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The explicit expressions for spin--, density-matrix elements are obtained, and a straightforward way to
get the decay distribution of a spin--, particle is given. The photoproduction y+p ~%*+++a and the
decay E*++—+ p+m. + are considered on the assumption of one axial-vector-meson exchange. The density-
matrix elements of 37*++contain one parameter which is the ratio of two form factors, and they are com-
pared with the recent experimental data from DESY. A special case of the linearly polarized photon is
also considered, and the decay distribution of E* turns out to be close to the Sakurai-Stodolsky distribution
near the threshold. Several other models are also considered and compared with the axial-vector-meson-
exchange model.

I. INTRODUCTION

'HE helicity formalism of Jacob and Wick' ' is
known to be very useful in determining the decay

distribution of high-spin particles. In this formalism
the decay distribution of a high-spin particle is ex-
pressed in terms of the spin-density matrix elements
and the polar angles of one of the decay products. It
contains the information on the production process
through the density-matrix elements.

Shay, Song, and Good' have obtained the spin-
density matrix for a spin-2 particle in a covariant form
and also in terms of spin- —,

' matrices. We4 have shown
how the polarization differential cross section and the
density matrix for a spin-~ particle can be obtained in
the production of E* by neutrinos. Florescu and
Minnaert' have obtained the density matrix and the
polarization correlation function of a baryonic resonance
of arbitrary half-integer spin in high-energy neutrino re-
actions. King" has considered the process s+cV—+E*+~
and obtained the density matrix and the decay distribu-
tion of E*. Sakurai and Stodolsky7' have considered
the process y+E~ 1V~—& E+rr and obtained the
decay distribution of E*. Jackson, and Pilkuhn' have
discussed the one-pion- and one-vector-meson-exchange
models in several cases including the production and

decay of a spin-32 particle. However, the methods used

by Sakurai and Stodolsky and by Jackson and Pilkuhn

are different from ours. Recently Luke, Scheunert, and
Stichel" have considered the process &+p-+ &*+++~-
and obtained the density-matrix elements of S*++using
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a model developed by Stichel and Scholz" in which the
one-pion-exchange (OPE) model has been modified to
achieve gauge invariance by including additional
diagrams.

In the recent experiments of N* photoproduction
by the Aachen-Berlin-Bonn-Hamburg-Heidelberg-
Munchen Collaboration" " and by the Cambridge
Bubble Chamber Group, "the data have been compared
with the OPE model and with a model developed by
Stichel and Scholz. The Cambridge Bubble Chamber
Group has also considered a resonance model.

The purpose of this paper is to present the explicit
values of the density-matrix elements for a spin- —,

'
particle, to give a straightforward way to get its decay
distribution, and to discuss the photoproduction of E*.
The transition amplitude of E* photoproduction is
obtained on the assumption of one-axial-vector-meson
exchange, and it turns out to be the same as the tran-
sition amplitude obtained by Narayanaswamy and
Renner" in the limit they used. The differential cross
sections, the density matrix of E* in its production
process, and the decay distribution of E* are obtained.
The density-matrix elements of E*contain one parame-
ter, and they are compared with recent experimental
data from DESV. The linear polarized photons are also
considered, and it is found that the decay distribution
becomes the Sakurai-Stodolsky distribution near
threshold when the momentum of the E* is assumed
to be small in the laboratory system. Also, the other
models considered by Narayanaswamy and Renner, "
Gourdin and Salin, " and Sakurai and Stodolsky, 7 and
the one-vector-meson-exchange model discussed by
Jackson and Pilkuhn, ' are compared with the one-axial-
vector-meson-exchange model.
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oration, Nuovo Cimento 41, 270 (1966)."Aachen-Berlin-Bonn-Hamburg-Heidelberg-Miinchen Collab-
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(1967)."P.Narayanaswamy and B. Renner, Nuovo Cimento 53, 107
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Finally, some useful formulas in calculating the
absolute square of the transition amplitude in E*
production processes are listed in the Appendix.

