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TABLE IV. Calculation of F (X —+ 27').

AI AII BI BII

r(X ~ 2~~)
R~=

r(X ~ 2yj
13.5 or 45.0 13.3 or 6.1 13.5 or 54.3 13.3 or 5.0

and (54) lead to two values of Rx for each solution given
in Eqs. (22) and (23). These are tabulated in Table IV.

VII. DISCUSSION

I'(X —+ riIrIr) 6.0 MeV,

I'(X -+ 2y) 95 keV,

I'(X -+ 2s.y) 1.3 or 4.3 MeV,

(57)

where we have quoted our results only for the 1V[H

If, on the basis of the calculation for the ratio
r(q —+ 2y)/I'(x' —& 2y), we discard the lower value of
the x mass used in solution 3 in Eqs. (23) and accept
the solution AI over AII, we summarize the following
results for the partial decay rates of the X meson:

quark model. UVe may remind ourselves that the value
of I'(X —+ riz.Ir) is of course independent of the specific
quark models. It is not possible to compare these results
with the data, since the total width of X is not yet ac-
curately known. " If we take our results in Eqs. (57)
seriously, then for the smaller of the two values for
I'(X —+ 27ry) we have the ratio I'(X —+ 2z.y)/
I'(X ~ Ii7rx)~0. 2, which is not far from the experi-
mentally quoted" value of about 0.3 However, the
width for X—+ 2y seems to be too small.

A word of caution is necessary. Most of our calcula-
tions are based on the soft-g approximation and we have
no idea how good this approximation is. The fact that
the Maki-Hara quark model seems to be preferred in
our present calculations may also be spurious if, for
instance, possible strong-interaction corrections to Eq.
(38) do not drop out from the ratios of rates calculated
in Sec. VI A, or if the mass of the ~ meson turns out to
be much different from the value taken in obtaining the
results (57).

'N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109 (1969).
These tables quote an upper limit of 4 MeV for the decay width
of X.
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The unitary Pade approximants, successfully introduced in strong-interaction physics for the pion and
kaon systems, are now applied to the nucleon-nucleon problem. It is assumed that the interaction between
two nucleons is described by the renormalizable Lagrangian Lr=iggpzvp %+lI(% %)'. We present the
result of the complete calculation of the (1,1) unitary Pads approximant, which does not involve the
second term in the Lagrangian: This implies that no free parameters appear in our model. A complete
description of low-energy nucleon-nucleon physics is then obtained which qualitatively and often quanti-
tatively agrees with experiment. Bound states appear only in S waves, and a real pole is found in the
deuteron amplitude at 4.8 MeV when the pion-nucleon coupling constant is taken at its physical value
g /4n. =14.7. The Regge trajectories rise with energy: The deuteron recurrence does not become physical,
while the recurrences of the virtual 'S0 state give rise to narrow resonances in the 'D2 and 'G4 waves. For
sll waves (with the exception of the 'So which in the L1,1j Pade approximation has a wrong threshold
behavior), the calculated phase shifts are in good qualitative agreement with the experimental phase-shift
analysis.

I. INTRODUCTION

' 'T is today a generally accepted belief that in strong-
' - interaction physics one can only get, from the
perturbative series, statements about the analyticity
properties of the S matrix. On the other hand, this
standpoint does not allow us to infer quantitative
information from the computation of the perturbative

* Istituto di Fisica, Universita di Bologna.
t Istituto di Fisica, Universita di Bari.

expansion. One may wonder whether it is the theory
itself, or the most used approximation method, which is
inadequat- i.e., whether the traditional perturbative
approach, so successful in electrodynamics, is meaning-
less in the case of strong-interaction physics.

Kith this idea in mind, one has to look for other ap-
proximation schemes. Among the many possible tech-
niques, one which seems to be particularly suitable is
the Pade approximant method, which has been suc-
cessfully introduced in strong-interaction physics for
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the ~-~ and x-E systems. ' ' The purpose of the present
paper is to apply this method to the oldest and perhaps
the most classical problem of strong-interaction physics,
the low-energy interaction between two nucleons.

This subject being classical, the literature on it is ex-
tremely large. Feshbach and Lomon' have reviewed
the most recent developments from the standpoint
of potential theory, and other reviews and books4 may
be consulted for general surveys, theoretical and
experimental. Throughout this paper, we shall em-

ploy the relativistic formalism introduced by Gold-
berger, Grisaru, MacDowell, and Wong (hereafter
GGMW), ' and we shall assume, therefore, rigorous
charge independence.

The choice of a renormalizable interaction Lagrangian
will be based on the idea, generally accepted since
Yukawa, that the pion is the most important generator
of forces between two nucleons. Therefore, we shall

neglect, in this approach, the existence of the other
forces (such as J K forces, for instance). If one makes
the standard invariance assumptions of quantum Geld

theory together with isospin, parity, charge conjuga-
tion, and time-reversal invariance, then the most
general renormalizable interaction Lagrangian in-

volving only the nucleon and pion field one can write is

Ir i ggys~P&+——X(% 4)',
where P is the nucleon and+ is the pion field, and g and X

are the pion-nucleon and pion-pion coupling constants,
respectively.

The direct coupling between the pions, represented.

by the term X(+ N)', not only is necessary in order to
renormalize the theory (for nucleon-nucleon scattering,
this necessity arises at eighth order in g), but also
generates the pion-pion resonances, such as the p, 'if one
applies the Pade approximation method to the perturba-
tive series in A. Therefore, in this framework, possible
effects due to vector mesons are automatically included
in the theory, although they appear only in high-order
perturbative terms. In the present paper, we compute
only the first unitary Pade approximant to the two-
body diagonalized 5 matrix; as we shall see later, this
approximant does not involve the term X(+ 4)' in the
Lagrangian. In such a situation, our model has the

'D. Bessis and M. Pusterla, Nuovo Cimento 56, 832 (1968).' J.L. Basdevant, D. Bessis, and J.Zinn-Justin, Nuovo Cimento
60A, 185 (1969).

3 H. Feshhach and E.Lomon, Ann. Phys. (N. Y.) 17, 236 (1968).
L. Hulth6n and M. Sugawara, in Hundblch der Physik, edited

by S. Flugge (Springer, Berlin, 1957), Vol. 39; M. H. MacGregor,
M. J. Moravcsik, and H. P. Stapp, Ann. Rev. Nucl. Sci. 10, 291
(1960); R. Wilson, NNcleon-NNcleon Scattering (Interscience, New
York, 1963); G. Breit and R. D. Haracz, in IIigh-Energy Physics,
edited by E. H. S. Burhop (Academic, New York, 1967), Vol. I;
International Conference on the N-N Interactions, Rev. Mod.
Phys. 39, 495—717 (1967).' M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D.
Y. Wong, Phys. Rev. 120, 2250 (1960). In this context see also
M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys. (N. Y).
2, 226 (1957);D. Amati, E.Leader, and B.Vitale, Nuovo Cimento
1'7, 68 (1960).

very interesting feature that no free parameters appear;
this is so because the pion-nucleon coupling constant g
is known to be about 14.

In such a case, and remembering that we are com-
puting only the first Pade approximant, assuming
isospin invariance, we think that it would be a satis-
factory result to reproduce even qualitatively the actual
low-energy nucleon-nucleon behavior. In fact, we shall
see that better results are often obtained.

We wish to add some comments about the Lagrangian
we have assumed. It is the simplest one which satisfies
certain fundamental physical requirements. One can,
of course, look for other Lagrangians satisfying further
physical requirements Lfor instance, invariance under
broken chiral symmetry and/or SU(3) symmetry;
PCAC, etc.j. In this first step, however, we restrict
ourselves to the simple Vukawa Lagrangian, and this
may be useful for two reasons: First, it is interesting to
examine how our method works when it is applied to a
theory whose possibilities in a purely perturbative
formalism are well known. Second, it may constitute a
good introduction to a more elaborate theory.

This paper is divided as follows. In Sec. II we give a
general and brief review of the Pade approximation
method, referring the reader frequently to other papers
for a complete description. In Sec. III we apply the
method to the relativistic formalism for nucleon-
nucleon scattering as given in GGMW; in this context
we discuss the threshold behavior of the partial-wave
amplitudes, which is particularly important in a low-
energy theory. In Sec. IV we treat the problem of the
bound states of the two-nucleon system. Section V is
devoted to a discussion of the deuteron. In Sec. VI the
Regge trajectories of the deuteron and of the '50 state
are discussed. In Sec. VII we present the phase shifts
predicted by our theory and compare them with the
experimental ones and with those of the unitarized
Born approximation. In Sec. VIII we present a general
discussion of our results.

Appendix A is devoted to a sophisticated method for
computing Froissart-Gribov integrals. Appendix 3
deals with notation, conventions, and technical details
referring to nucleon-nucleon scattering. Appendix C
deals with the explicit computation of the Feynman
diagrams up to fourth order in g. Appendix D deals with
a detailed discussion of the threshold behavior of the
partial-wave amplitudes.

II. PADE SOLUTION

A. Genera1ities

Ke give in this section only a brief review of the Pade
approximation method. The reader is referred to %all'
for the mathematical properties of the theory, and to
Refs. 1 and 2 for its application to relativistic quantum

' H. S. Wall, Caatiagsd Fractioas (Van Nostrand, Princeton,
N. J., 1948).
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field theory, and for further mathematical properties.
Another exposition of the Pade method is given in
Baker's paper. 7

Given a renormalizable interaction Lagrangian, the
renormalized perturbative expansion of the S matrix in
powers of the coupling constant can be computed:

S=I+gSi+g'Ss+ +g"S„+. . . (2.1)

I.ittle is known about the convergence properties of this
Taylor series around g=0, but it is generally believed
that the radius of convergence of this series is sero. This
is the case for many models, such as the one-dimensional
relativistic models, the Peres model, ' the four-dimen-
sional 'AC' theory, and the Bethe-Salpeter equation'
or the Thirring model. "The same situation seems to
hold even in electrodynamics, according to the argu-
ments of Dyson'2 and of Frautschi"; in this case, how-
ever, the divergence of the perturbation expansion
would have no practical importance: The series is then
considered as an asymptotic series, because of the small-
ness of the coupling constant n=e'/4sr, and, as is well
known, very good numerical computations can be
performed with such series.

