopoulos, Nuovo Cimento SBA, 552 (1968).
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from elastic unitarity X„~ by

where p(t) =
I
q&l/(t't'), W(/, l,t,) is an arbitrary weight

function, and 1=0, 1, 2.s The weight function W(l, l, t,)
enables us to control the accuracy to which a given
partial wave is unitary at a point t;. Ideally any solution
we find should be roughly insensitive to changes in the
weight function. It should be remarked that the
explicit crossing symmetry of our parametrization
ensures that an amplitude which is approximately
unitary in the t channel is also approximately unitary
in the s and n channels. The unitarity condition is
purely elastic, which should be a reasonable approxi-
mation up to t~1 GeV', the EK threshold. The set of
points f; were chosen by dividing the interval

I qt I
=0—0.5

into 20 subintervals of length 0.025 GeV.

For the isospin-1 amplitude we assume that the
asymptotic behavior is governed by the p Regge pole.
Here we choose m =0 and m =2 sum rules, the second
requiring a subtraction, and obtain

dv ImA'(tg, v) —ylV +'/(n +1)

XW(1,0)+ dv v
—' ImA'(4, v) —Cs(ts)

—yX '/(cr —1) FV(1, —2)

The weight functions W(I, ttt) are again chosen arbi-
trarily, while the ts are taken at Iq, l

=0.025, 0.05,
0.075, and 0.1 GeV. ' The functions Ct(t) and Cs(t) are
given by Ct(t) =-', s.A'(t, v=0) and

C. Asymptotic Behavior

In order to constrain the parameters further, we use
Rnite-energy sum rules (FESR) to relate the low-

energy behavior of the amplitude to an assumed
Regge-like high-energy behavior. For the isospin-2
exchange amplitude, we assume there are no Regge
poles with n(f)) —1 for t near the s.vr threshold. Since
we wish to take advantage of our parametrization at
low energies, we write negative-moment FESR,
obtaining the result

VP

dv v ~ ImA'(t v) =C„(t),

where v =s—I, and m is an odd integer. ' The subtrac-
tion term C (t) can be expressed in terms of the ampli-
tude and its derivatives with respect to ~ at v =0, and
consequently is given in terms of our parameters.
Insofar as we have only a 6nite polynomial parametriza-
tion, m cannot be chosen too large, i.e., since our
polynomial is only of order q5, we can take at most
O'A (f,v)/dv'I „=s and thus must have m= —1, —3. We
-thus define the. contribution to X~ of the I=2 exchange
asymptotic behavior as

xg'(2) =g dv v ' ImA'(tg, v) —Ct(ts) IF(2, —1)

+ dv v ' ImA'(ts, v) —Cs(ts) W(2, —3)

' In practice, since the imaginary part of the D-wave amplitude
goes like

~ q (9 at threshold and we do not have such terms in our
parametrization, the unitarity condition for D waves merely
requires that the real part of the amplitude be small. The weight
functions were chosen to behave near threshold like ~q&~

' for
the S-wave and ~g&~

' for the I' wave unitarity contributions, in-
order that the unitarity conditions be well satished near threshold.
Typical results obtained by our minimization program were that
iImatr{t;) p(tt) (a~r(t;) ('~/Imatr(t;) —was of order 5%. Figure 2

where
C (t)= 'dA'(f )/—d I,

The p trajectory is assumed to be linear and constrained
to go&through the p mass. If the reduced residue y is
assumed to be constant, it may be related to the p
width via

y= ——7rO. gI .
Hence only one additional parameter, the slope of the
trajectory n', is introduced by using the p Regge pole.

On the I=O amplitude we impose no asymptotic
constraints, since these would necessarily involve the
properties of the Pomeranchuk trajectory, which are
neither known nor related to any other parameters in
the problem. Rather than introducing new constraints
and new parameters, we prefer to leave the I=O
amplitude unconstrained.

The parameter E, the upper limit on the FKSR's,
presents a problem. Ideally one should take S to corre-
spond to an energy of &4 GeV', where Regge-like
asymptotic behavior might be expected. However,
our parametrization is certainly not reasonable much
above 1 GeV'; furthermore, inelastic sects might be
important at such high energies. Consequently we must
invoke the concept of average duality and ask that the
Regge-like behavior extend down to 2 GeV', despite
the existence of the known f' and g resonances. That is,
we assume that the Regge form contains much of the
contribution of the higher-spin xw resonances, and that

exhibits the extent of deviation from unitarity, since an elastic
unitary amplitude should lie on the unit circle.

s By ImAr(t, v) we mean lim, 0+LAr(t, v+te) —Ar(t, v te)]—
~ The weight functions were chosen so that in our solution the

FESR's were satisfied to about 10%. By this we mean that for
the I=i sum rules ~left-hand side —right-hand side(/(left-hand
side ~~10/q. For the I= 2 sum rules where the right-hand side is
zero, we required that the integral be small compared to the
integral of the absolute value, i.e.,

ImA'(t, v)
d ~

ImA'(t, v)
~

dV 8v
Vill Vt%
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F may be reasonably chosen near 1 GeV'. In practice,
we allow E to vary in some region between the p and
f' masses. For the solution we find E corresponds to
an energy one half-width below the f' mass.

