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Pade Approximants in Three-Body Calculations*
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The Faddeev equations are solved by means of Pads approximants. As an application of the method,
the doublet and quartet scattering lengths of neutron-deuteron scattering are calculated for the case that
the nucleon-nucleon interactions are described by central local Yukawa potentials.

I. INTRODUCTION
' 'N recent years there has been considerable interest
~ ~ in the study of the three-nucleon problem in the
framework. of the Faddeev theory. ' In most of these
calculations, however, separable interactions have been
used to describe the two-particle forces. ' The main
advantage for using this type of interaction in the
three-body problem is the tremendous simpli6cation it
leads to for the equations one has to study. On the other
hand, one has certain beliefs that a local-potential
description for the nucleon-nucleon interaction might
be valid at low energies at least. Therefore, it is of some
interest to find suitable methods to study the Faddeev
equations for local interactions. Several attempts have
been made in this direction. ' ' One particular line of
approach has been followed recently by MalQiet and the
present author' in the study of some properties of the
ground state of the three-nucleon system. The method
is based essentially on the idea that one can obtain
certain informations from the perturbation series
solution. In this paper we show that by using Pade
techniques on the perturbation series one can in prin-
ciple also determine the scattering matrix elements. As a
specific example we study the case of three identical
particles interacting through local Yukawa potentials.

In Sec. II we describe the relevant expressions for the
case of scattering of three identical bosons. Further-
more, it is shown here how the Pade technique is applied
to the calculation of the S matrix describing the scatter-
ing of a particle from a bound state of the other two
particles.

Section III is devoted to the determination of the
scattering lengths of neutron-deuteron scattering. In
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this calculation the two-particle forces are described by
central local interactions of the Vukawa type. The
results obtained are discussed in the last section.

II. SCATTERING OF THREE IDENTICAL BOSONS

For definiteness, let us consider a system of three
spinless particles of mass m in which any two of the
particles can form a bound state. Furthermore, let us
assume that the particles interact only through two-
body forces; i.e., the total Hamiltonian of the three-
particle system will be given by

where V; is the potential between the particles j and
k (Ai) Hv i.s the total kinetic energy of the system
which can be expressed in terms of the relative momenta

y& and q& in the over-all c.m. system

with
Hv pl +pl

pl (it2 ks) tll ltl.
2+nt 2+nt

Here k, is the momentum of the ith particle. We shall
denote the corresponding normalized plane-wave state
by I ps %~)t.

The scattering amplitude for the process in which
particle i with relative momentum q; is scattered from
a bound state of the other two particles to a final state
in which particle j is free with momentum qf while the
other two particles form a bound state, may be defined

by
~s' =s(aw'f

I
(fs't(s+te)

I tl' )' ~cr (3)
with

U, ,(s) = Q V —Q V G(s) Q V .
I Qj . AQUA

Here s is the total energy of the three-particle system,
G(s) = (H—s) ', and

I contr), is an eigenstate of the
Hamiltonian H, =Ho+ V;, describing a free particle i
with momentum q and a bound state of the other two
particles characterized by the quantum numbers n. Let
us now restrict ourselves to the case of identical bosons.
Then, instead of Eq. (3), we only have to consider one
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Although the Pade method can be applied to any
angular momentum state of the three-particle system,
we consider here as an illustrative example the case that
the system is in a J=O state while the two-body T
matrices can be approximated by only their l=O part.
Equation (8) can then be simplified by making an
angular momentum decomposition. ~ In doing so, an
integral equation in two continuous variables is ob-
tained for the matrix elements

~(p,q) = 2 «P,qlT"(+ ) lq' ')-,
k,l,m;

kgm; l &1

.5 .6
XA in MeV

where i(p, ql are the corresponding partial-wave states
of &(p,ql. The equation has the form

4x
U (P,q) =4 (P,q)

FIG. 1. Dependence of the scattering length a as a function of the
coupling constant Xg for various Pade approximants.

amplitude for bound-state scattering. It is given by

3

M=+ M;;.

with

&(q, q')

A (q, q')

p2 P~2+ q~2 q2

~(q, q') = s(2q+q')', .