In the case of the strong interaction, it appears that
(2.1), as it stands, is useless. Because of the large value
of the coupling constant, it does not behave at all like
an asymptotic series. However, there exist powerful
methods' by which, starting from a knowledge of the
successive terms of the divergent Taylor expansion of a
given function, one can reconstruct the function itself.
Among many such methods, the method of Pade
approximations appears to have remarkable mathe-
matical properties and at the same time to be very
efficient, when correctly applied to physical problems.
The Pade method acts as an "accelerator of converg-
ence" (in the case of divergent series, the acceleration
is such that it transforms a divergent process into a
convergent one).

%e shall not repeat here all the detailed properties of
such approximations, which can be found in the previous
references, but we would like to summarize them.

B. Proyerties of Pale Solution

From the Born series (2.1) cut off at order 2Ã, one
constructs a rational fraction in g, called the (X,Sj
Pade approximation, which has the following properties.

(1) For small values of g, (1V,1V](g) coincides with
the Born series up to order 2N.

' G. A. Baker, Jr., in &dvartces sN Theoreteca/ Physics, egiteg hy
K. A. Brueckner (Academic, New York, 1965).' G. Baker and R. Chisholm, J. Math. Phys. '7, 1900 (1966}.' V. Glaser and K. Hepp (private communication).' C. A. Hurst, Phys. Rev. 85, 920 (1952).

"%V. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958).' F. J. Dyson, Phys. Rev. 85, 621 (1952)."S.C. Prautschi, Progr. Theoret. Phys. {Kyoto) Suppl. 8, 21
(1958).

'4 J. Hadamard, IegorIs sgr la theoric des series divergent'
(Gauthier-VilIars, Paris, 1922).

(2) As a function of the energy, its analytical pro-

perties are the same as those of the Born series. This is

important, because it is generally believed that the
exact S matrix has the same analytical properties in the

energy as its renormatised perturbative terms.

(3) Moreover, it has been proved' 's that two-body
unitarity (coupled channels) is identically fulfilled.

(4) Mass spectra and generalized mass spectra

(Regge trajectories) come out very naturally in this

approximation as zeros of the denominators of the
fractions.

(5) Amazingly, it can be shown that the Pade ap-
proximants are identical to the approximations derived

by Cini and Fubini" from the Lippmann-Schwinger
variational principle (see Ref. 1).

(6) The method can handle formal series of non-

commuting matrices, and has various other advantages:
It satisfies identically the factorization of residues,
Hermitian analyticity, and so on.

(7) Finally, the most interesting property is that,
while the Taylor series can only represent functions
analytic in a circle, our approximations can easily

represent functions with very bad types of singularities:
The poles and zeros by clustering can reconstruct cuts,
or by coalescing can build up isolated essential
singularities.

(8) Crossing symmetry is not identically fulfilled by
our approximation, which has been based on the
diagonalized (in the angular momentum) S matrix.
Nevertheless, there is some crossing symmetry built

in, due to the fact that the perturbative series had it.
In practice, however, crossing symmetry can be tested
numerically. Finally, if one assumes an interaction
Lagrangian in which several coupling constants appear,
one has to state on what footing these constants are to
be treated in the perturbative expansion. '~

In the present case looking at the interaction
Lagrangian (1.1) that we have assumed, one can see

that the first order in g corresponds only to a vertex,
while the first order in X already corresponds to a four-

point amplitude. Therefore, we shall treat the parame-
ter P on the same footing as g'. This implies, as already
stated, that up to fourth order the perturbation ex-

pansion does not involve contributions coming from
the term X(4 e)' in the Lagrangian.

III. APPLICATION OF METHOD TO
NUCLEON-NUCLEON SCATTERING

A. General Features of Nucleon-Nucleon Scattering

The nucleon-nucleon amplitude can be written,
following GGMYV, as

"J.I.. Gammeland F. A. MacDonald, Phys. Rev. 142, 1245
(1966).

M. Cini and S. Fubini, Nuovo Cimento 11, 142 (1954).
' S. Mignaco, M. Pusterla, and E. Remiddi, Saclay Report,

1969 (unpiibhshed).
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Fro. 1. Analytic properties of the Mandel-
stam amplitudes F, i(s, t,g) for nucleon-
nucleon scattering.

YVe refer the reader to Appendix 83 for the precise
definition of the Fermi invariants S, V, T, A, P and
S, V, T, A, P. The operators 6'o and 6'j. are the isospin
projectors.

The Ji,~ are scalar analytic functions of the Mandel-
stam invariants s, t, and n, where s is the square of the
total energy in the c.m. system of the two nucleons, and
t and u refer to the annihilation channels. (See Appendix
3 2 for the precise definition of those invariants. ) The
reason for writing the amplitude in the form (3.1) is that
the Pauli principle reads simply

) P P
+g'I — (pi (3.3)

~t —ti' u —t('

In fact, this formula is very general, because when the
nucleons are on the mass shell, it is easy to see that the
form factors EEx, appearing in Fig. 2, involve only
the P invariant.

The total aniplitude is now

(3.4)+—+(1pion) ++R y

q'= $Fis(S S)+Fs'(T+—T)+F3 (A A)+F4 (V+ U) t and u channels; the result is

+Fso(P P)j(I's+PFi'—(S S)+Fs'(T+—T)
t P P

+Fs'(A A)+F4'(V+ —V)+F,'(P P))(Pi. (3.1) q—(,„.„)——3g&~ + (P,
4—p,

' u —ti'

F J(s t)u) ( )'+rF (s,u)t). (3.2)

The analytic properties of the amplitudes F,'(s, t,u) are
shown in Fig. 1 (if one assumes the validity of the
Mandelstam representation). In this figure we see the
pion pole, the two-pion cuts, the deuteron pole, and
the two-nucleon cuts. It is always possible to single

out the contribution of the pole term corresponding
to the existence of a pseudoscalar particle (pion) in the

FIG. 2. One-pion intermediate-state dia-
gram in X-E scattering.
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( so) (i pion) ( +0) (i pion) ~ (3.5)

This relation explains why the one-pion contribution
to the 'So wave behaves like a p wave.

In particular, we notice that for the two s waves 'Si
and 'SD, the one pi on con-tnbuti on gives a p wave t-hreshotd

behavior, and this fact is model independent The nucle. on-
nucleon systems are a physical example in which the
"nearest singularity" (the pion pole in dispersive
language) is not the dominant one for these waves. The
consequence is that any relativistic model which can be
expected to give the s-wave phase shift quantitatively
must necessarily include a sophisticated description of
the two-pion (and also three-pion) forces, because the
one-pion forces have negligible effects on those waves
at low energy. ""

B. Particular Features of [1,1] Approximation

From the partial-wave Born series

where n=g'/4ir is the renormalized coupling constant,
we construct the erst approximation:

[1,1]"(s)=nf.;v(s)

~D»"(s) —~f»"(s)] 'f»" (s) (3 7)

where the fe„~r(s) are in general 2&&2 noncommuting
matrices. For more details and for the connection be-
tween the f's and the phase shifts, see Appendix C 2.
The relations between the partial-wave amplitude
fs v(s) and the invariant amplitude (3.1) are given in
GGMW, and are quoted in Appendix C1.

The complete computation of the Feynman diagrams
up to fourth order is given in Appendix C; these cal-

' H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
1OS, 302 (1957).' J. S. Ball, A. Scotti, and D. V. KVong, Phys. Rev. 142, 1000
(1W6).

where 9 ii has the general form (3.1),but the correspond-
ing F, 1(st,u) no longer have the pion pole.

As a consequence of Eq. (3.3), we find (see Appendix
D 1) that the one-pion contribution gives the wrong
threshold behavior to the following:

(1) the 'So wave, which behaves like p' instead of p
(where p is the c.m. momentum),

(2) the fJ i, s i component of the coupled triplet (in
both isospins), which behaves like p'~+' instead of
P's '. (Among these amplitudes is 'Si, the s-wave
deuteron amplitude. )

The reason for this strange behavior is very simple:
The one-pion contribution has more symmetry than the
total amplitude, which gives independent contributions
to all S, V, T, 3, P invariants. Thus the partial waves
are not independent in the one-pion exchange approxi-
mation, and one 6nds, for instance,

culations have been performed, with diBerent methods,
by Gupta et al."and by %ortman. "From these com-
putations, one deduces the erst and second Born terms
necessary to build up the [1,1]Pade approximant.

We come now to the problem of knowing if all the
partial-wave amplitudes will have the correct threshold
behavior in our theory. It is shown in Appendix D 2

that this is the case for all waves, with exception of the
So singlet: This wave, in the [1,1]Pade approximation,

has the anomalous pathological threshold behavior of a
d wave; this is because the erst Born term itself had a
wrong threshold behavior. Our theory being a low-

energy one, its predictions about this wave are mean-
ingless; we conclude that, in order to treat the 'So wave
by the Pade method in the framework of the assumed
Lagrangian, one has to compute at least the [2,1]or the
[1,2] approxirnant, both of which involve terms of the
sixth perturbative order.

In regard to the other waves which have a pathological
behavior for the first Born term (among which is the
s wave of the deuteron), it is remarkable that the first
Pade approximation restores the correct threshold
behavior.

IV. BOUND-STATE PROBLEM

Let us first recall the well-known structure of the
bound and antibound (virtual) states in the nucleon-
nucleon system: There is a bound state (the deuteron)
in the J=1 coupled triplet, with a binding energy
8=2.225 MeV; and an antibound state in the 'So
singlet with an antibinding energy of 38 keV. No bound
or antibound states exist in any other wave.

Let us now discuss these points in detail, in the
framework of our approximation. The bound-state
equation reads [taking into account Eq. (3.7)]

det[fei (s) —nf&2 ' (s)] 0. (4.1)

fbi' '(srr) =fbi"(sr),
Sll B2 ' SI Z B1 ' SI

(4.3)

Equations (4.3), which express the second-sheet values
of fei and f))2 as functions of their first-sheet values, are

' S. N. Gupta et a/. , Phys. Rev. 138, 81500 (1965).
"W'. R. Wortman (private communication); Phys. Rev. 176,

176' (19&8).

