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Broken Chiral Symmetry. II. Numerical Solutions and q-X Mixing
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Sum rules of the preceding paper together with appropriate SW(2) and broken SU(3) relations have
been solved numerically in the pole-dominance approximation. In this way, we compute all relevant param-
eters entering in the theory, including &-X mixing eftects. As applications, we calculate p —+ 2&, X —+ p2w,
X~ 2y, and X —+ 2~y decay rates.

I. INTRODUCTION
' 'N the preceding paper' (hereafter referred to as I),
~ - we have given spectral sum rules on the basis of the
model of Gell-Mann, Oakes, and Renner. ' We shall
solve them here in the pole-dominance approximation.
Actually, the number of equations is fewer than the
parameters and we obtain some extra information on
the basis of asymptotic-symmetry and broken-SU(3)
arguments. In this way, one can solve the problem
completely, and we find that the result corresponds to
the solutions (IV) of I, which we argued there to be the
most likely solutions. Another interesting feature is the
g-X mixing problem. We find that the mixing must be
of a complicated general type, which is neither a pure
mass nor a pure current mixing.

Using our numerical solutions, one can now compute
decay rates of q ~ 2p, X—+ 2p, X—+ 2m', and X—+ pe.m

and the results are compared to experiment. Also, the
width of the ~ meson has been computed.

II. SPECTRAL-FUNCTION SUM RULES

We use the same notations as in I, and define

(01A„&'&(0)1 (k)) =(g')f ik„(2k—,V) '",
(01A &' "'(0)1Z+(k))=fxik„(2kpV) "'
(01(&-;)LA„'P'(0)+~2A &P&(0)31&(k))

=v'(2)fpik. (2kpV) '",
«1(v'l)LA. "&(0)+~»."'(0)ll x(k))

=(&2)fxik.(2kpV) '", (1)

(o1(v'l)LA. "'(x)—~2A.&P&(0)jln(k))
= (Q-', )p „ik„(2kpV)-'I',

(01(Q-', )1A„&P&(x)—%2A„&'&(0)j 1
X(k))

=(Q-', )oxik„(2kpV) 'I'

(01 V„&' 'P&(0)1&&+(k))=f„ik„(2kpV)

For the matrix elements of q and X, we have chosen to
work with the combinations (g-', ) (A „&"+v2A „&'&)

=A„' "(x) and (Q-', )(A„"'—%2A„&")=—A„&—'&(x). In
the exact W(2) =U(2)&SU(2) limit, assuming for the

~Work supported in part by the U. S. Atomic Energy Com-
mission.

'S. Okubo and V. S. Mathur, preceding paper, Phys. Rev.
D 1, 2046 (1970).' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'75,
2195 (1968l.

1

moment m„&0, mxAO, we obtain from Eq. (9) of I,
f„=fx=0 Thus. , if the W(2) group is an approximate
symmetry, then one would in general expect

1 f„l«10„1
1
fxl«10'xl The need for incorporating a large

g-X mixing is now apparent, since if we neglect it, we
would expect, on the basis of the SU(3) symmetry, that

v2f„=&—r„and V2fx=—ox. Therefore, if W(2) is a
reasonable approximate symmetry, then one concludes
that either the SU(3) symmetry for these matrix ele-
ments is not good or the g-X mixing effects are impor-
tant, or both. It is at any rate desirable to take into
account the p-X mixing effects fully. We also avoid the
use of SU(3) symmetry to evaluate matrix elements
in this paper as much as possible. Through the param-
eters f„, f», p.„, and o.x defined in Eqs. (1), it is clear
that we have phenomenologically taken full acount of
the q-X mixing. In usual treatments, this mixing is
expressed as a mass mixing starting with pure SU(3)
octet q8 and singlet go states. However, we shall avoid
using unphysical and unmixed states, and work directly
with the physical particles. We will return to a discus-
sion of the mixing models in Sec. V.

Now, saturating the integrals in Eqs. (13) of I with
the lowest-lying singularities, we express Eqs. (18)
and (21) of I in the form'

f.'~.'=2~(1+~)(1yb), (2a)

fx'~x'=27(1 —k~)(1—lb), (2b)

f 'mp2+ fx2tnx2=2p(1+8)(1+b), (2c)

o „'&I„'+Ox'mx' ——2y(1 —2a)(1—2b), (2d)

f„o„m,'+fxoxmx'=0, .

f„'m „'= -Py&&b.

