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Another motivation for extending the n p~ pp
data to larger values of ill comes from the following
observation. When we separate the isovector contri-
bution of the photon, by setting S/V equal to zero in
our solution, we can relate it to p~rdo/du(sr p~rtp')
using the vector-meson dominance model. Such a
comparison has been done by Guiragossian" who con-
cludes that the agreement is satisfactory at E&,b=4
BeV and —1.0&I&0.0, but it is not very satisfactory
in the larger ill region.

C. Photoyroduction of ~ at Backward Angles

The yrt~ p7r cross section can be predicted within
this model. Figure 4 gives the calculated cross section
at 8, 12, and 16 BeV. The yn-+ psr= cross section is
about two to three times the yp-+ rtsr+ cross section.
This enhancement is related to the S/V parameter

'6 Z. G. T. Guiragossian, SLAC Report No. SLAC-PUB-657,
1969 (unpublished).

through the equation

do / S s (do ( S—(~') = I&l'I 1~ —+I —
I
1+ —+ I

A I'
dtt E V kdN;„r, E V

where lSl', (do/dN);„&, and lAl' are the contributions
to the cross sections from the nucleon, nucleon-6 inter-
ference, and A, respectively. Since S/V= —0.376 from
our solution and since the (do/du); t is positive as it
follows from Fig. 3, we expect the m cross section to be
larger.

At places where the E~ trajectory is dominant, the
prediction that

do do
(prt ~ p—sr-) & —(yp ~ Nsr+)

dQ dQ

is rather general" and it should be checked experi-
mentally.

Our solutions at 180' extrapolated to low energies
pass through the mean of the different cross sections.
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We investigate the general properties of the Gell-Mann model for chiral U (3) U (3) symmetry breaking.
From a study of the two-point functions, we 6nd that the symmetry-breaking parameters cannot assume
arbitrary values, but must be confined in specified domains. The boundaries of these domains are related
to several interesting subgroup symmetries. We present arguments to show that one must have essential
singularities at those values of the symmetry-breaking parameter which correspond to subgroup symme-
tries realized via the emergence of zero-mass bosons. In a suitable singularity-free range of physical interest,
we next discuss the possibility of continuous transitions between diferent symmetry subgroups, and show
how, with the use of a variational principle, one can obtain some mass formulas and relations between
other physically relevant quantities in a nonperturbative manner. In particular, the relation obtained by
Gell-Mann, Oakes, and Renner for the symmetry-breaking parameter is obtained naturally in this manner.
Also, it is shown that this formalism requires the existence of scalar mesons.

1. INTRODUCTION

~HE chiral SW(2)=SU&+&(2)SSU& '(2) and
SW(3)—=SU&+&(3)IESU& '(3) groups have been

introduced and studied by many authors. ' 7 Most of

* Work supported in part by the U. S. Atomic Energy Com-
mission.' J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957); M. Gell-Mann
and M. Levy, Xuovo Cimento 16, 705 (1960).

K. Nishijima, Nuovo Cimento 11, 698 (1959);F. Gursey, ibid.
16, 230 (1960); Ann. Phys. (N.Y.) 12, 91 (1961).See also, H. P.
Burr, W. Heisenberg, H. Mitter, S. Schlieder, and K. Yamazaki,
Z. Naturforsch. 14, 441 (1959).' Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);
124, 246 (1961). See also, H. Koyama, Progr. Theoret. Phys.
(Kyoto) 38, 1369 (1967); Z. Maki and I. Uemura, ibid. 38, 1392
(1967).

4 A. Salam and J. C. Ward, Nuovo Cimento 20, 419 (1961);20,
1228 (1961);R. E. Marshak and S. Okubo, ibid. 19, 1226 (1961}
(see the Appendix of this paper).

these approaches can be classified as dynamical or kin-
ematical. In the dynamical method, one assumes ex-
plicit forms for the Lagrangian possessing an approxi-
mate SW(2) or SW(3) group symmetry, while in the
kinematical approach one employs more general prin-
ciples such as the algebra' of currents and the transfor-
mation properties of the symmetry-violating interac-
tions. Actually, one can further categorize the dynamical
method. One approach is based on a linear realiza-
tion' ' ' of the chiral group with the Lagrangian ex-

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics I, 63
(1964).' R. E. Marshak, N. Mukunda, and S. Okubo, Phys. Rev. 13'7,
8698 (1965); R. E. Marshak, S. Okubo, and J. Wojtaszek, Phys.
Rev. Letters 15, 463 (1965).' Y. Hara, Phys. Rev. 139, $134 (1965); W. P. Moran and
R. E. Marshak, Progr. Theoret. Phys. (Kyoto) Suppl. 37'-38, 405
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pressed only in terms of the fundamental GeMs, while
a second one utilizes nonlinear realizations" with
elementary pion and nucleon fields. Recent investiga-
tions by many authors" show that the nonlinear ap-
proach is quite successful in the description of low-

energy phenomena. However, these two dynamical
techniques are probably not in convict with each other,
since pions and nucleons are presumably bound states
of the fundamental quark Gelds and the resulting effec-
tive nonlinear Lagrangians involving these hadrons are
probably the Grst good approximation of the correct
theory.

In this paper we follow the kinematical method, thus
avoiding the use of explicit forms for the Lagrangian,
although we shall be guided by some features of specific
dynamical models. Such a method is more general and
has an obvious advantage, in spite of the fact that its
information content is certainly smaller than the dy-
namical approach. Indeed, following this technique,
several intersting results have recently been obtained by
many authors, " " especially by Glashow and Wein-
berg '0 bv Gell-Mann, Oakes, and Renner" and by
Dashen and Weinstein. " A curious feature of some
chiral-invariant dynamical theories is the fact that one
presumably cannot use the perturbation method with
respect to the chiral group, in spite of the fact that the
Lagrangian is invariant under the chiral group. Histori-
cally, this feature was recognized by Nambu and Jona-
Lasinio, ' whose work is probably the Grst dynamical cal-
culation based on a SW(2)-invariant theory. According
to this work, we have two possible solutions, a nonper-
turbative superconducting solution and a perturbative
normal solution. However, the only stable solution is the
superconducting one and the zero-mass pion emerges as
a collective mode of excitation or a Goldstone boson"
in the Geld-theoretical language. This solution is indeed
quite sensitive to small SW(2)-violating perturbations
and the above-mentioned authors obtain the physical
pion mass from the introduction of a bare (quark) mass
term of about 5 MeV. This conclusion of course depends
upon a specific dynamical model together with other
approximations and assumptions. However, a similar

' See, e g S. Weinberg, . in. Proceedirtgs of the Fottrteenth Inter
national Conference on High-Energy Physics, Vienna, 1968', edited
by J. Prentki and J. Steinberger I'CERN, Geneva, 1968), p. 253.

'See also J. Schechter, Y. Ueda, and G. Venturi, Phys. Rev.
1/'I, 2311 (1969); H. A. Rashid, Trieste Report, 1969 (unpub-
lished).' S. L. Glashow and S. steinberg, Phys. Rev. Letters 20, 224
(1968).