Equation (4.1) is of first degree in n for the singlet and
the uncoupled triplet; for the coupled triplet it is of
second degree in n. Giving to n its physical value, we
look for the zeros of (4.1) in s. [It may be technically
easier in some cases to compute n= n(s) from (4.1) and
then intersect this curve with the physical value of n.]
The bound states are to be selected among those zeros.

The antibound-state equation reads

d t(f ''() —f ''()+ Lf ''()]'1=0 (42)

This last equation is obtained by noticing that
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trivially deduced from the elastic unitarity condition
written for the perturbative Born series.

Let us begin the discussion with the bound states.
The well-known analytical structure in s of the partial-
wave amplitudes in the nucleon-nucleon scattering is
the following:

(1) the right-hand cut starting at s=4m' (elastic
cut); then, superimposed, the first inelastic cut at
s = (2m+ p) ', and so on.

(2) the left-hand cut starting at s= 4m' —ti' (1
pion cut); then superimposed, the two-pion left-hand
cut starting at s=4m' —4p', and so on.

Between those two cuts is a region of analyticity:

4m' —p'(s& 4m'. (4.4)

(n/1) fe„(s)= - Absi&"'(s, t')
~(s—4m') 4„2

2t
Xgz(1+ ~Ch',

s—4m'

f»'(&) =
s.(s —4m')

3(t' —t ') (4.6)

2t'
XQ.I 1+

s —4m'i

Q~ 1+
~(s —4m')

2ti'

s —4m'I

We see that when s varies in the gap (4.4), fbi~(s) varies
from zero (when s=4m') to infinity (when s=4m' —ti')
while all the others fii„(s)vary from zero to a finite
value. We see once more that the first Born term, which
was singular from the algebraic point of view, is also
singular from the analytical point of view, becoming
infinite (logarithmically) at the point s=4m' —ti'.

As a consequence the function ti(s) of formula (4.5)
varies from a certain value n(4m') to infinity when
s —+4m' —ti'. The value of n(s) at threshold has a
remarkable property: It increases exponentially with J.

In this gap the 5 matrix is real (time-reversal invar-
iance); that is, our f&„~r(s) are purely imaginary.

We notice that it is found experimentally that the
binding energy of the deuteron is 2.225 MeV; this will

correspond to a pole which sits in the gap approxi-
mately half-way between the right- and left-hand cuts.
After those generalities, we come now to the discussion
of the roots of (4.1).We remark that our Eqs. (4.1) re-
duce for the singlet and uncoupled triplet to

~= f»' '(~)/f»" (~) =~(~) (4 5)

The function n(s) is real when s is in the gap, as noticed
previously. Let us forget about spin and isospin com-
plications; then the Froissart-Gribov integrals giving
fe„(s)read

The reason is simple: Abs, &"'(s,t') will be peaked around
some value t, &4p, ', then

Qg(1+2''/(s —4m')) t, ~+'
A' S (4.7)'"' Qg(1+ 2t, /(s 4—m')) ti'

All these results are not modified by the presence of spin
and isospin. In fact Figs. 3 and 4 show this clearly; in
T= 0 the singlet and uncoupled triplet have n(s)
always negative, while in T= 1 they have tr(s) always
positive (the shape of the curves for T= 1 is much the
same as for T=O, except that they are upside down),
but one sees that n(s) increases with J, and stays in all
cases far above the physical value 15.

For the coupled triplet nothing is essentially changed,
and one finds that the two roots n+ and o. of the second-
degree equation (4.1) are always real in the gap, that
both tend to infinity for s —+ 4m' —p', and that they are
of opposite sign. One sees in Figs. 5 and 6 that n(s)
increases exponentially with J, and that only the wave
J= 1 gives rise to a bound state for g'/4ir = 15; the bind-
ing energy is found to be 4.8 MeV, so we find that in the
gap only the s waves can give rise to a pole of the S
matrix when the coupling constant has its physical
value.

In the same way, antibound states, which are second-
sheet poles of the 5 matrix lying in the gap (4.4), can be
studied. It is found that for the J=1, T=O coupled
triplet the two roots of (4.2) are always real and op-
posite in sign and that the positive one is always less
than 3.5, so no antibound states are found in this s
wave. With regard to the 'So s wave: As already ex-
plained, this wave has pathological d-wave behavior at
the origin, and therefore no reliable results can be
dl awn.

The reader may be astonished by the fact that when
the coupling constant goes to infinity, the pole of the S
matrix which is in the gap tends to the left-hand cut.
One might suppose that there are examples in which the
bound state sits on the left-hand cut. (The case of 'He,
however, gives rise to anomalous cuts which cover the
gap entirely, so in such an example there is no more
gap. ) We want to point out that in the relativistic case,
the bound state has to be between s=0 and s=4m',
because otherwise for s(0 it will appear as a pole in the
physical regions of the crossed channels. This is not so
for nonrelativistic theories in which when the coupling
constant tends to infinity, the binding energy does also.

"M. H. MacGregor, R. A. Amdt, and R. M. Wright, Phys.
Rev. 141, 8/3 (1966); 169, 1128 (1968); R. E. Seamon et al. , ibid.
165, 1579 (1968).

23 F. J. Dyson and N. H. Xuong, Phys. Rev. Letters 13, 815
(1964}."R.A. Amdt, Rev. Mod. Phys. 39, 710 (1967).

'A. Scotti and D. Y. Wong, Phys. Rev. 138, 8145 (1965)."J. L. Basdevant and B. W. Lee, CEN—Saclay, Report
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FIG. 5. Coupling constant a =g'/4s'
versus the bound-state binding energy
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our case, however, the pole comes very near to the left-
hand singularity for the physical value of e, and this
limits the reliability of the binding energy one can
deduce.

We now come to the question of the possibility of find-

ing poles for rr real and (Re@)(4~'—ps, and of under-

standing their physical meaning. In fact, for the J=1

coupled triplet one 6nds, for +=15, two poles at
4nz' —s= (3 5&F4.2)p' T. hes.e poles have large imaginary

part and have a real part which is already far from the

beginning of the left-hand cut. It seems reasonable

therefore, not to interpret them as bound states, but
rather as unphysical singularities contributing to the
left-hand cut.
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FIG. 6. Coupling constant n =g'/47r
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—
f&(s) f&D(s)g-l, T=0(s)
fao(s) -fo(s)—

(5.2)

This last matrix is analytic in s (the square of the total
c.m. energy), and has a pole for s= mD'. In the vicinity
of this pole, (5.2) becomes

~S ~SDJ=I., T=O $
Rag) ED

(s —mD') . (5.3)

The theorem of factorization of residues tells us that

~SD ~S~D ~ (5.4)

As shown in Appendix D 3, those residues are connected
to useful. physical quantities. In particular, we have

p= tanoi) —— RsD/RB—,

where ~D is the mixing angle; and

16(mB)"'
+i

Rs+Ro

(5.5)

(5.6)

where m is the nucleon mass, 8 is the deuteron binding
energy, and p( 8, 8) is the—deuteron —effective range.
(The reader is referred to the paper of Hulthen and
Sugawara4 for the definition of p and p( 8, —8).]-
By means of those two quantities, one can calculate the
physical quantities related to the deuteron, such as
quadrupole moment or magnetic moment (at least in
first approximation). To represent a bound state it is
necessary that the residues RB and R& be purely
imaginary with a negative imaginary part.

We notice that our Pade approximation will auto-
matically satisfy the factorization of residues, and will
also be Hermitian. It is then only necessary to check
that the sign of the imaginary part of E8 is negative,
which is the case. Moreover, when +=14.7, which im-
plies a binding energy of 4.8 MeV for our pole, we get

tansy) =0.006.

The experimental value is 0.03, so our result is too small
by a factor of 5. However, we notice that the sign of the
quadrupolar electric moment will be right. It then
follows that the sign of the scattering mixing angle will
also be right (see Appendix D3). Therefore, the pole

V. DEUTERON

We shall now compute some physical quantities con-
nected with the deuteron, which will enable us to
perform a careful analysis of our results.

The deuteron appears as a bound state of the coupled
triplet amplitude for J=1 and T=O, described by
the Smatrix

gJ 1,T o(s) —I+ifJ=,T=0(s) (5 I)

where I is the 2&&2 unit matrix, and f~ 'r =o(s)=is

we find in the 5 matrix really has the physical char--

acteristics of the deuteron. For the effective range a.

negative value is obtained. We postpone the discussion
of all this to Sec. VII, which is devoted to phase shifts.

VI. REGGE TRAJECTORIES

Once we have found a zero of the denominator of an
approximant for integer J, there are no difficulties in
following it by continuity in the complex J plane. It is
in this way that the corresponding Regge trajectory is
determined.

A first rising trajectory is observed in the T=o
coupled triplet amplitude, i.e., the deuteron trajectory.
Looking at Fig. 7, one sees that this trajectory crosses
the physical value 7== 3 near 300 MeV (T&,b). However,
the imaginary part of the trajectory is so large at this
energy that it cannot correspond to any physical
particle (resonance) which one couM identify as the
Regge recurrence of the deuteron.

A second rising Regge trajectory is observed in
the T= 1 singlet amplitude. Looking at Fig. 8, it can be
seen that it gives rise to narrow resonances in the 'D2
and 'G4 waves near 90 and 380 MeV (T~,b), respectively.
Its extrapolation down to J=O gives rise to a bound
state comparable with the one we obtain in the '50
state. So (quite surprisingly), although the 'So wave
does not Reggeize, the extrapolation (graphical only)
down to J=O of the Carlsonian sequence of the as-
sociated waves gives back approximately the same
"bound state. " It seems to us very important to see if
in an improved version of this work —involving higher
orders, for instance —this peculiarity is confirmed. If
such is the case, it would be, in this model, some
confirmation of the so-called "principle of nuclear
democracy. "

Of course, the values found for the energies of the
resonances 'D& and 'G4 are necessarily only indicative
(if one remembers, for instance, that our deuteron is too
strongly bound) in the present state of the model.
However, their existence, at least, has been already
suggested by some authors. ""A more complete dis-
cussion of these resonances is given in the following
section.