(2e)

(2f)

We recall that the W(2) symmetry is realized in the
limit a —+ —1. Note also that at this point, one has
&& (A &'&+%2A &'&)=0, so that from Eqs. (1), one must
have m, 'f„=mx'fx 0. Now Eq. (—2—d) shows that one
cannot have both» and X massless in the W(2) limit,
since otherwise one would be forced to have b= ~ at
a = —1, contradicting the allowed regions for the param-
eters a and b investigated in I. With respect to the dis-
cussions in the previous paragraph, we then see that

' See also S. L. Glashow, R. Jackiw, and S. S. Shei, Phys. Rev.
18/, 1916 (1969); P. R. Auvil and X. G. Deshpande, ibid. 183,
1463 (1969).
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IIL ASYMPTOTIC 8W(2) SYMMETRY

We may define the spectral representations of scalar
and pseudoscalar densities as

p;;(m, P)
dm-

q'+m'

6" (q)=i d xe "*"(OI2'(S"'(*)S"'(y))IO)

(4)

p;, (m, S)
dm'

q'+m'

Now, we demand the validity of asymptotic symmetry'
in the sense:

lim q'$D;;~(q) —g,",s(q)j=0 (5)

Since the only scalar particle we have thus far intro--

duced is the a meson, we use Eq. (4) only for strangeness

carrying indices i and j.Then from Eqs. (4) and (5) we

obtain the sum rule

dm'p, ,(m,P) = dm'p, ;(m,S) (6)

only for i, j=4, 5, 6, 7. It is worthwhile to emphasize
that the validity of Eqs. (5) and (6) for i, j=4, 5, 6, 7

follows from the requirement of an asymptotic SW(2)
symmetry, and we need not invoke asymptotic SR'(3).

We now proceed to saturate Eq. (6) with the lowest-

lying singularities. For this purpose, we define the
matrix elements

(OIP&' "&(0)IE+(k))=g (2)'p V) "',
(OIS '-'"(0)

I +(0))= g.(2k V) '". (7)

4T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
76i (1967).

the mixing eBects cannot indeed be neglected. Taking
the masses of various particles and the decay constant
of the pion as known (f 130 MeV), we now have
nine unknown parameters y, a, b, f~, f„, f„, fx, p.„, and

ox, which satisfy the six constraints in Eqs. (2). We
may also recall the results obtained in I from rather
general considerations:

m~'/mx' ——(1+a)/(1 —-,'a), (3a)

fx'/f-'=(1 —sb)/(1+b) (3b)

However, in view of Kqs. (2a) and (2b) only one of
these results is independent. To solve the problem com-

pletely we still need two more relations, which we now

proceed to set up.

In the pole-dominated approximation, Eq. (6) implies

gz =g~ p (8)

which may be converted into a constraint among the
parameters introduced in Eqs. (1) as follows. The di-
vergence conditions, Eqs. (7) and (8) of I, are

~.V."'(&)= esf~»S'"'(&) (9)

epg„(2 —a) =+6m„sf„,
epg„a = (Q-;)m„'f„.

Hence, from Eqs. (8) and (10), we obtain

(1——',a)bm„' =a(1——,'b) mrs',

(10)

where we used Kqs. (2b) and (2f).
Notice that Eq. (11) leads to mrs =0 for a=2 if b&2,

as we remarked in I Li.e., Goldstone kaons in the
chimeral SU(3) limit(. Similarly, for a=b=s~, Eq. (11)
gives m~=m„as in I.

At this stage, if we like we could bypass the entire
problem of g,X mixing and solve the parameters y, g,
b, f„, and fear, using Eqs. (2a), (2b), (2f), (3b), and (11).
Taking m„~1050 MeV, we obtain a solution:

a~—0.89, b~ —0.15, y~5.3f„'m.'
m„'f„' 3.1m 'f, ', fx/f ~1.13. (12)

It is interesting to observe that these values are quite
similar to those obtained on the basis of asymptotic
SUs (6) symmetry, ' which gives

a —0.88, b —0.13, y 4.1m.'f ',
13

m'f„' ~1.5 mf ', fir/f 1.07 .

