
P H VS I CAL REVIEW D VOLUME 1, NUM HER 7 1 APRIL 1970

Regge Analysis of ~' and ~+ Photoproduction at Backward Angles*

J. V. BEArTPRE[ AND E. A. PASCHOsf.
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By correlating recent experimental results on vr0 and ~+ photoproduction at backward angles with results
on m' p ~ p p at the same angles, it is found that any explanation of the three processes in terms of Regge
poles must involve at least two isospin--, trajectories. Furthermore, the two trajectories must be almost
degenerate. Such a solution makes definite predictions about other processes which can be checked by
experiments.

I. INTRODUCTION

HE first data' on the photoproduction of x+
mesons at backward angles imposed restrictions

on the contribution of various trajectories. ' These
restrictions become more limiting now that there are
accurate data' '" available for the processes yp —+ tsar+,

pP ~ Psrs, and s. P ~ Pp . In fact, by correlating these
processes one arrives at the conclusion that an analysis
of the data in terms of traditional Regge poles is non-

trivial and it requires the contribution of at least three
trajectories. Furthermore, the contribution of the I= ~

trajectories to photoproduction has an upper bound
and the I=—', trajectories must be almost degenerate.

In view of the above results, we feel it is justifj. ed to
neglect for the moment the contribution of the absorp-
tion cuts, ' which has not yet been formulated com-

pletely, and deal with a three-pole model which leads to
definite conclusions. These conclusions can easily be
checked experimentally. In case they are violated we

feel that a simple pole model is inadequate and im-

practical and that the contribution of cuts is essential.
In Sec. II we give the basic Regge formalism and

relate the residues to the coupling constants of the
Born diagrams determined in the isobar model. ~ In
Sec. III we summarize the experimental situation that
requires us to introduce the E~ trajectory, obtain from
vector-meson dominance an upper bound for the con-
tribution of the I= 2 trajectories to photoproduction,
and give the parametrization of the amplitudes. Section
IV is a discussion of the main results of the model and
a proposal of experimental checks.

D. FORMALISM

The kinematics of photoproduction have been dis-
cussed in several places. We adopt the CGI.N notation.
The CGLN amplitudes have kinematic singularities,
which become apparent when one writes them in terms
of the Balls amplitudes which satisfy the Mandelstam
representation:
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where
W=QN, k= (u —M')/2W, Ei+M= (WwM)'/2W, E2+M=ppV+M)' //'—]/2W,

q =L(lV+M)' —/l']i/'P(W —M)' —P,']'/2/2W.

The cosine of the u-channel scattering angle is given by

2su —2M'up (u —M') (u+M' p')—
s~ =cos0~ =—

(ll M2) LN (My/i)2]i/2L+ (M /l)2]i/2
(2.2)

The phase conventions for the several square roots
appearing above are these: All expressions of the form
(W—a)'" have a branch point at W=a, and the cut
lies along the negative real (W —a) axis. Slightly above
the cut, the phase of (W—a)'/2 is —',ir. Products like
(W' —a')'" have cuts between +a and —a, and they
satisfy

A i/9, i/9 —%2m W(2(Fo +J) cos-', g~

+ (P3—P4) sing sin —',g ], (2.5b)

A $/2, 3/p —&2irW(F3 —F4) sing„sin —,g„, (2.5c)

A i/2 i/, ——v2irW(2(72+Pi) sin —',g„

+ (F3+F4) sing„cos-,'g„]. (2.5d)

(W~ a2) i/2 - W.
/

S"1-+00
C. Normalization

Thus in the backward direction (s,= —1) one has
s„=—1, and at N=O, s„=+1.

The fact that s„ is not large for backward angles is
not very alarming since a sequence of daughter tra-
jectories can restore the Regge asymptotic behavior.

A. McDowe11 Symmetry

Since the B,(s,u) are even functions of W, we can
derive relations between P, (W) and 5,(—W). With the
phase convention adopted in the previous section, we
obtain

Pi(W) = &g( —W),

s, (W) =s,(—W).

