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The Faddeev equations are solved by means of Padé approximants. As an application of the method,
the doublet and quartet scattering lengths of neutron-deuteron scattering are calculated for the case that
the nucleon-nucleon interactions are described by central local Yukawa potentials.

I. INTRODUCTION

N recent years there has been considerable interest
in the study of the three-nucleon problem in the
framework of the Faddeev theory.! In most of these
calculations, however, separable interactions have been
used to describe the two-particle forces.? The main
advantage for using this type of interaction in the
three-body problem is the tremendous simplification it
leads to for the equations one has to study. On the other
hand, one has certain beliefs that a local-potential
description for the nucleon-nucleon interaction might
be valid at low energies at least. Therefore, it is of some
interest to find suitable methods to study the Faddeev
equations for local interactions. Several attempts have
been made in this direction.*=% One particular line of
approach has been followed recently by Malfliet and the
present author® in the study of some properties of the
ground state of the three-nucleon system. The method
is based essentially on the idea that one can obtain
certain informations from the perturbation series
solution. In this paper we show that by using Padé
techniques on the perturbation series one can in prin-
ciple also determine the scattering matrix elements. As a
specific example we study the case of three identical
particles interacting through local Yukawa potentials.
In Sec. IT we describe the relevant expressions for the
case of scattering of three identical bosons. Further-
more, it is shown here how the Padé technique is applied
to the calculation of the .S matrix describing the scatter-
ing of a particle from a bound state of the other two
particles.
Section IIT is devoted to the determination of the
scattering lengths of neutron-deuteron scattering. In
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this calculation the two-particle forces are described by
central local interactions of the Yukawa type. The
results obtained are discussed in the last section.

II. SCATTERING OF THREE IDENTICAL BOSONS

For definiteness, let us consider a system of three
spinless particles of mass # in which any two of the
particles can form a bound state. Furthermore, let us
assume that the particles interact only through two-
body forces; i.e., the total Hamiltonian of the three-
particle system will be given by

H=H+% Vs, (1)

where V; is the potential between the particles j and
k (#1). H, is the total kinetic energy of the system
which can be expressed in terms of the relative momenta
P: and q; in the over-all c.m. system

Ho=p+q:%, 2)
V3
2v/m

Here k; is the momentum of the 7th particle. We shall
denote the corresponding normalized plane-wave state
by |p1,qi)s

The scattering amplitude for the process in which
particle ¢ with relative momentum g, is scattered from
a bound state of the other two particles to a final state
in which particle j is free with momentum q, while the
other two particles form a bound state, may be defined

by

with

1
P1= ;\‘/‘7;(1%*1(3), qQi=— k.

. M =Ko | Uji(s+ie) | qia)s, )
with
Ujii(@) =2 Vi— 2 ViG(2) X Va. 4)
k#j k#j 141

Here s is the total energy of the three-particle system,
G(z)=(H—z2)"", and |qa); is an eigenstate of the
Hamiltonian H,=Hy+V;, describing a free particle ¢
with momentum q and a bound state of the other two
particles characterized by the quantum numbers a. Let
us now restrict ourselves to the case of identical bosons.
Then, instead of Eq. (3), we only have to consider one
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F16. 1. Dependence of the scattering length ¢ as a function of the

coupling constant A4 for various Padé approximants.

amplitude for bound-state scattering. It is given by
3
M=3 Mj. (5)
=1

Here we assume that the states |qa); are symmetric
with respect to interchange of particles 7 and % (51).
It should be noted that Eq. (5) does not depend any
more on the index 7 due to the symmetrization of the
initial state. By certain rearrangements of the terms in
Eq. (5), we may also write instead of it

M = (qsay]| Ig V| Qs r+1(qey|
X Z Tyt (s+ie) |qicti)m.  (6)

l;él k;ém
In Eq. (6) the operators T are defined by
T (2) =Vibu—ViG(2) V. 0

Using the Faddeev technique, we may write formally
the following coupled set of integral equations for the
operators 7'!:

Tkl(Z) T1(2)5k1
{T;ﬁ(z)} = {T2(z)6k2]

T;ﬁ(z) T3(Z)5k3
0 T1 (Z) T1 (Z) Tkl(Z)
— [Tg(z) 0o T 2(Z)J Go(2) | TH2(2) (8)
T3 (Z) T;;(Z) 0 T]c3(Z)

where Go(z)= (Ho—2)™ and T;(z) are the two-body
T matrices in the three-particle Hilbert space. They
satisfy the Lippmann-Schwinger equation

T,' (Z) = Vi—' ViGo (Z) T, (Z) .