D. Inequality Conditions of Martin

Martin has derived a set of inequalities for the
values of the S- and D-wave ~omo amplitudes at certain
points in the region 0(t(4 p,'. These conditions are
proved rigorously from crossing symmetry, positivity,
and dispersion relations proved in field theory. We use
these conditions as a check on our solutions. As we
will explain in the next section about the details of our
investigation, our solutions satisfy these conditions
extremely well.

III. DISCUSSION OF RESULTS

We have found an amplitude for low-energy ~m-

scattering which satisfies our numerical constraints to
a very good degree of accuracy. Before discussing the
characteristics of this solution, however, we should
point out the intrinsic shortcoming of our a,pproach
concerning the uniqueness of a given solution. We have
written a flexible crossing-symmetric parametrization
of the amplitude and sought to minimize the deviation
from elastic unitarity aud asymptotic conditions by
varying the different parameters. Although our mini-
miza, tion routine was very eKcient, we cannot be sure
that there is no other solution in a different region of
the many-dimensional parameter space which exhibits
completely different features from what we discuss in
this section. What we are able to investigate is the
stability of our solution with respect to changes in some
of our parameters, a point which will be further clari-
fied in the discussion of the rest of this section.

We included in our amplitude the p and fs resonances
plus the background terms described in the previous
section. The four parameters of the resonance terms
ssp Pp 52f and I y, the 11 parameters of the back-
ground bj, . . . , bii, and np' introduced in the FESR
relating yp and I'p constitute the 16 parameters of the
problem. Since we did not include all the necessary
conditions (the J=O exchanges, for example), we could
not expect our approach to determine all the 16
parameters. Therefore, throughout the investigation
we kept the mass and the width of the f' meson fixed
at 1250 and 110 MeV, respectively. It is interesting to
note that the mass of the f' meson lies outside the circle
of radius r if we choose r=1 GeV'. Therefore, to a
certain extent, by fixing the parameters of the fs, we
have constrained the behavior of one of the amplitudes
near the boundary of the region of the validity of our
parametrization. Inside the circle of radius r we allowed
the mass of the p meson to vary only within 100 MeV
of its experimental mass at 760 MeV, so that effectively

' A. Martin, Nuovo Cimento 63A, 167 (1969); Ref. 1(c).

TABLE I.Description and properties of solutions found. Solution
A has no input 8-wave resonance, while for solution 8 ma=1. 15
GeV, Fq=O. S GeV.

Parameter

(1) Parameters b; of background

Units in
GeV Solution B

bl
b2

bs
b4

b5
b6
b7
bs
bg

b10
bll

0—1

—2—3

—4—4—5—5—5

—0.0039—0.0524—0.0040
0.923
5.87
1.047—8.39—5.43—3.14
6.56—3.20

—0.316
0.180
0.002
2.69
1.32
0.906—0.908—6.49
0.018
2.82
0.05

1gp

Fp
0,'p

1%f

Fy
'lÃg

Fg

(2) Parameters of input

Solution A
0.793 GeV
0.076 GeV
0.75 GeV '
1.25 GeV
0,11 GeV

resonances

Solution 8
0.800 GeV
0.076 GeV
0.75 GeV '
1.25 GeV
0.11 GeV
1.15 GeV
0.5 GeV

(3) Finite-energy sum rules evaluated at qP = -0.0025 GeV2
Lintegrand shown in Figs. 5(c) and 6j

Solution 8
Left-hand Right-hand

side side
2.70 2.77—0.90 —1.27—0.171 0—0.015 0

Solution 3
Left-hand Right-hand

side side
2.73 2.83—1.14 —1..33—0.081 0
0.007 0

(4) Scattering lengths glim~,
~ o[q[ "a~ (q)/2 p]

l Solution A Solution 8
0 0.11 p ' 0.13 p '
0 —0.026 p, ' —0.01 '
1 0.02 p ' 0.018 p '
2 0.00058 p ' 0.00052 p '
2 —0.00006 p ' —0.00006 p '

this parameter was also fixed. The only other fixed
parameter was n', which was chosen so that the p
trajectory with an intercept of about 0.5 would go
through n=1 at the mass of the p meson. With these
fixed parameters we sought to investigate if our con-
straints could determine the other features of the ~-vr

amplitude. We should emphasize, however, that some
of our parameters, especially the coeKcients of higher
powers of q, do not have any significance in themselves.
The interesting features which should be determined
are the widths of the p, and the behavior of the first
few partial waves, especially the I=0, 2 5 waves.