VII. PHASE SHIFTS

Since there exist several accurate phase-shift analyses
of nucleon-nucleon elastic and even inelastic scattering
(up to 750 MeV for T~,b),"we have computed all the
phase shifts predicted by our theory (with the exception,
as explained previously, of the 'So phase shift).

As already stated, our theory is a low-energy one.
Strictly speaking, it should be reliable up to an energy
corresponding to the first inelastic threshold en-
countered, i.e., up to Ti,b ——280 MeV, which corre-
sponds to the production of one pion (remember that
at the order we are dealing with, no inelastic branch
points appear in the perturbation series). Since, how-
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FIG. 9. Comparison between the
experimental phase shifts, the uni-
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tion for the 'S& phase shift.
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ever, the inelasticity eRects are small up to 400 MeV, we
should be able to reproduce the analysis up to this

energy, at least for higher partial waves. Moreover, it
is just in this energy range that the experimental fits
are the most reliable.

In Figs. 9—20 we have plotted the calculated phase
shifts, compared with the fixed-energy data of Ref. 22
and with the phase shifts predicted on the basis of the
so-called "unitarized Born term" (UBT); the pion-

nucleon coupling constant is held fixed at +=15. In
Figs. 21—27 we have plotted the phase shifts obtained

assuming a=10, 15, and 20. This has been done be-

cause, even if the essential parameter in our theory is

known, it is interesting to look at how sensitive the
results are to its variation.

Looking at all these figures, it can be noticed that
(with the exception of 'Ds and 'G4 waves, which will be
discussed later) the qualitative agreement with the
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9 FIG. 10. Comparison between
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FIG. 1.1. Comparison between the
experimental phase shifts, the uni-
tarized Born term, and the Pade solu-
tion for the 'D3 phase shift.
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data is always good. All the signs of the phase shifts are
correct, at least at very low energy. This means that we
predict correctly the sign of the two-nucleon forces.

The comparison with UBT is perhaps not completely
meaningful from a theoretical standpoint; we make it
because UHT is the simplest possible model, and al-
ways, when a new theory is proposed, the comparison
with the Born term should be made as a first simple
test. Now, let us first remark that since all the /= 7—1

coupled triplet waves of UBT behave wrongly at
threshold, they cannot reproduce the data, whereas
our model does not present this defect. Furthermore,
looking at Fig. 11, we see that the sign of the fr=a t
phase shifts in T=O is wrong for UBT and correct for
the present theory. To summarize, for all waves of this
family (i.e. , the i!=J—1 coupled triplet waves), the
agreement with data is much better in the present
theory than in UBT (see Figs. 9, 10, and 12).
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FIG. 12. Comparison between the
experimental phase shifts, the uni-
tarized Born term, and the Pade solu-
tion for the 'F4 phase shift.
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FIG. 13. Comparison between the experi-
mental phase shifts, the unitarized Born
term, and the Pade solution for the e1 phase
shift.
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If we parametrize the behavior of the 'S~ phase
shift by an effective-range formula, we obtain

a= 2.82 F for the scattering length,

r=0.9 I'" for the effective range.

(Experimentally, a=5.37 F and r=1.73 F.) As men-
tioned previously, the effective range can be obtained
in terms of the parameters of the deuteron pole by
means of Eq. (5.6). If we identify the pole we find at
8=4.8 MeV with the deuteron, we obtain a negative
value

p( 8, 8)= ——5.08 —F.

We explain this inversion of the sign in the following
way: r and p( 8, 8) hav—e to —coincide if the Jost
functions can be well approximated only with the
bound-state pole. This is the case if it lies near threshold.
However, in our case, the pole lies near the left-hand
cut; moreover, there exists a pair of complex conjugate
poles so that a good approximation of the Jost func-
tions must take into account not only the real pole
but also the couple of complex ones. When such a pro-
cedure is carried out carefully, the resulting values for
a and r are the same as those quoted above.

The preceding analysis shows that there is no in-

Phase- ShNt Peg

2 a=15 g2 4K
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a — Pade

—Livermare phase-shift

FIG. 14. Comparison between the
experimental phase shifts, the uni-
tarized Born term, and the Pade solu-
tion for the e2 phase shift.
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FIG. 15. Comparison between the
experimental phase shifts, the uni-
tarized Born term, and the Pade solu-
tion for the 'D1 phase shift.
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compatibility between the phase shifts predicted by
the present theory and the experimental ones. It is
interesting to examine how the phase shifts change
when the coupling constant n is allowed to vary. With
10&o.&20, the experimental data are generally well
reproduced in partial waves with J)1 (see Figs. 21—27).
For J= 1 we notice that the coupled triplet phase shifts
are stable with respect to the variation of rs (see Figs.
21 and 24). We come now to the discussion of the 'Ds

and 'G4 phase shifts. As we have already seen in dis-
cussing Regge trajectories, in our theory, these waves
exhibit resonances at 81.5 and 370 MeV, respectively,
for n=15. The widths are 4 and 6 MeV, respectively.
At the energies where we And them, the presence of
these resonances is incompatible with the experimental
data.

The presence of a resonance in the 'D2 wave has
already been suggested by some authors, starting from
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FIG. 16. Comparison between the
experimental phase shifts, the uni-
tarized Born term, and the Pade solu-
tion for the 'I'1 phase shift.
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the experimental phase shifts, the
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shift.
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a different theoretical basis. "'4 We note that if one
assumes the existence of a rising Regge trajectory
which interpolates the virtual singlet state, the sim-

plest assumption for its behavior in energy is

that we obtain for r is not very far from r, . However,
if r is multiplied by a factor of 2 in Eq. (7.1), this will

change the resonance energy T&,b by a factor of 4,
because

J=r, (7.1) 2 lsh 2pe. m. jhow ~ (7 2)

the quantity r being of the order of the singlet effective
range r, . Such a hypothesis will give rise to resonances
in the 'D2 and 'G4 waves. In fact, the numerical value

We conclude that, although no inconsistency enters in
the model, our theory cannot, at this stage, predict cor-
rectly the positions of possible higher-energy nucleon-
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-20. -

FIG. 18. Comparison between
the experimental phase shifts, the
unitarized Born term, and the
Pade solution for the 'P1 phase
shift.

-30-

l

150 300
I

450

TLAe M~V
I

600



UN ITARY PAD E AP P ROX I MANTS: N-N SYSTEM 2079

Phase-ShiA Deg

45- -UBT

o = Pode

= Livermore phase shift

Fn. 19. Comparison between the
experimental phase shifts, the uni-
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30-

15-

0-
150

I

300
I

450

T„ABWeV
I

600

nucleon resonances. We think, however, that at this
stage the prediction of the existence of these resonances
is meaningful.

VIII. DISCUSSION AND CONCLUSIONS

As we have seen, our model seems to work nicely, in
view of the fact that (i) we have only considered the
lowest-order unitary Pade approximation, (ii) there are

no free parameters left, and (iii) we have chosen the
simplest possible Lagrangian.

Our theory is certainly satisfactory from a formal
standpoint, because it allows the identi6cation of
bound states, as poles of the amplitudes, whereas the
usual perturbative approach breaks down precisely
at that point. One may wonder to what extent our
results are consistent with the fact that we have taken
into account only the pion force. In fact, in recent years,

0
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Phose- Shift Deg
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Fxo. 20. Comparison between the
experimental phase shifts, the uni-
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tion for the 'F3 phase shift.
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often gives wrong threshold behavior. It only gives
rise to bound states in partial waves where they are
present. However, it is highly inexact in reproducing
other aspects, which are generally considered as due to
other forces than pion exchange. For instance:

(1) The lower waves do not exhibit the change in

sign generally attributed to the presence of repulsive
cores;

(2) the 'Se wave is pathological because of the
wrong threshold behavior of the Born term;

(3) the numerical values of the bound state and
resonance energies are not obtained correctly with
the physical value of the coupling constant o.=15;
also, the residues of the corresponding poles are badly
represented.

These defects, which are unavoidable in such a low-
order approximation, can be eliIninated in two ways.
Either one can compute higher perturbative orders, in
order to build higher-order Pade approximants, or one
can introduce other forces in the theory. In the former
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experimental phase shifts and the
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coupling constant u=gs/4e. , for the
ey wave.
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mental phase shifts and the Pade solution
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case, one has the direct continuation of the present
method with pion exchange. In the latter case, one tries
-to insert more physical information in the Lagrangian,
in order to describe phenomenologically the experi-
mental situation with a low-order approximation. In
view of the importance of the problem, our opinion is
that both ways should be tried, with a preference for
the first one, because it is necessary that convergence
of the Pade method be achieved to get any sensible
result. The forces due to the exchange of other pseudo-

scalar mesons can be treated in our theory, even at its
present stage, by introducing the E, p, A, and Z fields
within SU(3) symmetry. It is obvious, however, that
things will not change drastically by the introduction of
the E and g mesons, which have the same spin-parity
properties as the pion, and much larger masses. Also,
since SU(3) is not very well satisfied, one would be
forced to introduce some extra arbitrary parameters.
In any case, the computations of Wortman" show
clearly that the modifications induced by the introduc-
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FIG. 26. Comparison between the experi-
mental phase shifts and the Padb solution
for three values of the coupling constant
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tion of the complete meson and baryon octets are small.
However, these fields will naturally be considered when
considering the AE, ZLV, etc., interactions. More
interesting would be a computation of E-E scattering
based on the 0 model according to the recent results
of Ref. 27 for the case of the mesons.

We conclude by saying that the model presented in
this paper has some entirely new features compared to
those used up to now in nucleon-nucleon scattering, and
that these 6rst encouraging results give hope for
further improvements and developments.
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A typical Froissart-Gribov integral is

agi"~(s) =
2t'

A'"'(s, t')p (1+ dt , (A1)'
s —4m'

t = t p cosh'(x/2 J), (A2)

where A i"i(s,t') is the absorptive part in the t channel
of the nth-order term of the renormalized perturbative
amplitude. We want to exploit the fact that Ai~'(s, t')
is analytic by pieces in the variable t' If A'"i(s, t.') has
singularities for t'& tp, one has to cut the integral into a
certain number of parts such that the singularities fall
at the end points of the integration path. Then by a
suitable change of variables one can always get rid of
one singularity by mapping the corresponding point
with infinity; in this way one is back to the previous
conditions, but now with Ai"'(s, t') analytic in t'.