"M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'lS,
2195 (1968}."F.Von Hippel and J. K. Kim, Phys. Rev. Letters 22, 740
(1969); C. H. Chan and F. T. Meiere, ibid 22, 73'I (1969);P. R. .
Auvil and N. G. Deshpande, Phys. Rev. 183, 1463 (1969).

~3 R. F. Dashen, Phys. Rev. 183, 1245 (1969);R. F. Dashen and
M. %einstein, ibM. 183, 1261 (1969); R. F. Dashen and M.
%einstein, Phys. Rev. Letters 22, 1337 (1969).

'4 See, e g , T. W. B.. K. ibble, in Froceedings of the Irtternational
Conference on Particles and Fields, Rochester, New Fork, 1967,
edited by C. R. Hagen et al. (%iley-Interscience, New York
1968).

conclusion has also been reached recently by Dashen"
in the a. model. These results strongly suggest that a
chiral-invariant Lagrangian manifests itself through the
existence of Goldstone bosons, degenerate vacua, and
nonperturbative solutions. Also, as emphasized by
Dashen, the multiplet structure of the particle spectrum
mill not be controlled by the chiral group but by a sub-

group like SU(3) or SU(2). The recent calculations by
Gell-Mann, Oakes, and Renner" lend consistency to
this viewpoint. As we shall see in the following paper, "
our numerical calculations based on a somewhat more
general approach also support this result. Hence
throughout this paper we adopt such a viewpoint. This
fact alone vitiates all applications of the SW(3) group,
which are based on the use of perturbative, linear repre-
sentations of the group. Indeed in a perturbative ap-
proach, to mention a simple example, the well-known
relation' rtt~, =&2rrt, is rather difficult to understand,
since we should expect ns~, = ns, in the zeroth-order per-
turbation with respect to SW(3)-violation terms.

The description of chiral symmetry that emerges
from these considerations, however, is somewhat un-
fortunate since general nonperturbative techniques are
difficult and presumably model dependent. To investi-
gate these and related problems, we develop in this

paper a general technique for studying continuous
breaking of the chiral symmetry group. The demand of
continuity, it is argued, may provide a nonperturbative
link in passing from one subgroup of the original chiral

group to another, for the range of values of the syrn-

rnetry-breaking parameter where we do not encounter
discontinuities or singularities.

In Sec. 2, we study the constraints on the allowed
values of the symmetry-breaking parameter that arise

purely from an investigation of the general properties of
the two-point Green functions in the model of Gell-

Mann, Oakes, and Renner. " These restrictions are
studied in detail in Sec. 3, where it is shown that the
allowed values of the symmetry-breaking parameter
fall into well-deGned domains, and that the boundaries
of these domains correspond to several subgroups of the
original chiral group. A discussion is presented regarding
the possible existence of the essential singularities at
some isolated values of the symmetry-breaking param-
eter, if we regard physically relevant quantities as func-
tions of this parameter. Some of the arguments here are
somewhat conjectural, and can only be checked by the
ensuing results, although we believe them to be quite
reasonable. In Secs. 3 and 4, we show how these argu-
ments may lead to several sum rules in a nonperturba-
tive fashion. We have for this purpose also made exten-
sive use of a type of variational principle used with
special success in many-body problems. "In particular,
the relation obtained by Gell-Mann, Oakes, and Renner
for the symmetry-breaking parameter in terms of the

"V.S. Mathur, S. Okubo, and J. Subba Rao, following paper,
Phys. Rev. D 1, 2058 (1970)."See, e.g., K. Sawada, Phys. Rev. 106, 372 (1937).
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masses of pseudoscalar mesons is reproduced quite
naturally in this approach together with some other
consequences. In Sec. 4, we show how this approach
leads to the existence of scalar mesons. Finally, we also
discuss how corrections to soft-pion and soft-kaon
theorems may be computed.

2. EXACT SPECTRAL SUM RULES

F"&(t)WFp&'&(t) =i—
p=t

d'x[V4&" (x)a A 4&"(x)] (3)

where V &'&(x) and A &'&(x) (i=o, 1, . . . , 8) are nonets

Ke choose the strong-interaction Hamiltonian den-
sity to be of the form

H(x) =Hp(x)+ pH'(x),

where we assume that Hp(x) is invariant under the
chiral W(3)=—U&+&(3)&E&U& &(3) group and that pH'(x)
breaks the symmetry in a known way to be specified
shortly. It should be emphasized that we use the
W(3) group rather than SW(3)=SU&+&(3)SSU& '(3)
throughout the paper as the fundamental symmetry
group.

Before going into details, we note that the parity
operation P interchanges the two U(3) groups. Hence if
we denote by Z2 a cyclic group of order 2, consisting of
the unit element I and the parity operator I' with
P'= I, then Zs acts as an automorphism on the W(3)
group. Therefore, we are really discussing the group
G=W(3)PsZs which is the semidirect product of IV(3)
with Zs. Actually P is the outer automorphism of W(3).
If we further consider the charge-conjugation operator
C, then we have to replace Z2 by a group generated by
I, I', and C, which also acts as an automorphism on
W(3). However, we will not consider this extra complica-
tion here, and refer the reader to Ref. 6, where represen-
tations of such an extended group are discussed. We
denote simply by (n,m) an irreducible representa, tion of
the W(3) group, where n and m are the dimensionalities
of the irreducible representations of the two U(3)
groups, respectively. Then a typical irreducible repre-
sentation of our group 6 will be given as a direct sum

(n, m) &I&(m,n), if num
Now although several structures for the symmetry-

breaking part H'(x) in Eq. (1) are possible, the simplest
is obviously the one in which II' transforms according to
the (3,3*)$(3*,3) representation of the group G. De-
fining a set of scalar and pseudoscalar nonets 5&"(x)
and P&'&(x) (i =0, 1, . . . , 8) which transform according
to the (3,3*) (3*,3) representation, we thus express

pH'(x) =
ppS

"&(x)+ psS&'& (x), (2)

where 6p and 68 are real constants whose ratio is uniquely
defined by the algebraic properties of S&'&(x) and P"'(x).
Following Gell-Mann, ' let us define the generators of
the W(3) group by

of vector and axial-vector current densities. Then at
xp ——t, the scalar and pseudoscalar densities must satisfy
the following algebra:

[F&"(t),5'»(x) j,=(——if,,sS&"&(x),

[F"'(t),P"'(x)3 .=i= ifv~P"'(x)
[Fp&'&(t),5&t&(x)).,=,= id;;kP'"'(x),

[F,&'&(t),P&'&(x)]„=,= —id, , 5&"&(x) .