These solutions show that whereas a is close to —1,
the value in the SU(2) 3SU(2) limit, b is close to zero,
the value in the SU(3) limit. As we emphasized in I,
this suggests that for a= —1, the vacuum state becomes
degenerate accompanied by the appearance of the
zero-mass Goldstone pion, since otherwise we would
have b= —1 at a= —1. The value of fx/f, though
in reasonable agreement with the experimental result,
can be increased somewhat, if one desires, by decreasing
the value of the input for the mass of the ~ meson Lsee
Eq. (11)].Also, the value f„' 0.05 f ' obtained from
Eqs. (12) is quite reasonable, since in the exact SU(3)
limit we have f„=0.Our results for frr/f and f„are
thus consistent with the notion' that the vacuum state
is nearly SU(3)-invariant, while the Hamiltonian is
approximately 8 (2)-invariant. For matrix elements in-
volving p and X mesons, our numerical analysis in Sec.
IV shows, however, that the situation is somewhat more
complicated.

' S. Okubo, Phys. Rev. 188, 2293 (1969); 188, 2300 (1969).

B„A„"'(x)=(epd ps+esd, ss)P&"&(x). (9b)

Taking the matrix elements of both sides of these
equations between a E or ~ state and the vacuum, we
obtain
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We may also remark that the assumption of exact
asymptotic SU(3) symmetry in the form

dm'p;, (m, F) =cb,, (o, j=1,. . . , 8) (14)

where G,~ is the coupling constant relevant to the
~Km vertex, and F+(0) is the usual form factor entering
the E~o matrix element. Taking F+(0)~1, the SU(3)
value which in view of the Ademollo-Gatto' theorem
may be expected to be quite reasonable, we obtain from
Eqs. (12) and (15) the result

leads to rather bad results. This implies that we must
add SU(3)-violating terms to the right-hand side of
Eq. (14). This fact is consistent with the conjecture
tha, t the asymptotic SW(2) symmetry is better than
asymptotic SU(3).

Knowing f„ from Eqs. (12), we may estimate the
I~:
—& Ez decay rate. If we assume that the divergence

of the strangeness-carrying vector current is dominated
by a f~:, then using an unsubtracted dispersion relation
for the divergence of the %~3 matrix element, we obtain

ansatz C4=0. However, it is straightforward to show
that the resulting sum rules lead to a contradiction
unless m„(%3m .

We can solve for the four remaining parameters f„,
fx, a.„, and Ox by using Eqs. (2) and (17). Following
Glashow et at. ', it is more convenient for this purpose
to introduce the auxiliary parameters n and p,

f„m„=f m sing, fxmx f m——cosp,
(18)a„m„=.~f m cosP, oxm.x ——nf m—sing,

which automatically satisfy Eqs. (2) with

2''mz'+2f„'m„' —f 'm„' (1—2a)(1—2b)
0! (19)f 'm ' (1+a)(1+b)

It may be mentioned that the angle P has nothing to do
with the usual mixing angle of the p-X mixing theory.
Now, Eq. (17) becomes

fx)' m. '
4 —

~

—1 = — (sing —v2n cosp)'f.i m„
m~)+

~

(cosQ+v2n sing) '. (20)
mxi

I'(x —& Em) 400 MeV,

IV. BROKEN-SU(3) SUM RULES

Knowing a and b, we may now solve for n from Eq. (19)
which agrees reasonably with recent experimental and for P from Eq. (20), remembering that f /fxas a
results. ' function of b is given by Eq. (3b). To show the depen-

dence of the solution on the mass of the I~., we consider
the two cases'

As we have remarked, it can be in principle dangerous
to use the exact SU(3)-symmetry arguments in the
present context. However, the near equality of f& and

f and the smallness of f„/f, lead one to believe' that
in this case, just as for the mass formulas, one might
expect SU(3) breaking to be the simple octet type. We
then assume that

00

dmo—p,, &o&(m,A) =Cqb, ,+Cods;,+Cob, o&~'o

() m
+C,(b,ob, ,+b;,b, o) . (16)

In view of the symmetry in thei and j indices, we note
that Eq. (16) is quite general execpt for the neglect of
a 27-piet contribution to the right-hand side. Assuming
that this neglect is not too drastic, we obtain from Eq.
(16) the pole-dominated result

4fx' f '=(f.—~&& )—'+(fx ~&~x)' (17)

This equation is exactly the same as the one employed
by Glashow et al. ' It might be tempting to obtain
another sum rule from Eq. (16) by making a further

'T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).' M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1965).