A. TJON 1

Although the Padé method can be applied to any
angular momentum state of the three-particle system,
we consider here as an illustrative example the case that
the system is in a J=0 state while the two-body T
matrices can be approximated by only their /=0 part.
Equation (8) can then be simplified by making an
angular momentum decomposition.” In doing so, an
integral equation in two continuous variables is ob-
tained for the matrix elements

U(p,9)= Z 1p,q| Tit (s+ie) | qiai)m,

k;ém l?fl

where ;(p,q| are the corresponding partial-wave states
of 1(p,q|. The equation has the form

U ) = (0,0)— — f ag

Blg,a) io(?;;’);s ¢*+ie)
X / a0 P gy, ©)
. A(g,q) PPtq2—s—ie
with
Pr=7p"+q*—¢,
A(g,9")=3(2¢+¢"?,
B(g,9)=3(29—¢'),
and
167 Bl
6 (p.0) = / apn
V34iqJ 4,0

Xto(p, (p"+q2—¢)"?; s—g*+ie)s(p’).

In Eq. (10), ¢» is the two-particle bound-state wave
function. It is normalized as

(10)

00

/ 13(p) [Ppdp=1.

0

The numerical solution of the above equations with
conventional methods, such as reducing the problem to
a finite set of linear equations, is in general far from
trivial. On the other hand, the calculation of the
Neumann series solution of Eq. (9) is rather feasible
with present-day computers. For this reason, we have
examined the applicability of the Padé method.® Let us
for convenience introduce a parameter A by replacing
in Egs. (9) and (10) the two-body 7' matrix o by Ao.
This parameter should, of course, be set equal to 1 in
the actual calculation. We now assume that we have
been able to compute the coefficients M, of the scatter-
ing amplitude M resulting from the Neumann series
solution of Eq. (9). The expression

M= \M,

n=0
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can then be approximated by the so-called diagonal
[N,N7] approximant in )\, given by

Mn ni=Px(N)/Qn(\),

where Py and Qn are Nth-order polynomials, the
coefficients of which can be determined from M,. We
now know that?

hm M[N,N] =M.
N->0

The main question which arises is whether it converges
fast enough. As an example we have studied the case
where the potential V' (r) is given by

V(r)=—\se/r.

The results for the various approximants are shown in
Figs. 1 and 2. We have here taken the mass m to be the
nucleon mass while u=4.07 MeV'2, In Fig. 1 is ex-
hibited the rate of convergence of the Padé approxi-
mants for the scattering length ¢ as a function of the
coupling constant X 4. Figure 2 shows the dependence of
the quantity g coté as a function of the energy ¢2 of the
incoming particle for A 4=0.513 MeV'/2 for the various
approximants. For this value of N4, the two-body
system has a bound state at —2.225 MeV. From Fig. 2
we see that the [1,1] and [2,2] approximants behave
quite pathologically. They have a pole at ¢?=0.4 and
0.5 MeV, respectively. In spite of this peculiar behavior,
the rate of convergence as a function of N is rapid
enough for practical purposes.

III. NEUTRON-DEUTERON SCATTERING

In order to see whether the method is also applicable
in an actual calculation, we have considered the problem
of determining the scattering length of #-d scattering
under the assumption that the interactions in the singlet
and triplet channels of the two-nucleon system are
dominated only by s waves. The potentials used for
these channels are of a local central type and have the
form

e_I‘AT e“'#R"

+Ar .

4 7

V(T) =—Ay4

Since the deuteron has spin 1, there are two possi-
bilities for the total spin of the #-d system: s=% and $.
With the above assumptions, the Faddeev equations
for the total /=0 state reduce to a coupled set of two
integral equations for s=%, while for s=% we are left
only with one equation.