For notational purposes, we might mention that for the
quark model we have

V„"'(x)= —',ig(x) y„X,q(x),
A „&'&(x)= -', ig(x) y„ps', q(x),
S&'&(x) = —,'g(x) X,q(x),
P&"(x) =-', ig(x)ps', q(x),

where i = 0, 1, . . . , 8, with & p
——Q-'s as usual. In this case

6p and es are related to the bare quark masses m&, m2

(=m, ), and ms by

pp
——(Q's) (2mi+ms), ps ——2(Q's) (mi —ms) . (6)

Using the local generalization" of the usual equation
of motion

&& J &"(x)= H(x), d'yJ "'(y)
—'ttp =sp

we obtain from Eqs. (2) and (4) the following expressions
for the current divergences:

&& V &'&(x) = 0 (i = 0, 1, 2, 3, 8),
&&„A„"(x)= (Q s)(v2sp+-ps)P"'(x) (i=1, 2, 3),
&&„[A„&"(x)+&2A „&'&(x))

= (Q—',) (&2pp+ ps) [P&"(x)+v2P &"(x)j.
Thus for v2pp+ ps 0, the H=amiltonian would be exactly
invariant under the W(2) subgroup of the W(3)
symmetry.

We proceed now to write down the usual I.ehmann-
Kallen spectral representation for commutators:

(o I
[v„"&(x),v.&t&(y)j I o)

00

dm' b„p ——B„B„P;,('-' m) V
p m

1—p,,&'&(m, V)—&&„p&„A(x—y, m), (10)m"

~.v."&(x)= psf'stS&t&(x)

&&qAp&'&(x) = (ppd, p;+ psd'st)P &t&(x),

for i =0, 1, . . . , 8, where the summation over the index

j runs from j= 0 to 8, with fp,,= 0 and dp;, = (Q—s,) t&,,
From Eqs. (7) and (8), it follows, in particular, that we
have
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(o
I [:A."'( ),A."'b)7 I o)

f 1
d«««'

~

&„„——a„a,)p; "&«««,A&m"
1—p; &"(m A)—&&„c&„6(x—y m),

m'

where the superscript on spectral weights represents the
spin state, and the scalar function p,,&"(m,A), for ex-

ample, is given by

m'p "'(m, A) = (2m)' Q (0 [ c&„A &'&(0) [&s&

x(~la.A„' (o) lo&b (p —p„),

with p'+m'=0. From Eq. (11) and a similar one for

p;, &'&(m, V), we have the requirement of positivity, "
p C,*p,, &o&(m, A)C, &0, g C,*p,,&o&(m, V)C,&0,
s I «7

SU(2) symmetry:

Iso= v(1+~)(1+b)
Iss= V(1—s&s)(1 sb)

I,=&[1-(+b)+3 b7,

Ipp=y(1+2ab),

Ips=Isp=v2p(&s+b &sb)

E44 (9/4) y——&sb.

(18)

Note that the constant c introduced by Gell-Mann,

Oakes, and Renner is related to our a by c=&2&s. It is

remarkable that Eq. (18) is symmetric under the inter-

change of a and b, although its physical significance is

somewhat obscure. Eliminating y, a, and b from Eqs.
(18),we obtain the following exact sum rules among the

components of I;j and E'zj ..

Iss —Iso= 2(Ioo —Iss) = —~2Ios,

s Iso+ s Iso I44= X44 . —
/ ~

Actually, it is more convenient" to work with the linear
Taking divergences on both sides of Eqs. (10), and

combinations
setting xo=yo, one readily finds

dm'p "&'&(m V) =(0 [a;,. v(0) [0),

dm'p, , &"(m, A) =(0[~;,"(0)[0),

where o.„v(x) and o,,"(x) are defined by

o. "r(x)84(x) =I c& V &'&(x) Vs&'&(0)7b(xo)

a""(x)b4(x) =Lc& A &'&(x),A, &»(0)7b(xo).

A„& '&(x) = (g-;)I A„&s&(x)+~2A„&o&(x)

A. ' "(x)= (v's)l:A .&"&(x)—~&A."&(x)7,

(13) rather than A„&"(x) and A„&'&(x) themselves. We have

used the superscripts —1 and —2 merely to provide

a distinction from the notation already used. If we define

the integrals over the spectral weights with respect to
the new combinations (20) in a ma, nner analogous to Eq.
(13), we obtain

(14) I i,—i= s(Iss+2v2Ios+2Ioo) =y(1+a)(1+b) =Iss,

Now, using Eqs. (4), (7), and (8), we obtain

+«j = osksfs«kfsjk y

I«&' (opdp«k+ osds«k)($pdpjk+ fsdsj k) )

where &p and $s, defined by

(15)

4—= (ol s"&(0)[o&, p,=—(o I
s"'(0)

I o&, (16)

are the only nonvanishing vacuum expectation values
of the scalar density operator, and where the summation
over the repeated index k runs over k=0, 1, . . . , 8.

We now introduce the real parameters a, b, and y,
defined by

8= ( /s)os/oo«b= (Qs) $s/$p) r= s (oo/o) . (17)

In terms of these parameters, Eqs. (15) leads to the
following nonvanishing components not related by

I s, s ——s(2Iss —242Ips+Iop) =y(1—2a)(1—2b), (21)

I i, s=I s, i= —(—%2Iss —Ios+%2Ioo)=0.

I33~&0, I44~&0, I 2, 2~&0, E44~&0. (22)

It is clear from Eqs. (18) and (21) that the inequalities

(22) would provide constraints on the otherwise arbi-

trary parameters u, b, and p. It is easy to verify that

3. ALLOWED DOMAINS FOR SYMMETRY-
BREAKING PARAMETERS AND

CONTINUOUS BREAKING OF
SYMMETRY

Next, we investigate the consequences of the inequali-

ties (12). The independent components of I;; and E,;
must satisfy

"This fact has also been noted by Auvil and Deshpande (see
"G. Pocsik, Nuovo Cimento 43A, 541 (1966); S. Okubo, ibid. Ref. 12) and by S. L. Glashow, R. Jackiw, and S. S. Shei, Phys.

44A, 1015 (1966). Rev. 18/, 1916 (1969).
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Fzo. 1. Allowed domains for the parameters g and b.

there are seven allowed domains:

(I) u~&2, b&&2, y~&0;

(II) 2&&a~&-'„2&b&-,', y~&0;

(III) —', ~& a~& 0, -,'& b~& 0, y~& 0;
(IV) 0~) a)~—], 0~) b) —1, p) 0;

(V) —1~& & —1~&» v~& 0

(VI) a~& 2, —1&b, y& 0;
(VII) —1~)a, b~)2, y (~0.

(23)

These domains have been displayed for convenience in
I'ig. 1. An interesting feature that emerges is that the
boundaries of these domains are related to the positions
where various symmetry groups become exact. Indeed,
from the divergence conditions Eqs. (7) and (8) we find
the following:

(i) @=0implies B„V &'&(x) =0 fori=0, 1, . . . , 8, i.e.,
the exact validity of the U(3) group.

(ii) a= —1 leads to B„A„&"(x) =0 for i=1, 2, 3 as
well as B„A„' '&(x) =0. Since the usual isospin together
with the hypercharge is a good symmetry, " the point
u= —1 corresponds to the subgroup W(2)= U&+&(2)

SU& '(2), generated by F&'& (i=1, 2, 3) and F&&'&

(i=1, 2, 3) together with F& '&=(g—')(F&»+v2F&'&)
and F5' "

(iii) a= 2 gives B„A„~ '&(x) =0, which leads to a one-
parameter gauge group which we may designate as
U~ & "(1).Thus the point a= —,

' corresponds to the exact
validity of the symmetry group Z= U(2) Uz& '&(1),
where U(2) represents the usual isospin-hypercharge
group.