See, e.g., B. French, in Proceedings of the Fourteenth Inter-
national Conference on High-Energy Physics, Uienna, 1968, edited
by J. Prentki and J. Steinberger (CERN, Geneva, 1968), p. 91.

(A) m„= 1050 MeV,

(B) m„= 850 MeV. (21)

(AI) +=+6.2, tang=+0. 45,
(AII) n =a6.2, tang = W0.76;

(BI) n= a6.9, tang =+0.55,
(BII) n =+6.9, tang =+0.85.

(22)

(23)

The solutions in Eqs. (22) refer to the case (A) in Eqs.
(21), and similarly the solutions (23) to the case (B)
in Eqs. (21).

Corresponding to the solutions (22) and (23), we
now compute the numerical values of the parameters

TA&&E I. Numerical solutions for fx, f„, 0.~, and 0.„.

fx/f- I

fn/f-I
~xlf-

I

~.lf- I

AI

0.13
0.10
0.37
1.43

AII

0.12
0.15
0.54
1.25

BI
0.13
0.12
0.48
1.54

BII
0.11
0.16
0.65
1.34

'The case (B) from Eqs. (3b) and (11) also corresponds to
fxlf.=& 2

For each input of m„we have four possible solutions for
n and tan&. We thus obtain on, using Eq. (21) in Eqs.
(11), (3b), (19), and (20), the results
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f„, o„, fx, and Ox from Eqs. (18). These results are
listed in Table I. As noted before, one expects f„and
fx to be small in comparison with o.„and a.x, if the
W(2) group is an approxima, te symmetry of the theory
and if m„&0, mx~0 in the symmetry limit. From
Table I, we see that this is generally the case for most
of the solutions.

I ») =coso
I
»s)+sine

I »o&,

I X& = —»nt&
I
»&ycos|&

I ~o),
(24)

where 0 is the mixing angle and it is known that the use
of the quadratic SU(3) mass formula leads to a small
mixing angle 8~10'. Now let us set

(2koV)'&'&OIA„&s&(0) I»(k)&=(+is)iF„k„,
(2ko V)'"&0

I
A &'&(0)

I X(k)) = (g—',)iGxk„,
(2«oV)'"&o

I
A."'(0)

I ~(«)& =(v's)iG.4, (25)

(2koV)"'&Ol A„&"(0) I X(k)) = (Q-,')iFxk„,

where, in terms of the old parameters, we have

F.=(v's)(f. ~&~.), G.=(V's)(~.+V2fs),
Fx = (go) (&rx+%2fx), Gx = (gs) (fx ~&&rx) .

(26)

If we use exact SU(3) symmetry for the matrix ele-
ments in Eqs. (25), we obtain

tang = Gx/F „=G„/F—» . (27)

On the other hand, in the exact W(2) limit (or, equiv-
alently, in the soft-pion limit), we have from Eqs.
(26)

F„=—%2G„, Gx = &2Fx, —(28)

if we set fx= f„=o in that limit assuming m„WO,
mx&0 as we noticed already. But the last equality,
together with Eq. (27), implies that Gx=I~'x G„=F„——
=0, which is absurd. Also, it is simple to see from the
Table I that all our solutions also violate Eq. (27) rather
badly.