II. SPIN-~- DENSITY MATRIX

The spin-density matrix for a spin-~ particle given in
Refs. 3 and 4 is of the following form in its rest frame:

p = s (1+2B,S,/A+C;, S,,/2A+D;; pS,,k/6A) . (1)

Eq. (3) one gets

p~ r+p ~ ~ =(2A+CA CB—3C AC B)/4A,

p;;+p;;=(2A —CA C +3C CsB)/4A,

p,*, ;+p,*=;=%3[2C AC B+(D,"D BD c

+D BD cD A+D cD AD B

+3D "D BD c)]/16A,

p;, ;+p;, .=V3C AC B/4A.

(5)

The coefficients in this expression can be chosen
differently, and here the expression in Ref. 4 is used.
Since the C;; and D;,J, are made of vector components,
they can be written as

Gottfried and Jackson' have used a different coordinate
system in which the s axis is along the direction of the
momentum of the incoming nucleon and the y axis is
normal to the production plane.

C;;=C;~C,~, D,p, ——D,~D,~DI,~. (2) III. PHOTOPRODUCTION OF N*

Then the density-matrix elements are as follows:

4Ap; .( ~ .)
——A+3B,+-'(3C ACsB —CA CB)

a (3/20) (SDsADsBDsc —DsADB. Dc
D BDC. 'DA. D CDA. DB)

4Ap ( ~ ) =A&Bs ', (3CsA—C-sB C" C—B).
W(9/20)(SDsADsBDsc DsADB. D—c

D BDC.DA. D CDA. DB)

4Ap;, ;(;, ;) ——%3(B a-,'(CsAC B+CsBC A)

+(1/20)[D A(SDsBDsc —DB Dc)
+D B(SD cD A Dc.DA)

+D c(5D AD B DA. DB)]}
4Apa, x(x, a) =")/3[sC C &A(Ds D D

+D BD cD A+D cD AD B)]
4Ap~„~=2B —(3/20)[D A(SDsBD —D Dc)

+D B(SD cD A Dc, DA)

+D c(SD AD B DA. , DB)]

4Ap, , ,=-,'D &D ~D ~,

(3)

"J.D. Jackson, Rev. Mod. Phys. 37, 484 {1965}.

where B =B1 iBs, etc. , an—d the lower signs of &
and W correspond to the values of p with the subscripts
in parentheses. The other Inatrix elements can be ob-
tained from the Hermitian property of the density
matrix. In order to get the decay distribution, one does
not actually need all of these matrix elements; it has a
much simpler form. For example, let a coordinate
system be chosen such that the s axis is perpendicular
to the production plane and the x and y axes are in the
production plane with the y axis along the direction of
the momentum of one of the incoming particles. Then
the decay distribution' "is

~(8A) = (1/g~) L(p-:.:+p--:.—:)(1+3 cos'8)

+(p;, ;+p ~„N)3 3111 8
—Re(p;, ;+p;, ;)243 sin 8 cos2&

+Im(pa, i+p;, ;)2v3 sin'8 sin2$], (4)

where 8 and ())) are the polar angles of the nucleon
momentum produced in the S* decay process. From

Samurai and Stodolskyv have considered the pure M1
transition in E* photoproduction, and Stodolsky' has
obtained the transition amplitude for the reaction
y+cV~ 1V* in the form

(6)

where t is a coupling constant, N„and I are the E*
spinor arid E spinor, respectively, and A p

= 6p p S kpc, .
From now on%„, E„*,q„k„and c, will denote the
momenta of the nucleon, S*, pion, photon, and the
polarization of photon, respectively.

When the direct interaction is considered in the
reaction y+p)1)/*+++7r, the transition amplitude
considered by Stichel and Scholz" is

This equation is not gauge invariant. However, if e„ is
replaced by e„—k„(eq)/kg, it is gauge invariant. [Here
(kq) implies the scalar product of four-vectors, k g.]
This equation can be considered as a special case of
Eq. (11).