(iv) a=2 leads to B„A„&&( )&=x0 fo'r j=4, 5, 6, 7. If
we set X& &= —iJ'd'x V4&~&(x) for n=1, 2, 3, 8 and
X~ '= —iJ'd'x A4& &(x) for +=4, 5, 6, 7, then X& &

(n= 1, 2, . . . , 8) are the generators of a new SU(3) group

"The conservation of baryon number, not exhibited, is here-

afterr

implied.
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and satisfy the algebra

LX'&,X'»j=if p,X&».

Because of the parity mixup, we would refer to this
group as the chimeral SU(3) group. Examples of linear
representations of this group are, for instance (e
7/8 3 &&8+ sv2 go) for an octet and (&&p

= 3V2r&8+ 3 rlo)

for a singlet, where a is the scalar g meson with I= ~~,

I'=1.
It is now easily established that we must have b=a

for a = —1, 0, ~, and 2 provided the vacuum state corre-
sponding to the various subgroups is nondegenerate,
i.e., no Goldstone boson" with zero mass appears when
one of the subgroup symmetries is attained. For ex-
ample, if a=0, i.e., if the ordinary SU(3) is an exact
symmetry, then we would have (O~S&'&(0) ~0)=0 or
b=0, provided the vacuum state is unique. Similarly,
it is easy to verify that %2S"&(x)+S"&(x)belongs to
a (2,2*)Q(2*,2) representation of the SW(2) group.
Hence at a= —1, its vacuum expectation value mould
be zero, if the vacuum state is nondegenerate under the
SW(2) group. This implies that we must have f&= —1
when u = —1. In the same manner, 2&2S&'&(x) —S&'&(x),

being the eighth component of a chimeral octet, must
have vanishing vacuum expectation value at a=2, if
the vacuum is nondegenerate at this point. Thus we get
b =2 when a=2. Finally, an analogous reasoning gives
b= ~ when a = ~. Thus at the points a= —1, 0, ~, and 2,
the value of b is determined independent of any dy-
namical details except for the condition of nondegen-
eracy of the vacuum state.

In fact, one can prove the converse theorem also.
This follows from the positivity conditions (22) in
Hilbert space and the Johnson-Federbush theorem. For
instance, if we have b =0, Eqs. (18) imply that E« 0. ——
The positivity of the spectral function together with
the Federbush- Johnson argument" then leads' to
B„V„&4&(x)=0 identically, which implies exact SU(3)
symmetry or a=0. For b= —1, one obtains, from Eqs.
(18) and (21), I33——I q, &

——0, which leads to &&„A„&3&(x)

= B„A„& '&(x) =0 or exact W(2) symmetry. Thus f&= —1
implies a = —1. For 5 =2, Eqs. (18) demand that I«=0,
which leads to &&„A„&4&(x)=0, and we have exact
chimeral symmetry or a=2. For b=-,' we must have
I &, &

=0 or &&„A„& '&(x) =0. This can happen only if we
have a= &. Thus we have proved that a=b when b is
equal to —1, 0, —,', and 2. Notice also that this converse
theorem does require the assumption of nondegenerate
vacuum states since otherwise the Federbush-Johnson
argument will not be applicable. We may also remark in
passing that for the free-quark model, me have a=6
identically for all allowed values of a, although $o and

$8 are individually divergent and suitable care must be
taken to evaluate b. A corollary to our result is that the
domains VI and VII for the allowed solutions (see Fig.
1) do not satisfy the theorem at their boundaries, and

"P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).

from this consideration are abnormal solutions. We shall

return to these solutions later.
We shall now propose a continuity argument. In

principle, given the explicit structure of the Lagrangian,
if we can solve the dynamics of the theory, 5 will be
a function of a and Eo i.e., f&= f(a, eo) W.e shall assume

now that b is a continuous function of a for a fixed eo,

except possibly at a few isolated points. In order to in-

vestigate the general nature of this function, let us start
from the origin &&, =0, which corresponds to exact SU(3)
symmetry. The success of the usual SU(3) symmetry
where one assumes nondegenerate vacuum state, sug-

gests that at a=0 the vacuum is indeed SU(3)-invari-
ant, so that as noted before we must have 5=0 at this
point. Now let us decrease the value of u. Then we must
have b~&0, since we have no solution correspondant to
—1 & u ~& 0 with b) 0, as is evident from Fig. 1.Thus for
small negative values of a, we must be in the domain IV.
When a approaches —1, tmo things can happen. One

possibility is that b also attains the value —1. As dis-

cussed before, this corresponds to the case when the
vacuum is invariant under the W(2) group. In this case,
one can smoothly continue to the domain V as a de-

creases beyond —i. However, we may have the second

possibility that b never reaches the value —1 as a ap-
proaches the W(2)-symmetry limit. This can happen if
the vacuum becomes degenerate under the W(2) group
with resulting zero-mass Goldstone pions. If this is the
case, then a = —1 must be an essential singularity, since

for a~& —1, we must be either in the domain V with
b& —1 or in the domain VII with b~&2 as is evident
from Fig. 1. Such behavior is not possible unless the
value of b jumps discontinuously at u= —1. From the
discussion in the Introduction, since the W(2) symmetry
is indeed realized in all probability through the emer-

gence of Goldstone pions, we shall assume that u= —1

is an essential singular point.
It is amusing to observe that such a behavior is some-

what reminiscent of the phase transition of the second
kind in the statistical mechanics. Also, we do not con-
sider the possibility that b may assume a value —1 at
some point —1&a(0, i.e., before g reaches —1.If such
a situation arises, then this value of a must correspond
to the existence of a zero-mass particle, since otherwise
b= —1 would imply a= —1. We believe that such be-
havior is unlikely and will not consider it in this paper.

Let us now increase u in the positive direction starting
from u =0. Now there is sufficient experimental evidence

to conclude that a perturbation theory with respect to
SU(3) symmetry works very well. We might add here

parenthetically that a positive value of p can also be
seen from Eqs. (1) and (2) to be connected with the fact
that one can use a perturbation theory with respect to
SU(3) around the point a =0. However, our assumption
of an essential singularity at a= —1, implies that the
convergence radius of the SU(3) perturbation theory is
limited to the region

~
a~ (1.If a= ~ is also a singular
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bZ. = (SH(x)). , (24)

where Ii p is the vacuum energy per unit volume. Now,
regarding ep and e8 as the variational parameters, this

point, then the radius of convergence is restricted to a
smaller region ~a~ (-', . However, it appears from the
theory of Gell-Mann, Oakes, and Renner and from
the following paper that experimentally we have
a —0.9, so that a perturbative SU(3) approach seems
to be valid up to this point, remarkable as it may be.
Thus we believe that a =—, in all likelihood is not a singu-
lar point. This then implies that the vacuum state is
nondegenerate under the U~~ 'i(1) group at a= p, so
that we should have b =

~ at this point.
What can one say about the chimeral SU(3) sym-

metry which is realized at a=2? We erst observe that
the strangeness-changing axial-vector current is con-
served at this point. Considering the matrix element of
this current between a kaon state and the vacuum, we
must have in the chimeral SU(3) limit either err =0
or fx=0, where frr is the usual coupling constant I see
Eq. (35)j. Now if we believe, as mentioned in the In-
troduction, that the original group symmetry W (3)
itself is realized through the emergence of Goldstone
bosons, we must discard the possibility fx 0at a——=2,
and accept mz' =0 as the only natural choice at this
point, inasmuch as the chimeral SU(3) symmetry, being
a subgroup of W(3), should smoothly continue over to
the larger symmetry. Thus the vacuum state must be
degenerate with respect to chimeral SU(3) and the
kaons will emerge as zero-mass Goldstone bosons at
0=2.