As mentioned above, the parameter E was varied in
the region between the p and f' resonances and the only
good solution was obtained for Ã corresponding to an
energy one half-width below the mass of the f. We
mention the following properties of this solution, whose
main features are shown in Figs. 2—6 and Tables I
aIld II.
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TAsl.z II. Rigorous inequalities for S- and D-wave 7rp~p scattering derived by Martin. In this table, s is in units of p2, fp, 200 denote
the ~07'' S- and D-wave amplitudes, respectively, while fp' and fp' denote the isospin-0 and -2 S-wave amplitudes. (A) 8 was derived in
Ref. 12. Those inequalities which are not satisfied are italicized; the two failures are less than 1'P~.

Inequalities
1. dfa" (s)/ds&0 for 0&s&1.05
2. d fp'0(s)/ds) 0 for 1.7&s&4
3. d fppp(s)/ds')0 for 0&s& 1.7
4 fppp (0) &f000 (4)

f000 (2+2/31/2) & )r 00 (0)
6. fp (4)& —4

4

7. fow(0) & ds f000(s)

0.03414
0.03387
0.004008

0.033940.03414

(A) Inequalities concerning only S waves

Results for solution A of Table I
Left-hand side Right-hand side

See Fig. 7
See Fig. 7
See Fig. 7

0.04008
0.03414

ds fp (s) & ds fp (s)+6fp (0) 0.5940 0.6140

1. 4.067
2. 1.428
3. 3.252
4. 1.498
5. 3.267
6. 1.620
7. 1.630
8. 3.066

$2

(C) Conditions of the form oft(s&) )foo'(ss) fo"(s8)—

(B) Conditions involving S and D waves of the form afP(si) &fo~(&r) fo (&a).
Results for solution A

$1 Left-hand side Right-hand side

0.0341 3.839 0.003487 0.003648
0.304 0.304 0.000927 0.000935
0.803 0.199 0.001343 0.001422
0.572 0.572 0.000761 0.000827
0.747 3.052 0.001419 0.001406
2.288 2.288 0.000143 0.000285
3.102 3.102 0.000035 0.000543
3.106 0.0619 0.000066 0.000203

1. 3.061
2. 1.633
3. 3.061
4. 2.050
5. 3.061
6. 1.929
7. 1.633
8. 3.061

$1

0.073
0.325
0.589
0.572
0.826
2.288
2.857
3.536

$2

3,654
0.325
0.237
0.572
2.953
2,288
2.857
0.0322

0.073
2.463
0.589
1.294
0.826
1.091
0.377
3.536

Results for solution A
Left-hand side Right-hand side

0.002508 0.002430
0.001039 0.001023
0.001531 0.000901
0,001041 0.001006
0.001239 0.001223
0.000170 0.000145
0.000059 —0.0000007
0.000017 —0.001581

$1

1. 1.168
2. 0.408
3. 0.0758
4. 2.737
5. 2.363
6. 0.00663

b

1,374
1.632
1.633
1.303
1.494—3.061

0.185
3.390
3.770
0.0871
0.537
3.904

3.163
3.147
3.896
3.073—1.623
4.347

(D) Threefold inequalities of the form af200(s1)+bf200(s2) &f2o'(s2) —f"(s1) &a'f200(s1)+b'f200(s2)

Results for our solution
Left-hand Middle Right-hand

S2 8 gl side expression side
1.422 0.001939 0.001934 0.001975
1.632 0.001871 0.002018 0.002074
1.633 0.003189 0.003243 0.003594
1.380 0.001189 0.001203 0.001251
1.510 0.000654 0.000655 0.000662—3.061 0.003646 0.004163 0.005561

(i) Width of p and stability of solution. The minimum
of the total X' occurred for Fp 80 MeV. To check the
stability of the solution, we then fixed Fp at definite
values 80~8 MeV and allowed the other free parameters
to vary. We found that as 5 was increased, the solutions
became progressively worse (less unitary or violating
the FESR) and for 8=30 MeV the deviations were
appreciably higher than for the original solution. We
can thus conclude that our solution is, in fact, stable in
the sense that we deal with a well-de6ned minimum
and that Fp=80~30 MeV.