In general, A'"i(s, t') will have a square-root singu-
larity at t'= tp, which necessitates a particular method of
integration. At t'= ~, A &"'(s,t') will behave like (lnt')".

If we perform the change of variable

APPENDIX A: METHOD OF NUMERICAL
CALCULATION OF FROISSART-

GRIBOV INTEGRALS

then

ay&" i(s) = f~ i"'(s,pp) e *dx, —
(A3)

We describe here a sophisticated method for comput-
ing the Froissart-Gribov integrals in the physical
region. " With this method we have obtained a high
accuracy such as 10 ' with few points (typically five
points).

with

tp S
fbi" i(s, x) = —e* sinh —Qq 1j

2J J
2tp

s —4m'
cosh'—

29We thank Dr. J. L. Basdevant for suggesting this method
to us.

(xi
)&A&"& s, tp cosh'i —

i&ui
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where now two conditions for fs&"&(s,x) are fulfilled:
(1) fs'"'(s,x) x" when x —+oo, and (2) fs&"&(s,x) is
analytic in a neighborhood of the integration path.
There exists a parabola with focus at the origin in the
x plane and whose axis is the real positive axis, and
inside this parabola fbi"&(s,x) is analytic.

The "kinematical" factor

APPENDIX B

1. Notation and Definitions

Our metric will be defined by the metric tensor

gpp=1 g&„=—1 for p, =v=1, 2, 3,

guv =0
v ts«" ~ (81)

S—e'sinh —Qs 1+
2J J

2)p Px
cosh'i-

s —4m' (2J
(A4)

The scalar product is then

8' 6=cp5p —R'b (82)

has singularities in the x plane for The Dirac equations for the spinors u(p, s) and v(p, s)
I cad

and

x= &iJ~, &3iJ~, . . .

ix /4m' s "'—
cos—=&~

2J ~ to

(y p —m)u(p, s) =0,

(~ p+ )(p, )=0,
where we have defined

& ' p =po» —p Y.

(83)

We notice that for the parabola to exist, it is necessary
that Eq. (A6) has no solution with x real and positive.
Such solutions occur only when s is real and smaller
than 4m' —tp. In particular, in the physical region where
s&4m2, the parabola always exists since the only
singularity of A&" (~ts') on the integration path is as-
sumed to be at tp. This singularity is removed in the
transformation (A2).

We now use the Gauss-Laguerre method of integra-
tion. We replace

We normalize the spinors in such a way that

NN = —Hv =1, where I=Ntyp.

0-
+p

0 —1 —e 0

0so=, (84)
1 0

where

For the Dirac matrices we use the representation in
which yp is diagonal and y5 is antidiagonal; i.e.,

a &"&(s)= fs &"&(s,x) e—*dx 'y5= z'yp'yy'y (83)

by
The 0.; are the 2&2 Pauli matrices. In this representa-
tion one has

as "'(s) = P fs " (s,x;)(u, , (A7)
(v )'=ho)'= —(V)'=1. (86)

where the x; are the zeros of the Laguerre polynomials
and co; are the corresponding weights. "We expect that
the difference between (A3) and (A7) is of order e ~a,
where 6 is the distance between the focus and the top of
the parabola. We see here the importance of trying to
get the largest possible parabola. In particular, when the
parabola flattens down (for instance, for s(4m' —to),
then we lose the exponential convergence and come
back to the usual convergence.

Obviously, one can always construct the set of
orthogonal polynomials with respect to a measure
having the prescribed type of end-point singularities.
However, in practice this may be a complication, except
when one has to deal very often with definite types of
singularities. Anyhow, the idea is always to try to get
the maximal analyticity domain around the path of
integration in such a way as to obtain exponential
convergence.

' The values of the zeros and their corresponding weights can
be found in Z. Kopal, ttVNmevical Amatysis (Chapman, London,
1961), Appendix Dt.2.

[VwVv7+ 2gev ~

The tensor operator is defined in the usual way:

Kpv —21['rv)'rv7 .

(87)

2. Kinematics

We label by pi, p& and pi', p2' the four-momenta of
the ingoing and outgoing nucleons, respectively. We
define the Mandelstam variables s, t, and I, as usual, by

S 1 2 1 2

t= (pi —pi')'= (po —po')',
u= (po-pi')'= (pi-po')',

so that we have
s+t+u= 4m',

(88)

where m is the nucleon mass. Since nucleon-nucleon
kinematics is well known, we will not be discussing it
here.

For completeness, we quote also the well-known anti-
commutation relations of the y matrices:
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111 2 (pl+ pl ) y

II,= —,'(p,+p, '),
11=-',(P,+P,) =-', (P,'+P, ').

(89)

The following linear combinations of the four-vectors
p, , p, ' will be useful: S+S'

T—T
A+4
V—V

,P+P.

0 1 0
—6 0 0

0 0 0
—4 0 —2

0 1 0

perturbative diagrams:

o 's —s
0 —6 T+T
2 0 A —A . (815)
0 4 V+V

—1 0. P—P,
Another well-suited set of invariants is defined by

Amati, Leader, and Vitale'; it is called the set of
"perturbative invariants. " In our notation and metric
they are defined by the following formulas:

s= 4(p2+m2) = 4+2 (810)

(811)
(»2) P,=S,

t = —2p'(1 —cose,),
u= —2p'(1+cose, ),

We quote also the well-known kinematical relations

where p is the c.m. momentum of each nucleon, E is
the c.m. energy of each nucleon, and 0, is the c.m. scat-
tering angle in the s channel. Let us recall also that in
this picture the s channel describes a nucleon-nucleon
process, whereas the t and I channels describe nucleon-
antinucleon processes.

3. Useful De6nitions and Relations
Involving Fermi Invariants

The decomposition of the nucleon-nucleon amplitude
on invariant spinor amplitudes, is a classical problem,
and it is particularly well discussed in Ref. 5. We only
recall here the definitions and the most useful relations.

A well suited set of invariants is the classical Fermi
set, which is defined in the following way:

P2= —Lu(P1')u(P1)u(P2') V 11»(P2)

+u(pl')~ II2u(pl)u(p2')u(P2))
(816)

P, =u(p, ')v n,u(p, )u(p, ')r n, (p, )

P4= V,

p5 ——p.

The relation between the perturbative basis and the
Fermi basis is given in Ref. 5, and reads

P2 [(u s)S——4m'—V+ tT—+ (u —s)Pj/4m,
(817)

Pp 4[—(u s——)V tA+—4m'P—j.
We also define the following quantities, which are found
useful in the computations:

S=u(pl')u(pl)u(p2')u(p2),

V =u(Pl') V(1)"u(pl) u(P2') V.")u(P2),

T= lu(pl')~(1)""u(pl)u(P2')~""'u(P2),

A =u(pl )zp(1) p(l) "u(pl)u(p2 )zpp 'rp u(p2) )

P =u(P1')y(, )'u(P1)u(P, ')y, ' u(P, ) .

(IP)2=&(pl')7'Ilu(pl)&(P2')u(P2)

+u(pl')u(pl)u(p2')y IIu(p2), (818)
(813) (»)p=u(pl)V Ilu(pl)u(P2)V»(P2) ~

The simple formulas which connect these invariants
with the usual ones are

(IP) 2
——~1 (m'S mP2+P2)—

,', [(2s+t)(S+V—+P) t(T+A) j. —p f~p I

The invariants S, U, T, A, P can be obtained, from (IP2)=2(2mS —P2)= —[(u—s—8m')S —4m'V+tT
5, U, T, A, P by interchanging the final particles, i.e., + (u —s)P7/8m,
with the interchange (819)

By the same interchange, we have also

s~ s) 3~ N.

Between the two sets there is a linear relation, which
reads

4. Isosyin Notation

We follow the standard notation: The charge spinors
will be indicated by & and &t, and the nucleon isotopic-
spin operator by ~, where

ts
V 4
'1 =-,' 6

4
.I'. .1

—2 0
0 —2
2 0

1

1 1 5
2 —4 V
0 6 T . (814)—2 —4

—1 1. .P.

T.2 —1.
The projection operators on the states T= 0 and
T= 1, are represented, respectively, by (Po and 6'&. They
are expressed by the formulas j

We quote also the following relation, whose usefulness
can be recognized in the antisymmetrization of the

(PP=4(1 'cl' %2),

(Pl ———,'(3+~1 ~2) .
(820)
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APPENDIX C

1. Perturbative Diagram. s

The most general X-E scattering amplitude can be
written as

V'= (F1'(S S)+—Fp'(TjT)+Fp'(A A)+—F4'(V+ U)

+FpP(P —P)$(t'p j(F1'(S—S)+Fz'(TjT)

jFpl(A A) jF41(UjU)+Fpl(P P)g(P1 ~ (C1)

for the uncoupled triplet, where

s= cos0„

f1 E'——G1 zp—'Gp jm'Gp,

fp (E——'Gp jm'G4)z p'G—p,

f8= —p GB,

f4=m'Gp jE'G4,
f p

—m——'(Gp jG4).

(C7)

The interest in writing the amplitude in the form
C1 is that the Pauli principle is then expressed by the
simple relation G.s,T(s) GP(s,z)Ps(z) dz. (C8)

F (s,t,g) =( )'+'F r—(s,l,t). (C2)

Instead of using the amplitudes Ii;I, it will be more
convenient to use the following linear combinations:

The partial-wave amplitudes can be rewritten in the
following way:

G1——(1/41r)(F1—4FpjFp),

Gp= (1/21r)Fp,

Gp= (1/4m. ) (F1—2Fp
—Fp),

G4= (1/21r) F4,

Gp
——(1/4z)(F1+4Fp jFp).