To summarize the discussion, the picture that emerges
is that our theory of broken W(3) symmetry has pos-
sible essential singularities at a = —1 and a =2, and the
region —1(a&2 is presumably singularity-free. Fur-
thermore, the points a= —1 and a=2 correspond to the
cases where we encounter zero-mass pions and zero-
mass kaons, respectively. One immediate and very use-
ful consequence of this connection is that the soft-pion
and soft-kaon theorems will be exact consequences at
the points u= —1 and a=2, respectively. We shall
employ this result widely in what follows, and will also
indicate towards the end of the paper how this feature
allows one, in principle, to continue the soft-pion and
soft-kaon results on the mass shell. We also note at this
stage that by confining ourselves to the region —1(a
&2, we exclude from discussion the domains I and
V—VII shown in Fig. 1. We may also note that had
there been no singularities at a = —1 and a =2, our con-
tinuity argument itself would have sufficed to exclude
the abnorInal solutions VI and VII. In any case, our

present considerations leave us with allowed domains in
the ab plane that correspond to p~& 0 and ab~& 0 always.

Next, we show that y as a function of u should also

possess essential singularities at a= —1 and a=2. To
this end, we use the well-known variational principle"

gives us
aZ, /ap, = (0) S&oi(0)

i 0)= P„

~&p/~«= (o I
S"'(o)

I o) =- 4
(25a)

(25b)

so that we must have the integrability condition

(26)

when we regard $p and $p to be functions of pp and pp.

Since $p
——v2$pb and b is assumed to have essential

singularities at pp= v2pp (a= 1) and pp=2v2pp

(a=2), then Eq. (26) implies that $p and hence y must
have essential singularities at a= —1 and a=2 also.
Otherwise, the left-hand side of Eq. (26) would be singu-
larity-free, whereas the right-hand side would not. Also
note that $, in turn would also possess these singularities.
Lacking any more dynamical information, the exact
form of the singularities can only be guessed. If the work
of Narnbu and Jona-Lasino' is taken as a guide, then
one might conjecture that b and p, for instance, have
the following singularity structure at a = —1:

g(a)g cl(i+cci+ f(—a) (27)

(BAp/Ba) „=—3yb.

Since we have y ~& 0 and ab~& 0 always, we find BEp/Ba~& 0
for a&~0 and BEp/Ba&~0 for a&~0 for a fixed pp. There-
fore, we conclude that Ep must have an absolute maxi-
mum at a=0. Similarly, from Eq. (25a) we can prove
that Ep has a maximum iso at Ep

= 0 for a fixed E8.

Since the vacuum energy is not observable, this feature
has nothing to do with the stability of vacuum, but is
connected with the fact that one can use perturbation
theory around a=0 or ep

——0.
Since we usually normalize the vacuum energy to be

zero, we must use the following Hamiltonian density
H'(x) as the physical one:

H'(x) =H(x) —Ep. (28)

Then, the energy E (—= kp) of a single pion state is given

by

1:.= d'x(m (k) i
H'(x)

i ir(k)), (29)

where we use the normalization (ir
~

m.)= 1. Applying the
variational principle to this expression by varying 6p

where g(a) and f(a) are some analytic functions of a at
a= —1 and c is a positive constant. Presumably,
around a —1 (a) —1), the exponential singular terms
would give a very small contribution and hence the nu-
merical effect of the singularity is probably negligible
near c~—1.

As a side remark we may also observe the fact that
Eq. (25b) can be rewritten as
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and e8, one finds the following relations for j=0 and 8:

d'~l:(~
I
s"'(*)

I ~& —(0 I
si i(*)

l 0&],

Bm Bm~ 8m 8m~= —2 — (a =0), —= — (a =0) . (32)
868 86p Gap8

One can also evaluate the right-hand sides of Eqs. (30)
and (31) in the limit of the soft pion (a = —1) and of the
soft kaon (a =2), respectively. Then, using the standard
technique, one finds

Bm)r Bm)r—=%2—= —
p&p (1+b) (a= —1),

Bpp Bpp f))"
(33)

8m~ 8m~
— = —2'

86p

= —pb (1—kb) (a=2), (34)
fx

where f and fx are the usual decay constants, defined

by
(OlA (' "i(0)

l
pr+(k)&= (2kpV) '~'ik„f,

(OlA„(' "&(0)lE+(k)&= (2kpV) "'ik„fx.
(35)

We also remark that in the derivation of Eqs. (33) and
(34), the so-called o. terms do not contribute at all in
our case when we set a= —1 or @=2.

Since m ' vanishes at a= —1 and m~' at a= —2, we
may express

m. '= (v2pp+ pp)F~(pp) pp) =&2pp(1+a)F~(pp) pp) ) (36)

mx'= (v2pp ppp)Fx(—pp pp) =v2pp(1 pa)Fx(pp cp) . —(37)

Using Eqs. (33) and (34), one then finds

F-(po ")= —l~2(k If-')(&+b) (a= —1), (3g)

Fx(pp, pp) = ——; 2(v& /f p)(x1 ——',b) (a= 2) . (39),

We shall now obtain some extra information regarding
the functions F and Fir by considering the W(3)-
symmetry limit which is realized when 6p ~ 0 c8 —+ 0.
Since the symmetry limit is attained irrespective of the
way in which ep or e8 approach zero, the parameter

which can be rewritten as

Bm '/B;=2k, V)( (k)lS i(0)l (k)&
—(OIS"'(0)lo&j (q=o, S), (30)

where V is the normalization volume. Similarly, we
obtain

Bmrr'/Bp, = 2kpVl (E(k) l
S&)'i(0)

l E(k))
Ol S"(0)IO)j (q=O, g) (31)

for the E meson. First, note that at the point a=0 we
must have the exact validity of the SU(3) symmetry;
hence the comparison of Eqs. (30) and (31) leads to the
essentially perturbative SU(3) relations

a= pp/V2 pp can assume arbitrary values. We now as-
surne, as mentioned in the Introduction, that the W(3)
symmetry is realized in the limit when the nonet of
pseudoscalar mesons is Inassless, and the vacuum state
is invariant under the SU(3) group. "Analogous to the
derivation of Eqs. (33) and (34), this implies tha, t in
the limit cp, e8 —+ 0 with arbitrary a, we must have

Bm Bm 8m~
=@2

t96o &96 86p

(3m~
= —2v2

4 $p
(40)