(ii) S wave. Figures 2(a) and 2(b) show the behavior
of asr=s(t) and asr=s(t) between threshold and 1 GeV.

It is important to notice that no poles were included in
the parametrization of the 5-wave partial waves, so
that the behavior of these amplitudes is a result of
unitarity and FESR constraints. The crossing-sym-
metric parametrization in itself is well capable of
producing an I=0 5 wave which stays small rather than
the resonantlike behavior of the present solution.

(iii) Existence of S wave pole. The I=0-S-wave phase
shift generated by our procedure appears to pass
through 90' near 1100 MeV. This might indicate the
existence of a broad 1100-MeV resonance with a width
of about 500 MeV. The investigation of the existence
of an actual pole in the amplitude at such a high energy,
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Fl;G. 2. Argand diagrams for partial-
wave amplitudes (1q~1/t'")a&'(t),
where t'" values are indicated in GeV.
The curves are for solution A of
Table I.

(a) I=0, S wave;
(b) I=2, S wave;
(c) I= &, P wave;
(d) I=2, D wave.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
q/t' a 0

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
q/tI/2 a2

0
(b)

+—
-0.6 —0.4 -0.2 0 0.2 0.4 0.6

q/t I/2
I

(c)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
q /f I/2 a0

2

FIG. 3. Phase shifts 8& (t) in degrees
versus t'" as given by 6~1= tan '
X(Ima~ /Reg~ ). The curves are for
solution A of Table I. (a) The S-wave
I=0 (positive) and I= 2 (negative)
phase shifts. (b) The I= 1 P-wave and
I=2 D-wave phase shifts.
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Pro. 4. Total cross sections o'(t) in mb versus t'" Here we us.e the optical theorem, i.e., o~&r(t) =(4s/I quilt'") ImAL(t, s=O). The
curves are for solution A of Table I: (a) I=0; (b) I=2; (c) I=1.
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FIG. 5. Discontinuity in the crossed-channel amplitudes, i.e., lmA (t=0, v) versus v=s —zc. The curves are for solution A of Table I:
(a) I=0; (b) I= 2; (c) I= 1.
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FIG. 6. Integrals of the subtracted sum rules as calculated for solution A of Table L The quantities displayed are
ImAI(t=0. 09 GeV', v)/v versus v. (a) I=1, nz=2; (b) I=2, nz=1; (c) I=2, zn=3.

however, would require a more detailed parametriza-
tion including other thresholds and inelastic unitarity
conditions. We feel tha, t while the behavior of the
S-wave amplitudes up to 900 MeV is an essential
feature of our solution, we cannot answer the question
of the existence of a pole in the partial wave. However,
for the sake of completeness we searched for a solution
with a wide resonance pole at 1100 MeV included in
the parametrization. A solution was found with the
same over-all features as the previous one, with slightly
larger 5-wave sca, ttering lengths' (see Table I).

(iII) ScatterirIg lerIgths The values of. the scattering
lengths in our solution are

eo ——0.11 p ' a2 ———0.026 p '

These values are small and consistent with the current-
algebra results found by steinberg. ' It is important
to note that we have imposed no current-algebra

The graphs of the solution containing an S-wave pole are
essentially indistinguishable from those shown in Figs. 2—6, at
least for the energy range considered. This illustrates both a
strong and a weak point of our approach, the first being that our
method is able to obtain nearly identical behavior from two quite
diferent parametrizations, the disadvantage being that the
approach cannot distinguish between a resonant versus a non-
resonant behavior in the energy region below the resonance mass.

"See the paper of Weinberg, Ref. 1(b); also in Proceedings of
Ihe Fourteenth International Conference on High-Energy Physics,
Uiennu 1966', edited by J. Prentki and J. Steinberger (CERN,
Geneva, 1968), p. 253.

constraints, but that our small scattering lengths seem
to follow from the general principles of crossing sym-
metry, unitarity, and the FESR's. Actually our values
for the scattering lengths are not unlike the contribu-
tion of the crossed p-exchange pole, which yields

(ap)p ——0.096 p ', (ap)p ———0.048 p '.

This feature is in agreement with Sakurai's argument
that the scattering lengths are correctly given by
p dominance, "which is linked also to current-algebra
predictions. The numerical values of the scattering
lengths are not determined to better than 100%, i.e.,
the minimum in X2 is not very sensitive to the exact
values of the scattering lengths. The smallness of these
quantities, however, is a stable feature of our solution.