(C3)

1 s—4m')"' J+1
fp

— ——
I

sG1 j4m'Gp — (s—4m')
8 s ) 2J+1

J
XGp~+' —— (s—4m') Gzs—'

2J+1

In this appendix, we shall give the complete and ex-

plicit computation of the perturbative diagrams up to
fourth order. For each graph we give the ten scalar
amplitudes G;~(s, t,g) and then in terms of these GP we

give the contribution to the partial waves, using the
formulas (4.25) of GGMW, which read

s 4m»tP- Jj1 J
f s- s Gps+'j sGps—'

8 s 2J+1 2J+1

J+1 J
+4m' G s+' j4m'—

2J+1 2J+1

P
fo'(s) = f1(s,z)P~(z) dz

2E ]
for the singlet,

f11'(s)= fp(s, z)Pg(z)dz,
2E

(C4)
XG4s ' —(s—4m')Gps

, LJ(Jj1)1"'
f»s —-', m(s —4——m') "'

2J'+1

X(G s+1 G s—1+G J+1 G s—1)

(C9)

P 1

f»'(s) =
2m 1

P(Jj1)]"'
fp(s, z)

2J+1
Xt Ps~1(z) Ps 1(z)]dz, (C—5)

f, (s) = f4(s,z)Pg(z)
2E

jp 1

22 S fp(s, z)Ps(z)
2E

JPs+1(z)j(Jj1)Ps 1(z)
f4(s,z) Cz

2J+1

for the coupled triplet, and

~ s—4m»12- J
fpps=- —(s —4m')Gps j— 4m'Gps+'

8 s 2J+1

J+1 J
4m'Gps '+ — sG4s+'

2J+1 2J+1

J+1
+— sG4

2J+1

4' 2 1/2—

f1' 4m'Gps jsG4s —(s—4m')
8 s

J J+1
Gp~+' —(s —4m') Gps '

2J+1 2J+1
JPs+1(z)j(Jj1)Ps 1(z)

f,(s z) dz (C6) We next transform Eq. (C8) by means of the Frois-
sart-Gribov formula. The expression for the G;s r(s)
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is then

AbsiG;r(s, i')

( 2/'

)&Qji 1+ ddt' (.C10)
s—4m')

amplitudes is

3 1 1 )Gt'= —Gs'=Gs'= —g'
8~ I—i'

3
G '= —G4'= ——g' +

87r I—ii' t ij,s]—
(In this equation the Pauli principle has been taken into
account. ) It is therefore sufhcient to compute the
absorptive parts of G;~ in the t channel in order to obtain
the partial-wave projections of the fourth-order
diagrams. In Eq. (C10), te will be 4m' for the vertex
and self-energy graphs, and 4p, ' for the direct and crossed
two-pion-exchange graphs. Another important feature
of the formula (C10) is that it gives automatically the
correct analytic continuation in complex J plane, as is
well known.

1 1 1
+

8~ u i' ~ i') '

1 1 1
G 1 G 1 g2

81r I—ii' t psJ—

where g is the renormalized pion-nucleon coupling
constant, and p is the pion mass. The partial-wave pro-
jections of this Born term are given in Appendix D1.

f j (esisp j 1)/f ~ (C11)

for the uncoupled triplet,

2. Connection between Phase Shifts and
Amplitudes in Nucleon-Nucleon System

In the notation of GGMW, we de6ne the partial-
wave amplitude in terms of the usual nuclear-bar phase
shifts. "For the singlet amplitude, we have

4. Self-Energy and Vertex Diagrams

1 " d&' i' P' 4tts' 'I'—
11(i)=—

2 ~ f.
' I(I.' —p. ') ' i —t )'(C16)

for Fig. 28(a), and

The corresponding Feynman diagrams are shown in
Fig. 28. We define the following functions:

di' 1 &i,
' 4m'~—'i'—

& t' t t' —p' k —t' )
(C12) p (i)fij—(esisy j 1)/s ~

and for the coupled triplet,
in[1+(t,' —4m')/i '1-

[i'(t' —4m')]'is
(C17)f1=j 1= [cos2ej exp(2i81=j 1) 1j/i, —

fi=j+1=[cos2cj exp(2i81= j+1) 15/i — (C1.3)

fj 1,j+1——sin2s j exp[i(bl j 1+81=j+1)$.

Defining the amplitude for the coupled triplet by

for Fig. 28(b) and the one having the pion correction on
the lower vertex whose contributions are identical. The
sum of previous graphs gives

f1=j 1 fj 1,j+1)l— —

fj 1,jest f1=j+1- (C14)
&(i)=- 11(i)+- I'(~)

2m' Sx'
(C18)

the elastic unitarity condition reads

(C15)

(Notice that our amplitudes are identical to those of
Ball, Scotti, and Wong" up to a multiplicative factor
E/2'. ) The amplitudes (C13) are deduced from the
amplitudes f», f», and f», defined in GGMW, by
means of the linear transformation (D6).

3. Computation of Born Term

The results of this computation, given here essentially (&)
for completeness, are obviously identical to those of
GGMW. The contribution of the Born term to 'the G; (b) Vertex diagram in the 1V-N elastic amplitude.
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and the G;~ amplitudes read

Glo= —G3O= Gp= (3/Slr) [H(u) —H(t)],
GP= —G4' ———(3/Slr) [H(u)+H(t)],
Gl'= —G3l= Gal= (1/Slr) [H(u)+H(t)],

(C19)

Gg'= —G4'= —(1/Slr) [H (u) —H (t)].
It is then straightforward to project out the partial-
wave amplitudes. Dining p(t) as

p(t) = —(Slr/g') Im, H(t) (t—p') (C20)
FIG. 29. Box diagram in the S-lV elastic amplitude.

3
f,~'= —'y(A~-

4m.

1+1
g J+1

2J+1
J,l & J,O

ll '
0

'
) ll '

3 il '
O

t+p' t 4m'—) 't' in[1+(t —4m')/tl']+tl', (C21)
i [t(t—4m'))'t'

and introducing

dt' 2f
A~(s) = p(t')Q~ 1+, (C22)

2 S—4m2

we obtain

tions to the G, amplitudes are then

GP = —(3n'/32lr) {—3(4m' —s) [Bl(s,t) —Bl(s,u))
9$[By(s—,t) Bp(s,u)—]—12[tBg(s,t) —uBp(s)u) ]

—24[8(s,t) —8(s,u))}, (C25)

Gl'= —(n'/32lr) {—(4m' —s) [Bl(s,t)+Bl(s&u)]
3$[82(s,t)+By($)u)) 4[tBg(s, t)+uBg(S,u)]

—S[8(s,t)+8(s,u)]}, (C26)

GP = —(3n'/32lr) {3(4m'—s) [Bl(s,t)+Bl(s,u)]
3$[8~(s,t)—+8~(s,u))}, (C27)

G '= —( '/32 ){(4m'—s) [8 (s,t) —8 (s,u))
—s[8 (s,t) —8 (s,u)]}, (C2S)

3 fso ~ ~Az

22 '
3 22 '

)

1+1
g J+1

27+1 2J+1
A z, Gao =- —(3n'/32lr) {3(4m'—s) [Bl(s,t)

—Bl(s,u)]+3$[8~(s,t) —8~(s,u)]
+12[8(s,t) —8(s,u)]}, (C29)

J,O J,O

f J,T 0—
fo"= —fll"= (I/4~)n'v(A' —A')

where n = g'/4lr and y = [(s—4m')/s]"'

S. Box Diagram

The Feynman diagram to be computed now is
represented in Fig. 29. Let us define

G~' ———(n'/32lr) {(4m'—s) [Bl(s,t)+Bl(s,u)]
+$[Bg(s,t)+By(s,u))

+4[8(s,t)+8(s,u)]}, (C30)

G4' ———(3n'/32lr) {—3(4m' —s)[8l(s, t) +Bl(s,u) ]
—3$[Bg(s,t)+8~(s,u)]

—12[8(s,t)+8(s,u)]}, (C31)

G4' ———(n'/32lr) {—(4nz' —s) [Bl(s,t) —Bl(s,u)]
s[Bg(s,t) —Bg(s,—u)]

—4[8(s,t) —8(s,u)]}, (C32)

B(s,t; m', p') =
4 4

[~(1—2 ") II «~]/[ —~»» —&8&4t

Gso= —(3n'/32lr) {9(4m'—s) [Bl(s,t) —Bl(s,u))
—12[tBl(s,t) —uBl(s,u))+3$[8~(s,t) —Bu(s,u) ]

+24[8(s,t) —8(s,u)]}, (C33)

+m'(Sl+Sg) '+tl'(Z3+ S4)],

Bl(s,t) = B(s,t),
Bm

(C24)
G, '= (n'/32lr) —{3(4m' S)[Bl($ —t)+Bl($ u))

—4[tBl(s,t)+uBl(s, u)]+$[8~(s,t)+8~(s,u)]
+S[8(s,t)+8(s,u)]}. (C34)

8
Bg(s,t) =Bl(s,t)+4 B(s,t), —

8$

where the s; are the Feynman parameters. The contribu-

In order to project out the partial-wave amplitudes, we

need to know the absorptive parts Abs&G;~ in the t

channel of the G;~ amplitudes, i.e., the absorptive parts
of the 8 functions. These quantities can be computed
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explicitly, and are given by the following formulas: This is valid only for t&4m', but the extension to the
region 4p, '(t(4m' is straightforward:2' 1

Im,B(s,t) = LO2(t)+4(s, t)], (C35)
t'/' s+t —4m'

t 2p,
garctan— —1, t(4m'. (C42)

L(t —4/4') (4m' —t)]"'
t —2/42 f t —2/42

Q l

— . (C36)
(t 4—m')"' lL(t —4m')(t —4/4')]' '

1 t —4p' '/' 1 t 2 2

p(t) =—
where, if we define 6= (s 4—m') (t 4—/42) —4/44, the 4 t t —4m' L(t —4/42) (4m' —t)]'/2
function y is given by

This function being defined in the region t&4m' can be
analytically extended to the region 4p'(t&4m' where
it is still real. In fact, it is enough to notice that we have,
for x(0,

x ' 'Qp(x '")=(—x) '/'arctan( —x)"'

(1 ~2/m2) 3/2

p(4m') =-
48m' (1—-'2/42/m2) 2

(C43)

The function p(t) is continuous at t=4m2; its value at
that point is

Gi+ 2(6m' —s—2t)G2+ (s —4m') Gp

= 8m'(G2+G4), (C44)sl/2(t 4+2) l/2

—
Qp !+-,'iir (C37)

pl/2 j where G,=G, (s,t)—This c.orresponds to the Feynman
graph of Fig. 29. We now give the expressions for the
partial-wave amplitudes:for 6&0, i.e., for s&4m2+4/44/(t 4/42) wi—th t&4/42 It is

then easy to continue it analytically in the regions
6(0, s&0, t&4p, '.. 2ms'" LJ(J+1)]"2

f S, l — /22 7
2l(s —4m') 2J+1s(t —4/42) ) '/'

arctan (C38)+(s,t) =—
s'

X (H22~+' —Hi s—') (C45)
for A(0, s(0, t&4p, '.