3 f2

Before going into further details, we would like to
show that if ep and 68 have dimensions of mass, as in the
quark model Lsee Eq. (6)],Eq. (41) implies the existence
of some extra constant (or constants) in the Hamiltonian
with the dimension of mass. To show this, suppose that
Ep and 68 are the only constants with the dimension of
mass in our theory. Then purely from dimensional con-
siderations we must have

F))(pp) pp) —&p)It)1(a)+ &8/2(a) ) (42)

with a similar expression for Fx(pp, pp). However, Eq.
(42) contradicts Eq. (41) for Pp&0. Indeed, we know
that at least one extra constant besides 6p and e8 with
dimensions of mass must anyway exist in the theory, so
that in the SW(3) limit one can, for instance, have non-
zero mass baryons, vector mesons, etc. In a fundamental
theory of the Nambu —Jona-Lasinio type, where one
generates the mass of the nucleon as an "energy gap,

"
one could identify this extra constant with the cutoB
(of the order of the nucleon mass) or the four-fermion
coupling constant used in the formalism. In any case,
the extra constant M is presumably much larger than
~p and es, which are typically of the order of the pseudo-
scalar meson mass. " If this is true, one might expect
F (and F&) to be dominantly determined by the mag-
nitude of 31, so that one would have

F.(pp, pp) M@(a), (43)

where a possible dependence of the function p on the
dimensionless ratio pp/M has also been dropped, since,
as argued, it is not expected to be sizable. For 6p 68 —+ 0,
and arbitrary a, one then finds F (0,0) = MP(a), so that
on using the result in Eq. (41), one concludes that p(a)

"Indeed, recent calculations suggest that eg —180 MeV,
fp—140 MeV for the quark model. See S. Okubo, Phys. Rev. 188,
2293 (1969)) 188, 2300 (1969).

where f= f = f~ is the SU(3) value of the coupling of
pseudoscalar mesons to the octet of axial-vector cur-
rents. Note also that since the vacuum is SU(3)-
invariant, fp/0 in general. A simple way to see how Eq.
(40) comes about is to observe that in the W(3) limit
realized in the manner described, Eqs. (32)—(34) must
be valid simultaneously with b=0 and f = f& f Fr——om.
Eqs. (36), (37), and (40), one then obtains

F (0,0) =F&(0,0) = —',V2$ /pf', independent of a. (41)
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Frr(op, op) EM, (45)

where the constant Eon the r'ight-hand side of Eq. (45)
has to be the same as in Eq. (44) in view of Eq. (41).
One thus Ands that for the entire accessible range
—1&a&2,

F~(op, pp) =Frr(op~op) = const. (46)

A little reflection can convince one that Eq. (46) is cor-
rect even if 6p and 68 have arbitrary dimensions. In cases
when tp and e8 may have dimensions of inverse Inass or
its powers, one should. remember that the functions F„
and F~ are assumed to be well behaved and bounded.

From Eqs. (36), (37), and (46), we then obtain

m '/mrs' ——2(1+a)/(2 —a), (47)

This is precisely the result derived before by Gell-Mann,
Oakes, and Renner in a perturbative approach, and
leads to a determination of a,

u= —0.89, (48)

which we shall call the physical value of u. Note that
Eq. (46) further implies that the soft-pion and soft-
kaon results in Eqs. (38) and (39) are valid to a rea-
sonable approximation over the whole range —1&a&2.
From Eqs. (38), (39), (36), and (37) one then obtains
the further results

fir�'/f

'= (1 &)/(I+f') (49)

m 'f ' mrs'fry'
v= = —, ,

— (5o)
2(1+a)(1+b) 2(1—-', a) (1—-', b)

First note that the physical value of a given in Eq. (48)
lies in the domain IV (see Fig. 1) where one has —1~& f1

~~o Thus«omEq (49) wemusthave IfxI&~ If-I 1n

the physical region, Furthermore, one can actually
determine b and y from Eqs. (49) and (50) if we know

fx/f For fx/f =1..1 we obtain b=0.12 and y=4.9
)&m 'f '; for fx/f =1.2 we get b= —0.23 and y=5.5

&&m 'f '. It is interesting to compare these values of
a, b, and y with the values computed on the basis of
asymptotic SU„(6) theory" which gives a= —0.88,
b= —0.13, y=4. 1m 'f ', fx/f =1.07, or with the
values calculated on the basis of asymptotic SW(2),
together" with broken SU(3), which leads to a= —0.89,
b= —0.13, y 5 5m„'f ', fx/.f 1.2. Note also that
the smallness of b suggests indeed that b will never ap-

'2 S. Okubo, Ref. 21.

itself must be independent of a, i.e., @(a)=E, w'here E
is some constant. Then, from Eq. (43), one must have,
in general,

F.(oo, op) EM. (44)

Note that the approximate equality in Eq. (44) would
become exact if op/M and oo/M' are negligible. In pre-
cisely the same manner one can prove that

proach to —1 when u reaches u= —1, consistent with
our hypothesis.

A few comments at this stage are in order. First, as
noted before, the multiplicative factors (1+a) and
(1——',a) in Eqs. (36) and (37) are purely kinematical
factors. To see their origin more clearly, we may use Kq.
(8), which gives

~ A ""'(*)=(v'l) (1+ )F" '"(*)
" '"(*)=(dl) ( —l ) " '"(*) (51)

Taking the matrix elements of both sides of Eq. (51)
with respect to the vacuum and the appropriate pseudo-
scalar meson state m+ or E+, we obtain using the defini-
tions (35), the results

m. '= (Q-', )op(1+ a)G,/f. ,

mrs'= (Q,') oo(1 ',-a)Grr/—fr—r,

where 6 and Gz are dered by

(OIP&'—"&(0)
I m+(k)) = (2koP') —'I'G,

(0IF -"'(o) I~"(&)&=(2&oI) '"G .

(52)

(53)

Bmp' $p Bmp'
=-;K2—,

pjoo f loop

4&o
for m8' —+ 0.

3 f'
Now Eqs. (54) suggest that we should have

mo'= (v2pp —pp)Fp(op, op) =v2op(1 —a)Fp(oo&oo) ) (55)

so that m8 vanishes at a= 1.From the dimensional argu-
ment used before, we then obtain Fp(op, op) ICM, the
same constant that appears in Eqs. (44) and (45), so
that from Eqs. (36), (37), and (55), one recovers the
usual pseudoscalar-meson mass formula 3mp'+m '
=4m~'. To obtain a formula containing the mass of the
physical p meson is not simple, since one evidently
needs a theory for the q-X mixing. One might, for in-
stance, be tempted to argue that since 8„A„~ "(x)=0

In the soft-pion (a= —1) and the soft-kaon limit
(a=2), Eqs. (53) reproduce the results in Eqs. (36) and
(37) with Eqs. (38) and (39). Our result (46) then im-

plies that G /f and Gx/flare rath. er slowly varying
functions of a. Also note that Eq. (50) can be obtained
from Eqs. (18) if we dominate the integrals over spectral
functions I» and I44 by x and E poles, respectively,
suggesting that the pole-dominance hypothesis in these
cases is quite reasonable.