(2.3a)

(2.3b)

B. Singularities at u=0
Since the line N=O is within the physical region,

special care must be taken so that the combinations of
sines and cosines of —,'0„, together with the linear com-
binations of the P;(W) which appear in the helicity
amplitudes, are smooth around the line u= 0. Assuming
that the 8, amplitudes approach constants as W —+ 0,
we find that the most singular behavior of the sums and
differences is given by

The differential cross section is given by

do 1

dQ 4' Sk&

(2 6)

where k, is the center-of-mass momentum in the s
channel, and Aq„represents the u-channel amplitudes,
X(/i) being the final (initial) center-of-mass helicity.

At 180', where s,=s„=—1, only the A
amplitude is nonvanishing. In the case that the con-
tribution of the other amplitudes is non-negligible, we
expect a minimum at 180'.

FlPV) =P LMl~(W) El~(W) Ml (W)— —

D. Reggeization

The Reggeization of the amplitudes incorporates all
of the above properties. Because of the McDowell
symmetry, we Reggeize only 52 and 54, P1 and 5'3 are
obtained by reflection in W. In terms of the electric
and magnetic multipoles, Miz(W) and El~(W), with

j=3&—,', the partial-wave expansions are given by

F2(W) =Q f(l+1)M/+(W)+Ml —(W)]Pl (s ) (2 ~a)

Pi(W)+%2(W) —+ Ci/W',

5:i(W)—P2(W) ~ Cg/W,

F3(W)+5:4(W) —+ C3/W',

s,(W) —v4(W) ~ C4/W'.

(2.4a) —E —(W)]i "( -) (2 &b)

(2 4b) The combinations lMl, /El, (/+1)E/+, and (/+1)Ml~
can have dynamic poles in the complex j plane. For a

( 4 ) given Regge pole at j=u, the leading contributions
come from Ml and El . Thus we keep only the lMl
in 52. Assuming

The trigonometric functions of —', 0„behave as

sin20„~ W, cos~0„~ 1.
P2(W)

Ml PV)= (2.8)

A i/2, 3/2= —v2irW(&3+ &4) sing~ cos2g~ ) (2.5a)

Therefore, the following I-channel helicity ampli-
tudes vary smoothly over the line N=O:

we obtain the Reggeization
—im (e—1/2) S . n—1/2

~~(W) =(v'~)p2(W) —
i

. (2.9)
sinn-(n ——,')P (n+-,') kgj
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For F4 we assume
p4(W)

E/ (W)+M/ (W) =
j—o.

(2.10)

and (2.12a), we can obtain y2(1V~). In a similar way,
we can estimate the 6 residue. The numerical results,
using the coupling constants of Gourdin and Salin, ~ are

and obtain

r4(W) = —2 (Qs.)p4(W)

e
—~~(~—&/2) g ~—3/2

X-
sinn (n —-', )I'(n —-,') kq

(2.11)

E. Born Diagrams

We evaluate the residues of the three leading tra-
jectories at the poles by using Born diagrams. The
nucleon residue at the pole is obtained by using
Feynman rules and then using Eqs. (2.8) and (2.12a)
to obtain

eG da
pm~(S, W) = ——,

327l dl

p,G dn
y2~(1V, W) = (W+M)—,

32K' dl

(2.14a)

(2.14b)

where G'/ ~4=1 54, e'/4~=1/132, p~=1.78e/2M, and
p = —1.91e/2M.

In estimating the residues of the E~ and the 6
trajectories, we use the isobar model of Gourdin and
Salin. ~ The contribution of the E~ resonance to the
M~ (W) partial wave is

M2 (W) = 6LgL(Eg+M) (82+M) j'/'/87rW, (2.15)

Introducing the scaling parameter so and extracting
the kinematic singularities, we obtain a set of residues
p, (W) which contain only dynamic information:

pg(W) = L(W —M)' —p']'/'(1 —M'/I)
X (kq/so) ~'/'y2(W), (2.12a)

P4 (W) = -,'qL (W —M)' —p']"'(1—M'/u)

X (kg/so) ~ "'y4(W) . (2.12b)