/'s 4m2) l/2

(—)"' ( !fi2

' =9fi2 '
l wltll

+(s,t) = ——

Qpl
—

I
. (C39)

(—s) "' k —s(t —4/42))
where

The function + exhibits a discontinuity in s that is I.et us notice another useful relation:
just the same as that of the double spectral function of
the Mandelstam representation:

For the t-channel absorptive parts of functions Bi and
B2, the same relations hold as for the functions them- H22s(s) =
selves; namely, we have

P(t')Qsl 1+
4~$

2t'
!dt',

s-4m2//

8
ImlBi(s, t) = — ImlB(s, t; ,m2)t,42

Bm

Im, B2(s,t) = Im, B(s,t; /m2)42
Bm2

8
+4—Im/B(s, t; m2, /42) .

8$

(C40)

Taking into account these relations, it is easy to check
that the double spectral function for (G2+G4) r vanishes
and that its silnple spectral function is given by

f s, o —9f s, l

y/22 4m'
f J,1 H„s+Xs

~ s-4m' i (C48)

f s,o —9f j,i

Qo/ 1
J,1—

2J+1 s—4m'

X[(7+1)Hi2s+'+JH22s ']+Xs, (C47)

1 (t—4/42) '/2

p(t) = —Iml(G2+G4)T l
0', 4k t )

1
Q l

. (C41)
t —4m' EL(t—4/42)(t —4m')]'/'

22
J, l

4m'

J'+1 J
+ I's '+ Fs+'+ Vs~ (C49)

2J+1 2J+1

'j/'0', 1
[(J+1)H 22s

—'+JH 22'+']
2J+1 s —4m'
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f22'' =9f22

@+1y(Pf 4m
I'z—1j1

! 12+
ks —4m'

T =1~(s 4m2) Xds.
—1

The quantity X is de6 ed y

A&D TURCHE TBESS IS GR AFF ), GRF CCH

where

(C60)

f,"=9f1 '
and

B&2~=
2t'

p(t')Qz 1+ (C51)
where

t " Im]X
dt'+(X) 1=2). 4,*t'(t'-')

(X),=o=(2i ')(G') -'
One has, obviously,

(C52) " Im4G4(s t')
dt-(G4),=2=-

4I

(C61)

(C62)

(Cfi3)

Im, Y(Et)Q~(~+ (C53) .
additional calculatrons, the fpllpwingally after some a

o

1m' =
1 t —4

4m'p(t)
2 ts—4m—

4

R(s,t), (C54)
t]./2Q

T 1(s—4m—)

" 1m&X(s~t )

2t'2t' l
g iy !dt'&& g11 1+,) ',—4m'&-!-t2 2m2(4m2 —s+ t)]P(t)

(4m' —s—t)'

4m' —s+t '

ImgI' =

where8

ps, tIt(4 ' )(t 4~')+—'" ' —
8(s, t)

+(s—4m')
4y,

4

2Rl~.
( 4 2)(t 4~2) 4P4I—

p-(«-" '8(t)"' 4,)(s 4m2) ~(s—2m'))

1(s—4m')(t —4p, ') —2p4)f s —4m' s-
+(t 4p')'t'l 2—

I y4+m2(t —4p2)

(t —2p')'

4p4+4m2(t —4y2))

l
(t —4p2)'t2! 1—

t —4m

s —2m 2

—2

and Im,X is definedin (C54).

) ~( t) 1s defined» (C37 and ~ in~here ~(s~t
( ' .

th form. ias
J+0; fpr J=o O.e.,

b fprmu]. a;. in fact thee t. e
f J=o, as is quite obv;„tegral(C52)» d» g" .

ceeds s,s follows:the calculation prpceeFpr these waves
'

ne has fpr theani ulationsAfter some tnvial m 'p
contribution of the direct graph

(C56)

(2~2 —G2) (G2+G4)
f2 4a2 (s 4m') ———— 4m' s

ount the interchange off finalso that taking into accoun
nucleons:

1 ~~2(
fds=

l T+
1

QQfo'= f ds= T2+11 Y 2 (C59)
Crossed-box diagram in t e
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6. Crossed-Box Diagram

The diagram to be computed now is represented in Fig. 30. We And that the contribution of this graph to the
G;~ amplitudes can always be expressed in terms of the three functions 8, 8&, and 82 defined by Eqs. (C24).
The explicit expression is

Gi ——(3n'/32m. ){3s[Bi(u,t) —Bi(t,u)]+4LtBi(u, t) —uBi(t,u)]+ (4m' —s) L82(u, t) —8.(t,u)]
+8LB(u,t) —8(t,u))}, (C66)

Gi'= —(n'/32m) {15sLBi(u,t)+Bi(t u) j+2 Ot t Bq(u, t)+ uB&(,t u)]
+5(4m' s)$8—2(u, t)+82(t,u)]+40LB(u, t)+8(t,u)]}, (C67)

Gp= —(3n /32m) {—sLB&(u,t)+8&(t,u)]+ (4m' —s) L82(u t)+82(t u))}, (C68)

G2' —— (n —/32~) {Ss[B&(u,t) —8,(t,u)] —5(4m' —s) $82(u t) 82(t u)]}, (C69)

G30 = —(3n'/32~) {sLBi(u, t) —
8 q(t, u) ]+(4m' —s) L82(u, t) —82(t,u) ]+4LB(u, t) —8(t,u) ]}, (C70)

G3'= —(n'/32~) {—SsLB&(u,t)+8&(t,u)]—5(4m' —s)LB2(u, t)+82(t,u)]—20LB(u,t)+8(t,u)]}, (C71)

G40= —(3n'/327r) {—s(8&(u, t)+8&(t,u)]—(4m' —s)L82(t,u)+82(u, t)]—4LB(u,t)+8(t,u)]}, (C72)

G4' ———(n'/32' ) {5sLBi(u,t) —Bi(t,u) ]+5 (4m' —s) L82(u, t) —82(t,u) ]+20LB(u, t) —8(t,u) ]}, (C73)

G5' ———(3n'/32m) {sLBg(u,t) Bg(—t,u) j+3(4m' s)$—82(u t) 82(t u)]
—4/82(u, t) —u82(t, u) ]+8(8(u, t) —8(t,u) ]}, (C74)

G5' ———(n'/32vr) {—SsLBi(u, t)+Bi(t,u) j—15(4m' —s)L82(u, t)+82(t,u) j
+20/82(u, t)+u82(t, u) —40LB(u, t)+B(t,u)]}. (C75)

If we now define

Bs(s) =
s (s—4m') 4„*

2t'
Im,B(4m' —s —t', t')Qsi 1+— ~dt'

s—4m')

+(—1)'
4m

2$'
t .a(", 4 —.—")g,(r+ s", (cm&

s' —4m'

8;&(s)=
x(s —4m') 4„~

2t
Im, B;(4m' s t',—t')Q—,i

1+ idt'
s —4m'j

+.( 1)z
4m'

2s'
Im, B;(s', 4m' —s—s')Q

~

1+ ids', i =1, 2 (C77)
s' —4m'

the partial-wave amplitudes can be immediately obtained, and are expressed by the following formulas:

5 e'
f s'= ——y s(s+4m')Bis (4m' s)'82' ——8(2m' —s)Bs—

8 32m

J,O 34' J, l
9 ' 5JO '

)

t J+1
s(4m' s—)i —Bis+'+ — Bgs ' —(4m2 —s) ni 8—2~+&+ 82'—1 '

(C78)
~2J+1 2J+1 (2J+1

3 n' J J J
fiick

—y 16m' ——8 '+s(s+4m') Bi '———(4m' s)'82' '+8(s —4m')8~—+s(s 4—m2)8 &—
8 32m. 2J'+1 2J+1 2J+1

fu '= (5/3) fxi", —

J+1 J+1 J+1—(4m' s)'82~+61m' 8+'+—s(s+4m') ——8] +'—(4m' —s)'— 8 ~+'
2J+1 2J+1 2J+1

(C79)

n'
t J(J+1)]'"

f s'= —-'y ms"' Es(Bi'+' —Bi' ')+2(8'+' —8' ')]
32m- 2J+1

(C80)
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f s, ( — (5(3)f z, o

4).
' J+1 J+1 J+1

f»s ' +——4)y
—4s— B~ '+s(s+4m') Bqs—' (4m—' —s)' —Bos '+4(s —4m')Bs+s(s —4m')B ~

32m. 2J+1 2J+1 2J+1

J J J
(4m—' s)'B—os+4s Bs+'+s(s+4m') Bgs+—' (4m'——s)'— B2s+'

2J+1 2J+1 2J+1f»"= -(5/3)f»"
J J+1

f s =ls'—s(s+4m')O s —(4m' s)'O, +4sB— s(4m' s) —— j4,—s'4- O, ')-'
32~ 2J+1 2J+1

(C81)

. f s, l (5(3)f s, o

where

J J+1 ~ J J+1—(4m' —s)' B2s+'+ B2s ' ~+—4(s —4m') Bs+'+ — Bs '
&

(C82)
2J'+1 2J+1 i 2J+1 2J+1

s —4m'+t4'
Im, B(s,t) = (s—4m'+ 2p, ') ln- —[(s—4m') (t—4t4') —4t44]"'

(st) "' s 4m'+t —s —4m' p 2

[t(s—4m') ]"'+ [(s—4m') (t —444') 4t4 ]"'—
Xln +for[(s 4m') (t—4t4') ——4t44]'" (C83)

[t(s —4mo) ]4(2 —[(s—4mo) (t —4t4 ) —4t44] ')

s) 4m', t) 4t4'I 1+
s —4m'i

1 t ) ~)o s—4mo+p, o

Im,B(s,t) = — (s—4m'+2t4')
~

ln
(st) "' s—4m'+t s —4m'i p 2

[t(s —4m') ]"'
2[(s 4m—') (4t4'—t)+4t44]"—' arctan (C84)