Another possibility in the reaction y+p-+ S~+++s.
is the one-particle-exchange ~odel. Especially in the
photoproduction of charged pions, the exchange of
z, p, Ai, and A2 are all allowed. "

For one-pion exchange, the transition amplitude
becomes of the form"

H(e(1)u„Q„u/(m ' t), —

where Q„ is the momentum transfer four-vector,
3= —Q', and H is a form factor. If one uses the formulas
in the Appendix and Eq. (S), one obtains immediately
the density-matrix elements in the Jackson-Gottfried
system:

—1
PL 1 g P3 3 P3 1 P3 1 (9)

and this unmodified OPE model does not agree with
perjmental data io, is, i9 Stjchel and Scholzii modi

the OPE model to achieve gauge invariance by including
additional diagrams.

18 R. L. Thews, Phys. Rev. 1'7S, 1'N9 t', 1968).
"C. I'liessbach, Diploma thesis, University of Hamburg, 1969

{unpublished).
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Jackson and Pilkuhn' have extensively considered
several cases of the one-vector-meson-exchange model.
According to their treatment, the transition amplitude
in the process y+P —k N*+++qr can be written in the
following form, when a vector meson is exchanged:

fvqqV~V G2
2q= —qq„G F„—l'—Q„,q F) qg,

m@2—t

where F„=ze„„P.k„QPe,, and A=mPF+mv*. f~ v, Fv,
G», and G2 are form factors, and here higher-derivative
terms are neglected. Hereafter, the subscripts y, E, E*,
m, V, and A denote the photon, nucleon, Ã*, pion,
vector meson, and axial-vector meson, respectively.

Next we suppose that the exchange particle in the
reactions y+PPN*+++qr is an axial-vector meson,
e.g. , an A» particle, instead of a vector meson. The
vertex factor yA»x for the transition amplitude can be
obtained from the amplitude of the A»-x-y reaction
considered by Riazuddin and Fayyazuddin, ' and the
vertex factor NA2N* has been considered by Jackson
and Pilkuhn. ~ In the latter case the transition amplitude
becomes

f,.~F~ P2
qq= — ~„FlB„l Qq, B,)ll,——

m~2 —t

where B„=e„k„(cq)/k—q and the form factor f~ ~ has
been calculated by Riazuddin and Fayyazuddin, but
Ii&, Ii», and F2 are undetermined. The density-matrix
elements and differential cross sections obtained from
Eq. (11) may gimme suitable values for the form factors
when they are compared with experimental data. In
the limit in which the nucleon momentum of the in-
coming nucleon is very small in the E~ rest frame, the
second term in Eq. (11) can be neglected.

The absolute square of the transition amplitude of

(
da. mPF f~,22' F~

A. ,
dt „P 62F(s—mB(2)2 mB2 t— (13)

K2K2+K2~~3+KBK1
X 1+— C;;s;,.

4!K!A
E»K2E3

+— D,,ks,;B, (14)
4!Efw

where s = —(k+17)'. The density matrix becomes

P = ', (1+C,,S,,/-2A+D, ;BS,,)/6A), (15)

and A, C;, , and D;;I, have different values according to
the polarization states of the incident photon. Since
time-reversal invariance holds in the present process,
the form factors can be assumed to be real and then the
D,,I, do not appear.

If the incident photon is assumed to be unpolarized,
one obtains

Eq. (11) can be obtained immediately using the
formulas given in the Appendix. In the rest frame
of iV* one obtains

fyFA2~N"2 F2) 2

12EN mA2

IC2K2+K,EB+KBK2
X &+-

4fE!
E»E2Eg

D,;Bs,;B, (12)
4!Kf

and the differential cross sections become

2E„E, m sE~s E~(qN)+E (kN) m zE„(kN))
B =F1 (BÃ+mN)(1 2P 5 N mN

kq (kq)' kg (kq)' )
2' ~E m 2E~2

2P,F,B 'mll(Bll mll )—(1+ -—+-
kq (kq)'