In concluding this section, it may be worthwhile to
speculate on the mass of the g meson. First we note that
in the W(3)-symmetry limit, since we take the vacuum
state to be invariant under the SU(3)-symmetry group,
the state

I go) corresponding to the eighth component
of the pseudoscalar octet must be massless. If we use
the PCAC (partial conservation of axial-vector current)
condition B„A„&o&=(g—', )fmp'qo, where f is the SU(3)
value of the coupling constant used in Eq. (40), we ob-
tain, proceeding as before,
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at a= —1 i W(2)-symmetry limit), one would expect
nz, '= 0 at this point. However, this may not be the case,
and instead the coupling of g with the current A„( ')

may actually vanish. The point is that the SW(3)-
symmetry limit ceases to provide any guidance for the
physical g meson, and the condition m8'~0 in the
SW(3) limit cannot be simply transformed into a con-
dition on the vanishing of the physical mass. We shall
not pursue the mixing problem here which will be dis-
cussed in some detail in the following paper.

4. SCALAR MESONS AND FURTHER
CONSEQUENCES

In this section we investigate some more general con-
sequences of our method.

We have assumed that the point u= ~ is not singular
and that the group Uz& '&(1) is a good symmetry at
a=-,'. Hence if we set

C&f.=—fee, Cif—x= f. (&= s),
where f„ is defined by

(Oi V„&4 "&(0)i~+(k))=(2ksV) '&'ik„f. ,

(63)

(64)

Note that the operator X is an infinitesimal generator
of the compact group Ugt '&(1) on a unit circle."There-
fore, we conclude that the eigenvalues C~ and C~ of X
are integers, i.e., C&, C2=0, &1, &2, . . . . Again by
a suitable phase convention, we can take the eigen-
values to be non-negative, i.e., C~, C2= 0, 1, 2, . . .. Now
note the relations

i
X V &4—"&(x)]=A &4—"&(x) (62a)

LX,A &'—"&(x)]=V„'4—"&(x). (62b)

Suppose first that C~/0, so that the ~ meson exists.
Then taking the matrix element of both sides of Eqs.
(62) with respect to the vacuum and E+ or ~+ state,
respectively, we obtain

X=—iV2 d'x A4' '&(x) (56) and we have used the identity

Xio)=O, (65)
then X commutes with the Hamiltonian of the system.
Therefore, the states XiE) and Xin-& have exactly
the same masses as mz and m, respectively, unless
these states vanish identically. First consider the state
XiE&. If it is not identically zero, it represents a 0+
meson with the mass m~, since there are no zero-mass
Goldstone bosons at a=2. Hence we set

since the vacuum is nondegenerate at a= 2 by our as-
sumption. Now, Eqs. (63) imply either f& f„=O or——
C&'=1. If C&=0, the ~ meson may not exist and the
arguments leading to this result are not valid. However,
it is easy to check that Eq. (62a) in this case implies
frr=O again. Thus we conclude that fx Oat a= —,

——
unless C~=1. Next, we note that

xi@&=c,i.&, (57) LX A &'-"&(x))=0. (66)
where ~ represents the scalar I~: meson. A similar argu-
ment implies

where 8 is the 0+ meson with I= 1, I"=0. We first notice
that Xi&r) cannot be identically zero if C&&0. This is
because if X

i ~& =0, then we should have 0= (& i
X

i ~&

=C&* from Eq. (57), so that if C&WO, Xi~& cannot
vanish. Hence Xi ~& would be proportional to the origi-
nal E-meson state with

Similarly, we get
(59)

(60)

if C~/0. If, on the other hand, C~= C2= 0, there is no
reason to believe in the existence of the scalar mesons ~

and 5.
If we choose suitable phase factors for the state vec-

tors, we can always assume C& and C2 to be real without
loss of generality. Then we obtain

X(iE)a i~)) =ac,([E&a i~&),

X(i~)w i S)) =wc, ([~)~ i S&).

Thus the parity doublet (E,~), for example, is actually
reducible to the two singlet representations iE&+ i~&.

If C2&0, then the 5 meson exists. Taking the matrix ele-
ment of Eq. (66) between the vacuum and 8 states and
using Eqs. (60) and (65), we obtain f = 0. Hence, if we
insist that f and fx should never become zero, for all
values of a, then the only choice for C& and C2 is C&= 1
and Cg=0.

In general, we may have the following possibilities,
depending on the values of C&, and Cs (at a=-,'):

(i) Cg ——Cs ——1, f.= 0;

(ii) Cg= 1, Cs=0;
(iii) Ct=O, Cs ——1, fx= f =0;
(iv) C& ——0, Cs= 0, fx= 0;

(v) C&) 1 or Cs) 1, fx 0or——f =0.

(67)

Notice that only the case (iv) does not require the
existence of any scalar mesons. For all other cases, we
must have an SU(3) multiplet, presumably an octet of
scalar mesons. Consider, for example, the case (ii).
Since C~~O, at least the ~ meson must exist at a= 2, but
we cannot prove the existence of 8, since C2 ——0. How-
ever, the continuity argument with respect to a, de-
mands that at a= 0, the ~ meson must be a member of

"The extra normalization factor V2 has been included in the
deiinition (56) for this purpose.
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an SU(3) multiplet. The simplest choice is obviously
the existence of a scalar octet.

Now we give arguments favoring the case (ii) against
all others. As we have emphasized, all other cases give
at least one of the coupling constant fx or f equal to
zero. However, the argument of Sec. 3 suggests that this
is very unlikely, since from Eqs. (38), (39), and. (46)
($o/fz')(1 —sb) and ($o/f ')(1+5) appear to be nearly
constant for the whole range —1(a(2. Indeed, if
fir ——0 at a=s, then the finiteness of these quantities
demands that we have $o ——0, which implies that $s ——0
because of the fact that b is finite (b= —,') at a=-', . But
)s= 0 implies a= 0 automatically, which is a contradic-
tion. Hence, we believe that f and fir can never be-
come zero. In fact, if f or frr become zero at some points
of a, then as remarked before in the chimeral SU(3)
case the SW(3) soft-meson limit os ~ 0 would break up
at those points.

Finally, we mention that the assignment C&= 1, C2= 0
is consistent with the simple quark model. In terms of
quark components, our X is rewritten as

small" so that

m s—ass —~xs+~ s=o (69)

If we use m~ 960 MeV, this gives m„1070MeV which
is quite compatible with recent experiments and also
agrees with values obtained from recent theoretical
analyses of the X&3 problem. ' It is also interesting to
remark that Eq. (69) has been obtained before" from
perturbative SW(3) arguments with a SW(3)-breaking
interaction of the form (1,8)Q(8, 1) rather than (3,3*)
g3(3*,3). It is amusing that although in our present
approach we seem to prefer the case (ii) over (i), the
case (i) does lead to reasonable results, which of course
may be a pure coincidence. Similarly, for the case (i),
consider the difference

g~ —f s fs fs
Since we have frr= f„, f„=0 at @=0 and fir= f„, —
f,= 0 at a= s, 6' vanishes identically at a= 0 and a= —',

and we may set 6'~0 by the same reasoning as before.
Then we get

2 — 2 2 (70)
X= dsx qst(x)ysqs(x),

i.e., it contains only the third quark. Since the pion is
supposed to consist of q& and q2 and their antiquarks,
we expect X

I
or& =0 in the naive quark picture. Similarly,

since E+ is a bound state of qsqi, we expect XI E)40,
leading to C~/0.