The resulting forms of the Reggeized amplitudes are

I—M'
52(W) = L(W —M)' —I')"' Q y2

(Qx)n a

(s a—1/2

X(1+r/e ' &~ '/'&)I'( o)—
~

——
, (2.13a)

&so

I—M'
&4(W) = qL(W —M)' —N2j'/2 P yp

(Q~)u a

(s )a—3/2

X(1+ye ' '~'/2')P(-' —n)~ —
~

. (2.13b)
'Iso)

(do ) (do

kdnj, „. &du. ..+
(3.1)

The recent experimental data show that these two
cross sections are equal for —0.3&u(0.0. Therefore,
there must exist a nonvanishing I=—, contribution at
I —0.15. Since we are forced to consider another
I=-,' trajectory, we may ask whether the 6(I=))
contribution is completely negligible. The present data
are consistent with an I=~ contribution alone, since
one can vary the isoscalar and isovector ratios as a
function of I to account for the observed cross sections.

(c) The above argument does no/!, however, elimi-
nate the I= 2 exchange contributions. Assuming vector-
meson dominance, there is an experimental way to
estimate the I=2 .contribution to yp ~ n~+ and
&P~P~o. This method relates the photoproduction
contributions to the pure 6 exchange process ~—

p ~ pp
by

'r '2 (E(g) /'r 2 (N, )= 1.0 and r 2 (Ey) / r 2 (6)=0.1 .

III. EXPERIMENTAL SUMMARY AND
PARAMETRIZATION

The x+ and m' photoproduction data' 4 can be com-
bined in such a way that one can make rather strong
arguments about the contributions of the allowed
baryon exchanges. On the other hand, application of
vector-meson dominance imposes additional constraints
on the contributions of the trajectories. There are three
rather important features of the data, and we discuss
them in detail:

(a) The traditional nucleon trajectory has a non-
sense zero at u —0.15 (BeV/c)', which appears in all
four helicity amplitudes. The absence of a dip in this I
region in both the m' and m+ photoproduction eliminates
the dominance of the 3f trajectory. Presumably this
argument is weakened if the nucleon contribution is
composed of the usual Regge contribution and an
X -Pomeranchukon cut'; or if there is a fixed pole in
the E residues at a(E ) = —-,'. Since the understanding
of cuts and fixed poles is rather limited, we restrict our
discussion to conventional Regge poles.

(b) If one makes a conventional Regge model con-
taining only the E and the 6 poles, only the 6 con-
tribution survives at u —0.15 (BeV/c)'. Since the
pure 6(I=~3) contribution involves only the isovector
part of the photon, the vanishing of the I=—,

' contri-
bution(s) implies

where

L2 0.1[e/g(4x) j[G/Q——(4~)]47r. (2.16)
do

A contribution to —(7r p ~ np')
dQ

In (2.15), we have corrected for the normalization
- differences between Refs. 7 and 8, but we have not
included any isotopic-spin factors. Using (2.15), (2.8),

2da
(~ p~pp ) -(3—2a)

9dg
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TABLE I. Comparisons of upper bounds for I= —,
' exchanges with the data and calculated cross sections. The second and. third columns

give the upper bounds for the contribution of I=-, exchanges to the photoproduction cross sections. Columns four and 6ve give the
interpolated m and m+ experimental cross sections. Columns six and seven give the percent contribution of the 6 to the calculated
cross section.

(BeV')

E= 88eV
—0.02—0.06—0.13—0.18—0.24—0.32

8=16 BeV
—0.10—0.14—0.20—0.26—0.33—0.43—0.57

Upper bound
for mQ

(nb/8 eV')

5.48
4.56
3.36
2.04
1.40
0.96

0.56
0.60
0.48
0.36
0.24
0.16
0.096

Upper bound
for m+

(nb/8 eV')

2.74
2.28
1.68
1.02
0.70
0.48

0.28
0.30
0.24
0.18
0.12
0.08
0.048

da/du(s')
(nb/3 eV')

6.7
6.2
5.0
3.8
2.7
2.2

0.87
0.79
0.59
0.40
0,27
0.22
0.13

da /du(s+)
(nb/BeV')