(II) MartirI's conCktioms These co. nditions, as de-

scribed in the previous section, are derived as conse-
quences of crossing symmetry, positivity, and asymp-
totic conditions in the sense of the number of sub-
tractions in the dispersion relation for ~ ~' scattering.
Our pa, rametrization by itself does not satisfy the latter
two conditions (of course, our parametrization is not
intended to represent the amplitude outside the circle
of radius r in the Mandelstam plane). Hence it is not
obvious that our solution should satisfy the Martin

"J.J. Sakurai, Phys. Rev. Letters 17, 552 (1966).
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FIG. 7. The ~'~' S wave (solid curve, scale on left) and D wave
(dashed curve, scale on right) versus s from s=0 to 4 p,'. These
curves are calculated using solution A of Table I, and correspond
to the Martin inequalities presented in Table II. The S-wave
amplitude has a minimum at s= 1.6 p'.

"G.Auberson, O. Piguet, and G. Wanders, Phys. Letters 28B,
41 (1968)."It should be noted that the p meson does not couple to the
m. ~ system, and hence the Martin conditions are not sensitive to
our neglect of the p width in the cross channel. When similar
inequalities are available for the other charge states, we expect
that the p width may have to be included in our calculations in
order that such inequalities be satisfied.

i4 &e wish to thank Professor G, P. Che~ for suggesting thig,

conditions. Table II and Fig. 7 show that these condi-
tions are satisfied extremely well. It is interesting to
note that some of the inequalities derived by Martin
are actually very close to equalities; this behavior was
observed also by Auberson, Piguet, and Wanders" for
the S-wave inequalities.

The solution including an S-wave pole was also
studied from the point of view of the Martin conditions.
In our original procedure we had neglected the width
of the S wave in the crossed channel, but included it in
the direct channel. This is a standard assumption in
pole calculations, but we found that the Martin con-
ditions were sensitive to this departure from crossing
symmetry, and were, in fact, grossly violated. However,
upon inclusion of the width in the crossed-pole terms,
the Martin conditions were satisfied. This suggests
that these conditions provide a very sensitive test of
crossing, since small departures from symmetry can
yield great violations. "

(vi) Zeros of amplitude Using . the parameters of
solution A given in Table I, we have investigated the
behavior of the amplitude' A (t,s,u) in the center of the
Mandelstam plane, i.e., the triangle 0& t,s,I&4 p, '."In
this region, which is below threshold in all three
channels, the amplitude A (t,s,u) is real and symmetric

&I

t=o

FIG. 8. Contour map of the amplitude A (t,s,N) of solution A of
Table I, in the center of the Mandelstam plane 0&s,t,u&4 p,'.
The amplitude is symmetric in s ~ N. Contours of —0.025, 0,
0.03, and 0.06 are shown, and the lines t=p, ', s=p, and N=p' are
indicated,

in s and N. The fact that the S-wave scattering lengths
we find are of opposite sign implies that A (t,s,u) must
change sign somewhere in this region, and hence these
must be some curve along which 2 =0. In the current-
algebra calculation of Weinberg, ' the off-mass-shell x-m

amplitude with one pion having zero four-momentum
vanishes at, the symmetry point s = t =I=p, '." In our
approach we consider only on-mass-shell amplitudes,
and thus cannot compare our results directly with
the current-algebra predictions. However, if one as-
sumes a smooth extrapolation of the current-algebra
predictions to the on-mass-shell amplitudes, one
would expect a zero somewhere near the symmetry
point s=t=l= 43 p'. Figure 8 shows a contour map of
A (t,s,u) in the center of the tsu plane, with contours of
—0.025, 0, 0.03, and 0.06 indicated. It is seen that the
2 =0 contour lies very close to the line t= p'—in fact,
along the s=n symmetry line the zero is at t=0.95 p'.
This behavior suggests that our solution is consistent
with the current-algebra zero and the hypothesis of a
smooth extrapolation to the on-mass-shell amplitude,
despite the fact that no cmrrerit-algebra corlditiorIs are
imposed upon the amplitude. The existence of the 3=0
contour near t= p,

' occurs here as a consequence of our
program of demanding unitarity and asymptotic
behavior of the amplitude. '

"This is the Adler self-consistency condition: S. L. Adler,
Phys. Rev. 137, 81022 (1965); 139, 81638 (1965).' If we use the parameters of solution 8 (which has an I=0
S-wave pole), the contour map is similar to Fig. 8 but the A =0
line is shjfted to t—~ p,'.