If we give up the orthogonality of the I»& and IX)
states, as for instance in the current mixing model, one
may save the situation and use instead

I »&
=p I no&+q I ns&, I

X& =p'
I
go)+q'

I gs&, (29)

V. g-X MIXING AND PCAC

We would first show that the usual mass-mixing model
of r&-X mixing based on SU(3) symmetry is inconsistent
with the present model. If one takes I»s) and I»o& to
represent the pure octet and singlet states, then in the
usual approach one defines the physical q and X states
by the relations

cos'8 sin'8 1 i 4 1

7/8 3 yg~
(31)

Thus we conclude that our theory must correspond to a
complicated general-mixing scheme. "However, since the
exact SU(3) result may be dangerous to use in our case,
it is really not clear how to define

I rlo) and
I »s) and,

consequently, equations nf the form (29).
This problem is also related to the question of the

hypothesis of partially conserved axial-vector current
(PCAC) for» and X rnesons, and we shall proceed to
study it now. First of all, we know that the pion PCAC
is, as usual, given by

~HA I "&(x)=(V'2)f-m-'4- (x) (32)

In the present case, a natural way to set up the PCAC
for» and X rnesons is to define field operators Px(x)
and p„(x) for the X and» mesons, respectively, by

(g's)8 LA &s&(x)+~2A„&o&(x)

=(V's)fomo'&o(x)+(V's)fxmx'4x(*), (33a)

(Q s)B„[A„-&'&(x) %2A „'—»(x)j
= (g-,') o „m„'4„(x)+(Q-',)oxmx'px(x), (33b)

since this definition automatically reproduces Eqs. (1)
if we demand that

&Ol y„(x) I X(k) &
=

&Ol yx(x) I ~(k) & =0, (34)

which seems to be a natural requirement for the stable
or almost stable mesons» and X. Solving Eqs. (33)
for p, and px, one finds

(Q-,')m„'P„(x) =rB„A„&o&(x)+sB„A &'&(x)

(Q ', )mx'&t&x(x) = r'&7„A-„&'&(x)+s'a„A„&»(x),

where r, s, r', and s' are given by

(35a)

(35b)

Gx
s=

Ã

Fx F~r'= —,s'= —, (36)
N E

then we obtain

p/p'=G. /Fx qlq'=F. /Gx (30)

From Table I and Eqs. (26) we find for all solutions the
result tha, t G„l ) I

Fx
I

and
I F„l) I

Gx I. Therefore,
we have

I p '+
I q I

')
I
p'I '+

I
q'I ', implying the im-

possiblity of simultaneously normalizing
I p I

'+
I q I

'
= lp'I'+lq'I'=1. This would mean that we are intro-
ducing amplitude renormalizations in the defining
equations (29), and hence that a pure mass mixing is
again inconsistent with our model. Alternatively, the
q-X mixing cannot be pure current-mixing, since then
we will have the badly satisfied mass relation of the form

rather than the more restricted form of Eqs. (24). with Fx& Gx, F„, and G„defined by Eqs. (25). Also, Ã
However, if we still insist on the exact SU(3) results

&o I
A„&»(o)

I »& = &o I A. '"'(0)
I ~s& =o,

"N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 15'7, 1376
(1969).
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is given by

Equations (35) may be considered as an analog of

Eqs. (29).

(i) GZ model: Sr=5/18, Ss=v2/18,

(ii) MH model: St=-', , Ss=O,

(iii) TT model: Sq ——s, Ss——sV2,

S3=-,',.
Ss=s (39)

S3——~.

In the case of the TT model, we have assumed'~ that
the theory is invariant under the charm SU(3) group

VI. DECAY RATES OF g AND X

In this section, we compute the various decay rates of

q and X mesons using our solutions of the mixing param-
eters. In particular, we consider the decays

q~ Zy, X~Zy, X—+Zan, g
—+ Zmy, X—& Z~y.

We do not attempt to compute g —+ 3x, since this mode
is beset with well-known difficulties in the soft-pion
limit.

A. 2y Decays of g and X

These processes can be calculated by the techniques
proposed" by Adler and others from considerations of
the anomalies in the triangular graphs of the vertex
function which leads to a modification of the PCAC
hypothesis of ~, p, and X.The modification is achieved
by essentially adding a term of the form

(ie'/167r')S—,e„, pF„,F e (38)

to the right-hand sides of Eqs. (32) and (33), where F„,
is the usual electromagnetic field tensor, and S, (i=1,
2, 3) are certain numerical coefTicients which are differ-
ent for the three cases in Eqs. (33a), (33b), and (32),
and are specified for these cases by i=1, 2, and 3, re-
spectively. Also, the coefficients S; are known to be
model-dependent, and can be computed for specific
models in a way discussed by Adler. "Here we shall
consider three quark models, the usual Gell-Mann-
Zweig (GZ) model, "the Maki-Hara (MH) model, "and
the three-triplet (TT) model. '4 The corresponding
values of S; are then given by

and that the axial-vector current is a singlet in charm
space.