5.6
6.3
6.1
5.8
4.5
3.0

~ ~ ~

0.78

0.61
0.57

Calculated
%Ates'

35
~ ~ e

69
iios

~ ~ ~

126~

110~
~ ~ ~

154~
~ ~ ~

184~
169~
132~

Calculated
'Po n tos.+

18
~ e ~

28
31~
32~
32~

33
41
43
43
44a
46~
58~

a The calculated cross section exceeds the bound for these points.

dg 1 e'(p )'
6 contribution to —(yp —us+) = ——

~

—
~
pii(u)

dl 4~,'&p,)
dg

6 contribution to —(s p —+ Np') . (3.2b)
dl

Accurate knowledge of the helicity density-matrix
element pii(u) and of the y-p coupling constant together
with the ~ p —& pp data' can determine accurately the
d contribution to photoproduction cross sections. The
knowledge of pii(u) is rather limited, but one can still
obtain an upper bound on the 6 contribution. Table I
shows the upper bounds for m+ and m' photoproduction
obtained for pii(u) = —',, y, '/4s. =—',. Comparison of the
upper bounds and the experimental photoproduction
cross sections show that the I= ~3 trajectories could be a
significant part of the photoproduction cross sections.
In particular, 6 exchange could account for most of the
m' photoproduction cross section and about 4 to —,

' of the
sr+ cross sections.

In summary, the arguments (a)—(c) imply that an
I= 2 contribution, different from the traditional
nucleon, is needed. Argument (c) does not imply that
the 6 is necessarily negligible, as was emphasized by
Kane "

We therefore use not only the S and 6 trajectories
but also the E7 trajectory in our parametrization of
the amplitudes. The S~ trajectory is the needed I=~
exchange suggested by arguments (a)—(c).

The trajectories are obtained as follows: The E and
6 trajectories are taken from the previous parametri-
zations of Refs. 11 and 12 to the reactions s.+p~ p7r+,
s. P~Ps. , and ~ P —+Pp . The nucleon trajectory

' G. Kane, talk presented at the informal meeting on Processes
at Backward Angles, SLAC, 1969 (unpublished)."C.B. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).

+ C. C. Shih, Phys. Rev. Letters 22, 105 (1969).

The residues y; (W) have the following form:

y2=I,a (1+b,W),
F4=I c (1+d,W)e"",

(3.6a)

(3.6b)

where I is an isospin factor which depends on the
coupling of the various trajectories to the I-channel
vertices, and is given in Table II. The parameter 8/V
(see Table II) occurs for the nucleon trajectories
because the nucleons can couple to both the isovector
and isoscalar components of the photion. We take the
ratio to be a constant and the same for all residues and
I=—,

' trajectories.

TABLE II. The isotopic-spin dependence of the amplitudes.
The parameter S/t/ is the isoscalar-to-isovector coupling ratio
for the I=—', exchanges, and is determined by the fit to the data.

Reaction

vp ~ n~+

vP ~ P~'
vn ~ P7r

I
N, N~

—v2(1+S/V)
(1-S/t )—v2 (1—5/V)

that we use is

n = —0.34+0.093W+1.15W' (W in BeV) (3.3)

taken from the work of Chiu and Stack." For the 6
trajectory, we added a term linear in 8" to Shih's
determination, " so that the trajectory passes through
the 6 (1238) mass, to obtain

n =0.05+0.25W+0.75W'. (3.4)

The E~ trajectory is constrained to pass through the
first two E resonances LA'~(1520) —,', X~(2190)sr $ and
also contains a term linear in t/t/. The trajectory inter-
cept was chosen as a free paramter:

n =x (0.385+—1.105m) W+(0.88+0.278x) W'. (3.5)
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2

!
I

I

dg /du (gP =n~+)

CD

Ip =0

Fro. j.. Fit to m+ photoproduction.
The photon momentum varies some-
rvhat about the indicated average. The
theoretical points are calculated using
the photon momentum of each point.
The data are from Ref. 3.