In a similar way, as described in the previous section
for the case of identical bosons, the scattering lengths
of n-d scattering are calculated with the aid of the Padé
method. Already the [2,2] approximant was sufficient
to determine the values for the quartet scattering

9 R. Chisholm, J. Math. Phys. 4, 12 (1963).
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F16. 2. Dependence of ¢ cotd as a function of
the energy ¢ for various Padé approximants.

length a4, while we needed the [5,5] for the doublet
scattering length @, Furthermore, the numerical
accuracy in the computed values of the scattering
lengths was estimated to be better than 0.1 fm. The
results for a, are summarized in Table I for various
choices of the singlet and triplet potentials. The cor-
responding three-particle bound-state energies are also
included in the table. We have for convenience char-
acterized the potentials by their property of possibly
having a core (i.e., A\xg#%0), and by their effective range.
The values of the potential parameters can be found in
Ref. 6. In the calculation of a4, the only two-particle
channel which contributes is the triplet channel. For
the triplet potential with repulsion the value of a4 was
found to be 6.35 fm, while the purely attractive poten-
tial gave a value of 6.45 fm.

IV. DISCUSSION

We have seen in the previous sections that the Padé
approximation can be a very useful tool in determining
the solutions of the three-body problem for local inter-
actions. The main practical problem one is faced with
is to calculate the coefficients of the series. In doing this
one encounters integrations over singularities which one
has to take properly into account. For example, in the
calculation of ¢ coté in the scattering region below the
breakup threshold, there is a singularity at the two-
particle bound-state energy in the two-particle ¢ matrix.
This singularity is simply removed by making a sub-

TasBLE 1. Triton binding energy E; and doublet scattering length
as for various combinations of singlet and triplet potentials.

Singlet Triplet E; (MeV) as (fm)
no core no core —12.1 —5.3
7s=2.6 fm no core — 9.1 —0.4
rs=2.8 fm no core — 84 0.3
no core with core —10.0 —13
7s=2.6 fm with core — 8.8 0.4
rs=2.8 fm with core — 8.3 0.9
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traction in the integrals. For above the inelastic
threshold we do not expect drastic differences with
respect to the rate of convergence of the Padé approxi-
mants. Only the integrals one has to evaluate become
somewhat more complicated since one then has, in
addition to the above-mentioned singularity, also to
treat appropriately the singularity of the Green’s
function Q.

We now turn to the discussion of the results we have
obtained for #-d scattering. The quartet scattering
length a,=6.4 fm is in reasonable agreement with the
latest experimental value of 6.134-0.04 fm.*® Further-
more, the determined values are also consistent with
those obtained by Humberston* from a variational
calculation. The effect of including a repulsion in the
triplet potential is remarkably small and indicates that

( 10 W; T. H. van Oers and J. D. Seagrave, Phys. Letters 24B, 562
1967).
11 J. W. Humberston, Phys. Letters 10, 207 (1964).
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a4 is determined primarily by the low-energy behavior
in the triplet channel. In contrast to the quartet case,
the doublet scattering length @, depends very sensitively
on the variation of certain parameters in the two-
nucleon potentials. For instance, the inclusion of repul-
sion in the singlet potential affects the result consider-
ably. Also, it is obvious from Table I that once we have
chosen for the singlet potential the one with a repulsion,
the triton binding energy £, does not change appreci-
ably upon introducing a repulsion in the triplet channel,
while this is certainly not the case with a,. With respect
to the dependence on the singlet scattering length 7,
we see that both £, and a, are very sensitive to it. The
relative variations are thereby similar as in the case of
separable potentials.?? In this connection it is interesting
to see whether it is possible by a variation in 7 to get a
simultaneous fit to the experimental values of £, and
a,. Following Phillips,** we have plotted in Fig. 3 the
obtained values of £; and a,. Assuming a linear de-
pendence of £; on ay, it is amusing to see that either the
recently experimentally determined value® a,=0.15
+0.05 fm or the older value® a,=0.74-0.3 fm can
reasonably well be fitted depending on the choice of the
triplet potential. Giving perhaps a slight preference to
the triplet potential with repulsion since this gives a
better fit to the 35; phase shifts at higher energies, this
calculation favors the older value of 0.7 fm. The latter
conclusion was essentially also reached recently by
Phillips®® in a calculation using separable two-particle
interactions. Needless to say, however, we should be
careful with our conclusion because of the crudeness of
the model. In particular, it is not known what effect the
introduction of a local tensor force has on a,.
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