[(s—4m') (4t4' —t)+4p4]"'
when

s& 4m2, 0( t(4p2
s—4m2

1 t "' — (s 4m'+—44'

Irn, B(s,t) = (s —4m'+2t4') ln~

(—ss)"'s —4m'+s s —4m' ( ' )
[—t(s —4m')]"'+[(s—4m') (4t4' —t)+4t4']'"

[(s 4m') (4t4' —t) /—4t4']'" ln—— (C85)—[—t(s —4m')]') y [(s—4m') (4t4' —t)+ 4t4 ]'t'

when s&4m2, t(0.
The absorptive parts in s of 8~ and 82 are obtained

by the usual relations:

APPENDIX D

Im, B( ts) = Im,B(s,t; ',m)t,4

81S

8
Im, Bo(s,t) =Im, B~(s,t)+4—Im,B(s,t; m', t4') .

8$

1. One-Pion Contribution to Partial-Wave
Nucleon-Nucleon Amplitudes

We use the formulas of Appendix C. We recall that n
is the renormalized coupling constant o(= g'/4~

(Cgg) For isospin 1, the contribution to the singlet ampli-
tude is

It can easily be seen that the integrals in Eqs. (C76)
and (C77) are convergent for all values of J, so that for
this graph there is no particular problem in computing
the Sp and I p partial-wave contributions.

o( Ps 4m'—
()',o. (D1)

2k s
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Only even values of J are physical; we notice that all
waves Reggeize except the J=O (ISO state). When we
say that the wave Reggeizes (or does not Reggeize) it
is only for the one-pion contribution; no conclusion can
be drawn for the total amplitude. However, in perturba-
tion theory, it is found that when the one-pion contribu-
tion (Born term) Reggeizes, the remaining part of the
amplitude does the same and vice-versa.

The contribution to the triplet amplitude is

f„"(s)= f; '-(s),

f '(s) =0

s—4m) i f 2p
f»"(s)= -l~

I QJI 1+
s i & s —4m'i

For isospin zero, we use the relation

f"(s)= 3f—"(s) (DS)

fJ I,J I=-—-(JfII +(J+1)f»
2J+1

+2LJ(J+1)3"'f»'}

Of course, we must now interchange odd and even for
the physical values of J, and all waves Reggeize be-
cause the value J=O for the uncoupled triplet is
forbidden.

It is useful to reexpress the triplet amplitude in a new
basis, connected to the previous one by the forlnulas

J+1 2p'
QJ-I 1+

2J+1 s 4m'i—
J

QJ+I 1+—
2J+1 s —4m'i

(D2) fJ I,J+I= —-(LJ(J+1)j"'
2J+1

&I f» —f11'j—fIg }, (D6)

fJ+I,J+I = — ((J+1)fII'+Jf»2J+1
—

2C J( J+1)3"'f '}.
Here again, only even values of J are physical, and all
wa es ReggeIze except the J 0 (IP state) We not, c The reason for introducing the unitary transformation

(D6) is that these new amplitudes Inust have the

"~o)(I.'-) = —('&o) (I..-) ~
following threshold behavior:

fI' '(s) = fI ' '(s). - (D4)

Finally, the contribution to the uncoupled triplet is J—1,J—1

fJ IJ+I p-' ,
+' «when p=c.m. momentum~0.

fJ+I,Jpl~ p'' (D7)

Here only odd values of J are physical; all waves The one-pion contribution to these new waves, for
Reggeize. I= 1, yields

s—4m&) I&~-
2p 2

—I J—I (s) Q.l 1+ I-Q. 11+
2(2J+1) s i k s —4mIi s 4m'

—n s—4m') '"
J—1,J+1 S P (J+1)j"'

2(2J'+1) s )
(DS)

f
&& 2QJ 1+,—QJ—Il 1+ —QJ+Il 1+

s—4m' 5 s —4m' k s —4m'

—n s—4m') "' 2~2 2p
fJ+I,J+I '(s) =

I QJ+I 1+
I QJ 1+

2(2J+1) s s —4m'i s—4m&

It then follows from formulas (DS) that

(1 pion) ~*2J+1
7

f (1 pion) ~~2J+1J—1,J+1 (D9)

will give rise to a correct threshold behavior in all
waves except

(a) the fJ I,J I waves,
(b) the ISO wave.

(1 pion)~ w2J+3J+1,J+1 j/ e

We notice that the 'S1 deuteron s wave belongs to
To summarize, we see that the one-pion contribution set (a).
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2. Threshold Behavior of Partial-Wave Amplitudes
in Framework of Pade Approximations

A. Scalar Case

In this case the coefficients S„(p)of the S matrix
expansion

S(g,P) = 1+St(P)I+So(P)g'
+Sn(p)g"+, (D 10)

are ordinary functions of p. If we suppose ftrst that
Sl=—0, the [1,1] does not exist but the other [E,X]
approximants exist and have a correct threshold be-
havior. This can be easily seen by looking at the ex-

plicit form of the approximants given in Ref. 7. Now,
if Sl(p) vanishes at threshold faster than the other
terms S,(p), only the [1,1j approximant has a patho-
logical behavior. This is what happens in the cV-E
problem.

3. More Complete Study of J=l, T=O Wave

A. Scattering Region

The S matrix is a 2)&2 matrix defined by

Sr= l, r=o I+&—ps= i, r=o
) (D14)

I;z-l, r=o

&fsn fD &

Elastic unitarity reads

2 ImIi = IiP*= Ii*Il .

(D15)

(D16)

Time-reversal invariance implies that S is real in the
region of analyticity:

(»~)
There are two standard ways for parametrizing (D14).
Either one diagonalizes S,

4'' —p'& s&4m'.

where I is the unit matrix and Ii is the symmetric
matl ix:

S-'(P) =P" 'I(P')A-'(P)1(P') (D11)

B.Matrix Case

We restrict ourself to the case in which the coe%cients
of the series S,(P) are 2&&2 matrices. The generalization
to r)& r matrices is obvious.

Near threshold we have, in angular momentum J,

with
S=U 'e"~U

cos~y sin eq

—sin E]. Cos6y

8O 0—

0

(D18)

(D19)

(D20)

with

I(p') =
0

(D12)

In the limit P —+0, the matrix A is, in general, a
matrix with constant and nonhero elements. On the
other hand, since I(p') does not depend on g, it is
equivalent to take the Pade approximant of S~ or of A ~.

In the E Pease the limit o-f the matrix A ill~(p) is of

the form

where the elements of B~z,~~ are quite generally non-
zero. Hence, the behavior is no longer pathological.
This is true for any value of E, and in particular for the

[1,1jPade approximation.

The erst element is zero, but this does not imply that
A ~~ is a singular matrix, and in this respect the matrix
case clearly diRers from the scalar case. Moreover, if we

multiply A(&) by some other constant, matrices, as we

have to do in order to calculate Pade approximants, the
resulting matrix has no reason (in general) to have a
vanishing element. The result is of the form

[E,Ej=1+p' 'I(p')&lol xlI(p'), (D13)

one then gets the set of equations

1+tfS=COS et 8 ' o+Sln et 8 ' ~

1+tfD=cos el 8 '+sill el 8 '
7

i fsrp=o sin2el (e"o'—e"~').

(D21)

/Bo 0 (0 e,
and

&0 0

In that case one has

(D24)

1+ifs= cos2el exp(2igo),

1+ifn = cos2el exp(2ibo), (D25)
t'fsn=i sin2el exp[i(go+ g,)j.

This set of phase shifts is known under the name of
"bar-phase shifts. "

' L C. &iedenharn and J. M. Blatt, Phys. Rev. 93, y38y (~954).

Notice that for s —4m' —+ 0 it, can be shown that»

et=Q&' (s=4m'y4ko)

where Q is the electric quadrupolar moment of the
deuteron. Or one defines another parametrization of S as

S= exp(Q) exp(2ie) exp(i5), (D23)

where 8 is a diagonal matrix, and e is an antidiagonal
matrix:
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t)o+ 4= t)o+ t)p,

sin(t) p
—I)p) = (sin2o~)/sin2o q,

sin(t)p —t)o) = (tan24)/tan2oq.

(D26)
cottip

~
g —y '( s)»~ =+i (bound-state condition) . (D30)

In particular, we deduce the threshoM behavior of 4:

In order to get from Eq. (D21) to Eq. (D25) we need by an analytical continuation in k. In fact, by putting
the formulas k=+i(mB)')' in (D28), we get (D2c)) provided we take

into account the condition

o)—a,o]k 0- atQk'. (D27)
oi) p=~(~s)'"= —&~ (D31)

(We have made our phase shift start from zero, whereas
the usual convention is that the s-wave phase shift
starts at +s., owing to the presence of the deuteron pole
in the amplitude. ) Experimentally, a, is positive and Q
is also positive, so that e1 must start with a positive
value. In our model, we obtain a, and Q with the correct
sign as was shown above; it then follows that our sign
of e1 is also autoinatically correct.

B. Dmterori, Po,rurneters

On the other hand, we get from Eq. (D21)

tan2o) = 2fsn/(fs fn),—

which at the deuteron pole becomes

tan2oa= 2Rsr /(Rs RD)—
and gives the solution

(D32)

(D33)

We shall use here nonrelativistic language in order to
clarify the relation between physical quantities and the
deuteron pole residues.

It is well known that one can go from the scattering
waves No and+0, which for r —&~ behave as

p= tanos = —Rsa/Rs. (D34)

p( —Bg—8)=—2 (ug'+ws' —us' —wd') dr

In the same way, one obtains the "effective range" of
the deuteron:

cos61
sin(kr+ 8p) =up," " sinbo

Sin 61
sin(kr —x.+ t)p) =wp," " sinbo

(D28)
(mB)"' (ug'+wg')dr, (D35)

which is found to be, after a straightforward calculation,

to the deuteron wave functions, nq and mq which for
r —+~ behave as 1 16(mB)"'

p( —&~—&)= +i
(mB) "' Rs+Rr)

~ (D36)

(D29) In particular, we see that RB and 8& must be purely
imaginary numbers, with a negative imaginary part