Ip
-2.0 —1.5 —I.O —0.5

u (BeV/cj

As can be seen in Figs. 1 and 2, we obtained an
excellent 6t to the photoproduction data. The X' was
found to be 92.5 for 61 degrees of freedom. The quality
of the fit did not change appreciably when a different

nucleon trajectory, "
n= —0.38+0.91W'

was substituted for the one given in Eq. (3.3).

(3.7)

Ip! der/du (YP =P~ )

E=BBeV

E=BBeV

OJ

IpO

E =12 BeV

E=!8 BeV

CALCULATED
FIG. 2. Fit to ~' photoproduction

data of Ref. 4.

—2.0 —
1.5

I J

-1.0
u (BeV/c) 2

-0.5 0

"V.Barger and P. Weiler, Phys. Letters 30B, 105 (1969).
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The rest of the parameters are given by

a= —1.41 X 10-'/BeV' b= 8.43/BeV,

c= 1.10X10—'/BeV', d= —22.9/BeV;

a= —3.66&(10 '/BeV' b= 7 78. /BeV,

c= 5.25X10'/BeVs, d= 1.97/BeV;

a= 6.45X10 '/BeV' b= 0.031/BeV,

c= —8.20)&10 '/BeV', d= —0.778/BeV,

s, =3.83 BeV', S/V= —0.376,

h=4. 19/BeVs, x=n(E„O) = —0.546,

giving the E~ trajectory

cu

CQ

IO 2

CALCULATED
der/du (yn—

Io'-

-I
IO

n= —0.546+0.22W+0. 73W'.

The large I dependence of the residue y4 is unsatis-
factory. We tried to eliminate this dependence by
imposing several constraints, but the only solutions
that we found have a X' larger than 250. These searches
lead us to believe that extrapolations of the residues to
the poles can be unstable. Therefore, estimates for the
ratios of the residues using the isobar model are at best
suggestive.

l00%

90

80 —%Z,F=2O Bev

70

% —(y P-vr+n)—CiG

dU

60
LAJo 50
LLI

40

50

20

[0
0 BeV

-0.4 -0.8 —I.2 -I.6
U (EIeVrc)~

—Z.O -2.4

IV. CONCLUSIONS AND EXPERIMENTAL
CHECKS

An interpretation of the data in terms of three
trajectories demands a delicate balance among them.
In fact, this analysis relies heavily on the degeneracy
between the E and $7 trajectories, as well as the
dominance of the 6 trajectory in some regions. We
summarize below those conclusions of the model that
can be checked experimentally.

—2.0 -I.O
u(BeV)

Pro. 4. Predicted cross section for yn —+ px at incident
photon energies of 8, 12, and 16 BeV.

B. 4 Contribution

We And that the 0 contribution is large and in some
places dominant. The percentages of the I=~ and 6
contributions to x+ production at photon energies of
4 and 20 SeV are shown in Fig. 3. The upper bounds
of the 6 contribution, given in Table I, are exceeded

by our model for ~u
~

&0.3 BeV', for the ~+ data, and
most of the m' data. In the large-I region, where the

E~ has a wrong-signature minimum, the 6 trajectory
is dominant. It would be very interesting to extend the

p ~ pp data to this region to determine whether or
not the 6 contribution of the model drastically violates
the upper bounds. A large violation for a simple Regge
model would imply that the role of cuts is very im-

portant and cannot be ignored in photoproduction.

A. N -N~ Degeneracy

In the region —1&u& 0.0, the X and E~ trajectories
are almost degenerate. Such a degeneracy has already
been proposed in the literature:

(a) Several theoretical models predict an X
exchange degeneracy. "

(b) Both the absence of resonances in the pp system
and the absence of the E dip in pp —+ d~+ can be
explained in terms of degenerate Ã and. Ã7 trajec-
tories. " This degeneracy can be checked at places
where the 6 contribution is small by comparing

yp~ nor+ to the crossing symmetric process pm~ ~ y.
Furthermore, a better check of the exchange degeneracy
can be obtained by comparing the crossing-symmetric
processes pp-+ der+ and ~ p —+ pd. rs