Thus, all these arguments strongly support the case
(ii), with Ci=1, Co=0. As a corollary, then, we have
proved that we must have automatically the scalar
mesons. This is a rather important result of our formal-
ism, since in usual considerations of SW(3) symmetry,
if the symmetry is realized through zero-mass pseudo-
scalar mesons with the vacuum invariant under SU(3),
there is no compulsive reason for the existence of scalar
mesons. '4 Unfortunately, however, now we cannot de-
rive some interesting relations in contrast to the case
(i). To emphasize the difference, we derive soine rela-
tions on the basis of the case (i) which we have reported
elsewhere "

For the case (i), we have Ci=Cs ——1, and hence we
musthavemrr=m„m =ms ata= is, due to the U~& "(1)
group symmetry, and mz=m, m, =m& at a=0 due to
SU(3) symmetry. Then consider the difference

cpm' cjm~—v2—=0 (a =-', ),
86P BC8

(73a,)

Bmg cpm'—v2 =0 (a =-,'), (734)

A similar relation has been obtained recently by some
authors" using different assumptions. Of course, there
is an ambiguity in this derivation, since we could have
equally well obtained fx f f„ i——nste—ad.

In contrast, for the case (ii), we cannot prove either
Eq. (69) or (70) in this fashion. For example, we have
still m~=m„at a=-'„but we can no longer prove
m&=m„at a= 2, since C2=0 identically. However, one
can prove this case to be consistent with our mass for-
mula Eq. (38) or (41) of Sec. 3. Noticing that

X P~o~(x) v2P&s'(x)]= —2il 5(o~(x) v25~s)(x) j'
(71)

X P &s) (x)+V2P {oi(x)] 0

we find

&~l 5&o~(x)
I ~&=v~&~l s«~(x)

I ~&,
(72)

(&IS" (x)IS&=&2(&IS '(x)lr&,

since X
I ~)=0 and X

I 5) = 0. Using the variational prin-
ciple of Sec. 3, we obtain Lsee Eq. (30)j

g —~ 2 its 2 ~ 2+~ 2 86p 868

This vanishes identically at @=0 and a= ~. In terms of
Ep and e8, this implies that 6 is at least of second order
in the SW(3)-violating parameters. Hence, if we accept
this perturbative approach as a guide, 6 would be

"If the vacuum has a higher symmetry, one can obtain parity
doubling. See R. I'. Dashen, Ref. 13."S. Okubo and V. S. Mathur, Phys. Rev. Letters 23, 1412
(1969).

since (0I 5&'&
I 0)=&2(0 IS~'&

I 0) is also automatically
satisfied. One can easily check that Eq. (73a) is satisfied
by Eq. (36) if we use the result (46). An analogous con-
sideration indicates that a similar equation derived on
the basis of the assumption XIX&=0 contradicts Eq.
(37), which again supports our contention that Ci&0.

"L. Bessler, T. Muta, H. Umezawa, and D. Welling, Uni-
versity of Wisconsin (Milwaukee) Report (unpublished).
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(9m Bm—v2
86p 86b

8m~ 8m~
+v2

l96p
(~=2),

m 2 gm 2 pm~2 ~mK2
VZ + — =&2 g (u=-', ).

l9tp 868 86p 8E8

(76)

Also, at a=0, we must have the SU(3) result

Bm Bmg

)
B6p

mg —m$ )
86p

Bm 1 Bmg
(a =0) . (77)

2 t968

Unfortunately, if we assume simple linear or even quad-
ratic forms of 6p and es for m, ' and m~', these constraints
cannot be simultaneously satisfied if we use the mass
formula for m ' and m~' of Sec. 3. This implies that the
dependence of m„' and m~' upon ep and e8 are far more
complicated than those in the case of the pseudoscalar
mesons. Indeed, the result of Nambu and Jona-Lasinio
seems to suggest the existence of essential singularities
at a= —1 for these scalar masses.

Finally, in concluding this section, we illustrate by
a simple example how corrections to soft-meson results

may be estimated. We consider the nonleptonic decays
of E mesons. The ratio

R = Eio -+ 2m/E -+ 37r (78)

has been computed by the soft-pion technique. '~ On

27 Y. Hara and Y. Nambu, Phys. Rev. Letters 16, 8'l5 (1966).

Actually, one can go further for the case (ii). We may
consider commutation relations

X 5(o)(x) %25&8'(x)]=2iP &o)(x) v2P(8)(x
(74)

LX 5 )(x)+%25(o)(x)(=0,

in addition to Eqs. (71). Then repeated applications of
the matrix elements of Eqs. (71) and (74) between
various one-meson states lead to

(K
~

S&'& —&25 &'&
~
~)= —(E

~

5"& —&25&'&
~
E) )

(75)
(~ i

5&'&+@25~'~ [~)=+(E i
5&'&+&25&'i

i E) .

Again, using the variational principle, this equation can
be rewritten as

the other hand, we know R= 0 at the exact SU(3) point
a= 0. Hence the simplest solution is that R as a function
of a, may be simply proportional to a in the range
0~&a~& —1. If this is the case, we can write

R=R(a) = (—a)C, (79)

where C= R(—1) is the value in the soft-pion limit. Then
at the physical value a~ —0.89, the correction to the
soft-pion calculation is given by

R(a = —0.89)/R( —1) 0.89, (8o)

i.e., the correct value should be nearly 10'P~ smaller than
the soft-pion result. From the work of Hara and
Nambu, '~ this correction appears to be in the right di-
rection and has the correct magnitude, when compared
with the experimental analysis.

S. CONCLUSION

We have outlined in this paper a new approach to the
problem of chiral symmetry breaking. In breaking the
W(3) symmetry to the eventual level of SU(2), it is
well known that one can pass through various paths
involving intermediate-symmetry subgroups like W(2),
SU(3), etc., each of which corresponds to a definite but
different value of the symmetry-breaking parameter. In
usual treatments, however, whereas the symmetry
breaking along any one path can be traced well enough,
no attempt is made to correlate different paths. It is
precisely the latter possible connection that has oc-
cupied our attention in this work. Arguing that the
points a= —1 and a= 2 may be singular in some cases,
we have proposed that in the region —1~& a~&2, con-
tinuous transitions may be possible from one subgroup
to another. The strength of this approach lies in the
fact that one can exploit the totality of the content of
symmetry breaking in various subgroups, rather than
separate pieces of information from individual sub-
groups, which, of course, considerably widens one' s
framework. In this paper, as mentioned in the Introduc-
tion, we have essentially followed a kinematical method
to obtain some general consequences of our continuity
arguments. Many more applications can be made which
will be discussed elsewhere. Evidently, one needs more
dynamics if one wants to make the continuity argu-
ments sharper and more tractable. This aspect of the
program is being investigated currently.