~(q q') = 3(2q —q')'

to(p, p' s q +ZE)
dP" . ~(p', q'), (9)

p2+q2 g

Here we assume that the states lqn), are symmetric
with respect to interchange of particles j and k (&i)
It should be noted that Eq. (5) does not depend any
more on the index j due to the symmetrization of the
initial state. Sy certain rearrangements of the terms in

Eq. (5), we may also write instead of it

M = i (qfng I Q Vp
I q,n, )i+ i (q mr I

x p Ti,'(s+ie)
I q~n;)„. (6)

k,l,m;
l&1; kgm

In Eq. (6) the operators Tl, ' are defined by

T~'(s) =&~4i—&iG(s) Vi

Using the Faddeev technique, we may write formally
the following coupled set of integral equations for the
operators TI, ' ..

T~'(s) Ti(s)4i
T~'(s) = T2(s)42
.T~'(s) . .Ta(s)43.

0 Ti(s) Ti(s) 'T, '(s)'
T,(s) 0 T,(s) Go(s) Ti,'(s), (8).T3(s) Ti(s) 0 . .T,'(s).

where Go(s)=(Ho —s) ' and T;(s) are the two-body
T matrices in the three-particle Hilbert space. They
satisfy the Lippmann-Schrodinger equation

T'(s) = I"—&''Go(s) T'(s) .

4 (P,q) = dP"
~3q&q A (q, q;)

Xt,(p, (p"+q —q')'"; ~ q'+~'~)A(p—') (1o)

In Eq. (10), ipse, is the two-particle bound-state wave
function. It is normalized as

I A(p) I'P'dP =1

The numerical solution of the above equations with
conventional methods, such as reducing the problem to
a finite set of linear equations, is in general far from
trivial. On the other hand, the calculation of the
Neumann series solution of Eq. (9) is rather feasible
with present-day computers. For this reason, we have
examined the applicability of the Pade method. ' Let us
for convenience introduce a parameter X by replacing
in Eqs. (9) and (10) the two-body T matrix to by Xto.

This parameter should, of course, be set equal to 1 in
the actual calculation. We now assume that we have
been able to compute the coefficients M~ of the scatter-
ing amplitude M resulting from the Neumann series
solution of Eq. (9). The expression

n=o
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III. NEUTR ON-DEUTERON SCATTERING
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a4 is determined primarily by the low-energy behavior
in the triplet channel. In contrast to the quartet case,
the doublet scattering length a2 depends very sensitively
on the variation of certain parameters in the two-
nucleon potentials. For instance, the inclusion of repul-
sion in the singlet potential sects the result consider-
ably. Also, it is obvious from Table I that once we have
chosen for the singlet potential the one with a repulsion,
the triton binding energy E& does not change appreci-
ably upon introducing a repulsion in the triplet channel,
while this is certainly not the case with a2. With respect
to the dependence on the singlet scattering length r„
we see that both E& and a2 are very sensitive to it. The
relative variations are thereby similar as in the case of
separable potentials. "In this connection it is interesting
to see whether it is possible by a variation in r, to get a
simultaneous fit to the experimental values of E, and
u2. Following Phillips, "we have plotted in Fig. 3 the
obtained values of I'& and a2. Assuming a linear de-
pendence of E& on a2, it is amusing to see that either the
recently experimentally determined value" a2=0.15
&0.05 fm or the older value'4 u2 ——0.7~0.3 fm can
reasonably well be fitted depending on the choice of the
triplet potential. Giving perhaps a slight preference to
the triplet potential with repulsion since this gives a
better fit to the 'S~ phase shifts at higher energies, this
calculation favors the older value of 0.7 fm. The latter
conclusion was essentially also reached recently by
Phillips" in a calculation using separable two-particle
interactions. Needless to say, however, we should be
careful with our conclusion because of the crudeness of
the model. In particular, it is not known what effect the
introduction of a local tensor force has on a&.

-8.-

ref. IPExperimental ref. IO

-8.5-

~ triplet potential with
repulsion

~ triplet potential without
repulsion

o r = 2.6 frn

~ r =P8fm

.5
a& in fm

Fro. 3. Relation between the doublet scattering
length g2 and the triton binding energy E~.

traction in the integrals. For above the inelastic
threshold we do not expect drastic differences with
respect to the rate of convergence of the Pade approxi-
mants. Only the integrals one has to evaluate become
somewhat more complicated since one then has, in
addition to the above-m. entioned singularity, also to
treat appropriately the singularity of the Green's
function Q, .

We now turn to the discussion of the results we have
obtained for e-d scattering. The quartet scattering
length a4 ——6.4 fm is in reasonable agreement with the
latest experimental value of 6.13~0.04 fm. ' Further-
more, the determined values are also consistent with
those obtained by Humberston" from a variational
calculation. The effect of including a repulsion in the
triplet potential is remarkably small and indicates that
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