Following the recent treatment of Glashow et ul. ,'
one then obtains

I'(q~2q) pm, 't 1
~

x sin&+ —y cosg, (40)
r(~s ~2,) &m.

I'(rl ~ 2y) =1.00&0.25 keV,
I'(s-'~ 2y) = 7.3&1.5 eV,

(43)

which seems to rule out all solutions except AI in the
case when the relevant quark model is MH. Actually, it
may be pointed out that the ordinary Gz quark model
gives too small a value for the absolute decay rate
z —+ 2y, while both MH and TT models give a very
good answer for it, provided that Adler's modified
PCAC condition is exact. However, there appears to be
a possibility that we may have to multiply correction
factors to the model-dependent parameters S; owing to
strong interactions. " If this is so, then we really have
no way to compute I'(mrs —+ 2y), I'(q —+ 2y), and
I'(X~ 2y) in an unambiguous way. However, if we
accept the attitude of Glashow et al. ' that the correction
factors may be common for all x', p, and X decays, then
their relative decay ratios are still calculable and given
by Eq. (40) and by Table II.

Another point of some interest is the fact that our
numerical results in Table II are quite different from
those computed on the assumption of a small mass
mixing between q and X." If we know more about
I'(g~2y) and I'(X~2y), it may be possible to dis-
tinguish these cases.

I"(X 2y) ( ~ '( 1
( (

x cosy' ——y sings ), (41)I'(s' —+2y) (m, ) k cr ) '

in the soft-meson limit. The parameters x and y are
defined by

x =St/Ss, y =S&/S&, (42)

so that x =5/3, y =-'s&2 for GZ, x= 1, y= 0 for MH, and
x=3, y=v2 for TT. Using our solutions (22) and (23)
for n and p, we can now compute the ratio of the rates
in Eqs. (40) and (41). The results are tabulated in
Table II. Experimentally, one has

"S. L. Adler, Phys. Rev. 1'?'7, 2426 (1969); J. S. Sell and
R. Jackiw, Nuovo Cimento 60, 47 (1969); C. R. Hagen, Phys.
Rev. 1"/'7, 2622 (1969); R. A. Brandt, ibid 180, 1490 (1969);.
R. Jackiw and K. Johnson, ibid. 182, 1459 (1969); B. Zurnino
(unpublished).

"M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig (un-
published).

"Z. Maki, Progr. Theoret. Phys. (Kyoto) 31, 331 (1964);
Y, Hara, Phys. Rev. 134, 8701 (1964).

~4M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965);
A. Tavkhelidze, in High Energy Physics and ELementary ParticLes
(International Atomic Energy Agency, Vienna, 1965)."S.Okubo, in Proceedings of the InternationaL Conference on
QNar&s and Symmetry, Detroit, 1WP, edited by R. Chand (Gordon
and Breach, London, 1970).

AI
AII
BI
BII

1'(n ~ 2v)/1'(~' ~ »)
GZ MH TT
535 159 1954
848 346 2517
698 218 2475
995 395 3009

1'(X~ 2v)/r (s' ~ 2y)
GZ MH TT

3.4X104 1.3 X104 1.1 X10'
2.9X10' 1.0 X10' 1.0 X10'
3.1X104 1.2 X104 1.0 X10'
2.6X10 0.89X10 0.89X10'

' R. Jackiw and K. Johnson, Phys. Rev. 182, 1459 (1969).
IIowever, a calculation by S. L. Adler and W. A. Bardeen )Phys.
Rev. 182, 1517 (1969)] implies that we may have no such effect
at all.

TABLE II. Calculation of decay ratios for different quark models.
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Next, let us proceed to the calculation of other decay
modes X—+ qual and X—+ 2m', etc. These calculations
are now independent of speciic quark models.