JIG. 3. Percentage contributions of I= & (37 +X'y) and I=) '4 J. E. Mandula, J. Weyers, and G. Zweig, Phys. Rev. Letters
(~) exchanges to the calculated ~p ~ n~+ cross section. The 1V' 23, 266 (1969);V. Barger and C. Michael, ibrd 22, 1330 (196.9).
signature minimum is quite evident near u = —1.2 BeV', "E. A..Paschos Phys. Rev. 188 2281 (1969).
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Another motivation for extending the n p~ pp
data to larger values of ill comes from the following
observation. When we separate the isovector contri-
bution of the photon, by setting S/V equal to zero in
our solution, we can relate it to p~rdo/du(sr p~rtp')
using the vector-meson dominance model. Such a
comparison has been done by Guiragossian" who con-
cludes that the agreement is satisfactory at E&,b=4
BeV and —1.0&I&0.0, but it is not very satisfactory
in the larger ill region.

C. Photoyroduction of ~ at Backward Angles

The yrt~ p7r cross section can be predicted within
this model. Figure 4 gives the calculated cross section
at 8, 12, and 16 BeV. The yn-+ psr= cross section is
about two to three times the yp-+ rtsr+ cross section.
This enhancement is related to the S/V parameter

'6 Z. G. T. Guiragossian, SLAC Report No. SLAC-PUB-657,
1969 (unpublished).

through the equation

do / S s (do ( S—(~') = I&l'I 1~ —+I —
I
1+ —+ I

A I'
dtt E V kdN;„r, E V

where lSl', (do/dN);„&, and lAl' are the contributions
to the cross sections from the nucleon, nucleon-6 inter-
ference, and A, respectively. Since S/V= —0.376 from
our solution and since the (do/du); t is positive as it
follows from Fig. 3, we expect the m cross section to be
larger.

At places where the E~ trajectory is dominant, the
prediction that

do do
(prt ~ p—sr-) & —(yp ~ Nsr+)

dQ dQ

is rather general" and it should be checked experi-
mentally.

Our solutions at 180' extrapolated to low energies
pass through the mean of the different cross sections.
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Broken Chiral Symmetry. I. Continuous Transitions between Subgroups*

S. OKUBO AND Q. S. MATHUR

Department of Physics and Astronomy, Unieersity of Rochester, Rochester, Sero Fork 146Z7

(Received 24 November 1969)

We investigate the general properties of the Gell-Mann model for chiral U (3) U (3) symmetry breaking.
From a study of the two-point functions, we 6nd that the symmetry-breaking parameters cannot assume
arbitrary values, but must be confined in specified domains. The boundaries of these domains are related
to several interesting subgroup symmetries. We present arguments to show that one must have essential
singularities at those values of the symmetry-breaking parameter which correspond to subgroup symme-
tries realized via the emergence of zero-mass bosons. In a suitable singularity-free range of physical interest,
we next discuss the possibility of continuous transitions between diferent symmetry subgroups, and show
how, with the use of a variational principle, one can obtain some mass formulas and relations between
other physically relevant quantities in a nonperturbative manner. In particular, the relation obtained by
Gell-Mann, Oakes, and Renner for the symmetry-breaking parameter is obtained naturally in this manner.
Also, it is shown that this formalism requires the existence of scalar mesons.

1. INTRODUCTION

~HE chiral SW(2)=SU&+&(2)SSU& '(2) and
SW(3)—=SU&+&(3)IESU& '(3) groups have been

introduced and studied by many authors. ' 7 Most of
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these approaches can be classified as dynamical or kin-
ematical. In the dynamical method, one assumes ex-
plicit forms for the Lagrangian possessing an approxi-
mate SW(2) or SW(3) group symmetry, while in the
kinematical approach one employs more general prin-
ciples such as the algebra' of currents and the transfor-
mation properties of the symmetry-violating interac-
tions. Actually, one can further categorize the dynamical
method. One approach is based on a linear realiza-
tion' ' ' of the chiral group with the Lagrangian ex-
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