B. X—& q~~ Decay

We use the soft-m and -g approximation to estimate
this decay rate and use the PCAC for p given in Eq.
(35a). The matrix element for X~ q~o~o is then given

by
S= (g(p') m'(k) m p(k') out

I X(p))
= (2m.) &4ii5&'i(p —p' —k —k') T, (44)

(45)T= —(8kokoipoiVs) ' '(2 v2/f ')(sIs+rIp) i

where r and s are defined by Eqs. (35) and (36), and
Io and I8 are given by

d4xd4y e '" e
—'&'&(-OI T(&7„A„&"(pp)

XB„A„&"i(y)&t&A&&s'(0))
I X(P)) (k =0,8) . (46)

Utilizing the standard technique of pulling the deriva-
tives out of Eq. (46) one can easily show that, in the
soft-meson approximation,

p decay the ratio I'(g —+ 2xy)/I'(p ~ 2p) =0.27, which
is too large compared to the recent experimental value"
of 0.116&0.015. Clearly, a need for incorporating the
mixing effect is evident. Indeed, attempts to take into
account mixing effects on the basis of some models
have shown that the theoretical number for the ratio
can be reduced. ""

For the q decay, if we use the vector-dominance
hypothesis, we have to calculate Feynman diagrams of
the type q ~ py ~ 2x'p, q ~ py ~ py, and g —+ cosy ~
yy. We assume as usual that q~cooy —+yy is sup-
pressed, since the ~0-y coupling must be zero on the
basis of the SU(3) symmetry. Since the p —+ 2m coupling
constant is known and the relation between p and ops

coupling to p can also be computed by the SU(3) sym-
metry, the problem is to relate the vertices p~cosp
and q~ py. This is where the p-X-mixing theory is
needed. For this purpose we shall use Eqs. (29). If we
use the SU(3) symmetry

(V' V„&&i(0) qp)=cb, ;,
(V' V„(0) qs)=ddsc,

G-..=(V's)G .,

and take m(&ps) =930 Mev, we obtain

I,=%2Is (-', )'i'(V——2so+ss)
x(0ILI' &(0)+~2I &»(0)jlx(p)). (47)

I'(~ ~ 2~&)Eg=—
I'(n ~ vv)

0.27(1+u)'

1+3.05u+2.34u'
(52)

Now, taking the matrix element of Eq. (9b) between X
and the vacuum states and using Eqs. (1), we write
Eq. (47) as u =~~(q/P) (cid) (53)

Io=v2Is=ps fxmx'(2ppV) '&'. (48)

From Eqs. (45) and (48) together with Eqs. (18) and

(36), one finally finds

T=(16kpkp'PpPp'V') 'is(4/f ')m„mx sing cosP. (49)

Doing the phase-space integration numerically, one
6nally obtains

I'(X —+ qs-P~o) 14.2 sin'P cosset MeV.

and the parameters p and q have been defined through
Eqs. (29).

For the decay X—+ 2vrp, we may do the same calcula-
tion except for one important difference. This process
may also arise from the real production of the p meson,
as a two step-process, since it is energetically allowed.
Thus, using p dominance, one must in this case take the
p propagator with width corrections in a Breit-Wigner
form. This procedure then yields

For the various solutions of p in Eqs. (22) and (23),
the total decay width for X—+ qual is shown in Table III.

C. 2~y Decay Rates of X and g where

I'(X~ 2my) 13.3(1+v) '

I'(X~ yy) &to+1.34p+0.45
(54)

These decays have been considered by many authors
using the vector-dominance hypothesis' or algebra of
currents. ' Neglecting g-X mixing, one obtains for the

p =3(P'iq')(c/d)

Using Eqs. (30), we note that v is given by

&1= (Fx/Gx)(Ii„/G„)u.

(55)

(56)

AI AII

TABLE III. Calculation of I'(X —+ pe 7t).

BII

Now using" R,=0.116 as an input, one obtains two
solutions for u, which when substituted in Eqs. (56)

F(X~ qvrx) 6.0 MeV 9.9 MeV 7.5 MeV 10.4 MeV

"M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).' J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 1'7, 888
(1968).

'9M. Gormley et a&t. , Columbia University Report (unpub-
lished).

20 M. Jacob, in Proceedings of the High Energy Physics Meeting
at Pisa, 1967 (unpublished).

'L. H. Chan, I. Clavelli, and R. Torgeson, Phys. Rev. &8&
1754 (1969).
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TABLE IV. Calculation of F (X —+ 27').

AI AII BI BII

r(X ~ 2~~)
R~=

r(X ~ 2yj
13.5 or 45.0 13.3 or 6.1 13.5 or 54.3 13.3 or 5.0

and (54) lead to two values of Rx for each solution given
in Eqs. (22) and (23). These are tabulated in Table IV.

VII. DISCUSSION

I'(X —+ riIrIr) 6.0 MeV,

I'(X -+ 2y) 95 keV,

I'(X -+ 2s.y) 1.3 or 4.3 MeV,

(57)

where we have quoted our results only for the 1V[H

If, on the basis of the calculation for the ratio
r(q —+ 2y)/I'(x' —& 2y), we discard the lower value of
the x mass used in solution 3 in Eqs. (23) and accept
the solution AI over AII, we summarize the following
results for the partial decay rates of the X meson:

quark model. UVe may remind ourselves that the value
of I'(X —+ riz.Ir) is of course independent of the specific
quark models. It is not possible to compare these results
with the data, since the total width of X is not yet ac-
curately known. " If we take our results in Eqs. (57)
seriously, then for the smaller of the two values for
I'(X —+ 27ry) we have the ratio I'(X —+ 2z.y)/
I'(X ~ Ii7rx)~0. 2, which is not far from the experi-
mentally quoted" value of about 0.3 However, the
width for X—+ 2y seems to be too small.

A word of caution is necessary. Most of our calcula-
tions are based on the soft-g approximation and we have
no idea how good this approximation is. The fact that
the Maki-Hara quark model seems to be preferred in
our present calculations may also be spurious if, for
instance, possible strong-interaction corrections to Eq.
(38) do not drop out from the ratios of rates calculated
in Sec. VI A, or if the mass of the ~ meson turns out to
be much different from the value taken in obtaining the
results (57).

'N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109 (1969).
These tables quote an upper limit of 4 MeV for the decay width
of X.
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Unitary Pale Apyroximants in Strong-Interaction Physics:
The Nucleon-Nucleon System

I. D. BEssIs, S. GRAFFI)* V. GREccHI)* AND G. TURGHETTIt

Service dt, Physique Theorize, Centre d'Etgdes Nucleaires de Saclay, BP n' Z—91, Gif-st-Vedette, France
(Received 14 July 1969)

The unitary Pade approximants, successfully introduced in strong-interaction physics for the pion and
kaon systems, are now applied to the nucleon-nucleon problem. It is assumed that the interaction between
two nucleons is described by the renormalizable Lagrangian Lr=iggpzvp %+lI(% %)'. We present the
result of the complete calculation of the (1,1) unitary Pads approximant, which does not involve the
second term in the Lagrangian: This implies that no free parameters appear in our model. A complete
description of low-energy nucleon-nucleon physics is then obtained which qualitatively and often quanti-
tatively agrees with experiment. Bound states appear only in S waves, and a real pole is found in the
deuteron amplitude at 4.8 MeV when the pion-nucleon coupling constant is taken at its physical value
g /4n. =14.7. The Regge trajectories rise with energy: The deuteron recurrence does not become physical,
while the recurrences of the virtual 'S0 state give rise to narrow resonances in the 'D2 and 'G4 waves. For
sll waves (with the exception of the 'So which in the L1,1j Pade approximation has a wrong threshold
behavior), the calculated phase shifts are in good qualitative agreement with the experimental phase-shift
analysis.

I. INTRODUCTION

' 'T is today a generally accepted belief that in strong-
' - interaction physics one can only get, from the
perturbative series, statements about the analyticity
properties of the S matrix. On the other hand, this
standpoint does not allow us to infer quantitative
information from the computation of the perturbative

* Istituto di Fisica, Universita di Bologna.
t Istituto di Fisica, Universita di Bari.

expansion. One may wonder whether it is the theory
itself, or the most used approximation method, which is
inadequat- i.e., whether the traditional perturbative
approach, so successful in electrodynamics, is meaning-
less in the case of strong-interaction physics.

Kith this idea in mind, one has to look for other ap-
proximation schemes. Among the many possible tech-
niques, one which seems to be particularly suitable is
the Pade approximant method, which has been suc-
cessfully introduced in strong-interaction physics for