2E~E~ m~2E„'
+F2Fztj. '(QN+QN*) 1—+ —+

kq (kq)'

qqq) +P(2)q) .' ( m)B),2)q

kq (kq)'

m 1 k, E(
q:;; P,'(Bll+mll)(kqj '(222=+ - — +2F.'B—'N;N; ml, —

(kq)'

m 2E,N;k,
+2F,F,tq '(k ) 'mpF E,N, q, +E—N;k, +—

(16)

mps
2 g 2

kq

m 'E, (2E m)j )j( )
+N;1rq f (E„+E„)(2EpF mpF *)—2N'+-

kg
~ Riazuddin and Fayyazuddinq Phys. Rev. 1'llF 1428 (1N8).

( „)
2

m1r
+2F F B '(qq) ' —N k.k; 2+—+N;qq;((qq)+B„(2B 2F m)———

kq
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and one can also get pk. ;, p;, „and p;, *, using Eqs. (3) and (16). In the Gottfried-Jackson system, they become

4(EE(jm)k )(k N) (EE(+mE()(3kEE —k')L2(kq)+m ']
p;, *,

=-', +(8A)-'
kg (kq)'

fR1V~'
+41 —

/
m2)(—&si

E~(qÃ)+E (klV) m 'E~(kN)k) R E~N2+(E~+E )(N k)+m 'Ev(N k)/kq
~+4 m~

kq (kq)' kg

E(3k. —k )N $2(kq)+m ] )(' E (E E E—) —m 2E 2)
2— +2N21 1+

(kq) ' kq (kq)' l

+2(kk) '(N k)I(E„+E )(2Ecc mcc) —2¹——
m 'E„(2EN —

mN'))
(17)

kg

k R
(E&+m)k() (&(kq) +kEPm '+2 (kq) ]}+ em~ L(kq—)(E.+E-)+m.'E,]

4A (kq)'2

R
+ E(—2k Ã[m—'+2(k2)]+(E„+E ) (2Ecc—mc-') (kk) 2N'(k2)+—m, 'E„(2Ecc mcc ))), —

K3 2RN' m. '+2(kq)
p;, ;= k ' (E)(+m)k()—

8A & (kq)'

where E.=Fq/F2 and 1V= ~N~. Comparison of these
density-matrix elements with the recent experimental
data" is shown in Fig. 1 for various E~ intervals. Here
the central value of each E,. interval is used and E* is
treated as a particle with sharp mass (1236 MeV). The
form factors are assumed to be constant and four values
of R are considered.

If experimental data on the process y+p —kÃ*++

+2r with linearly polarized photons are available, the
ratio R of two form factors can be cross checked, and in

this case the theoretical results for the density-matrix
elements are simpler in the axial™vector-meson-exchange
model. Since the polarization c„of the incident photon
with v4=0 is perpendicular to k„and S„in the labora-

tory system, it can be assumed to be perpendicular to
the production plane, especially in the neighborhood of
threshold. Then Eq. (11) becomes

f72cAF A .I'2N = —E„P,c„—2—()„, ) . 2cm
mg2 —3

(18)

F2'(E)((—mE() N;N;
C;;= —F22(EEP+ m)k )e,e;—

Q2

2F 2FE(N's, e;+N,N;)' '. (19)

Again, if the formulas given in the Appendix are used,
one can obtain from Eq. (18)

F2'(E~ m)k()N' F2F2—N'
A =Fg'(E~+ )m+EP

Q2

Now adopting the coordinate system speci6ed in
Sec. Il, where the s axis is perpendicular to the produc-
tion plane, and using Eqs. (4), (5), and (19), the decay
distribution can be written in the form

W(8, (t)) = — 1—
8z

3
P, '(Ecc mcc)N')(2+3 —coc'k)

4362

9F2'(EE —m)v) N' sin'8

4362

3$2AF2F2 F22(E—~ m)(P) ]N—' sin'8 cos2(t-
(2o)

Therefore, if the momentum N is negligibly small, the
decay distribution becomes just the Sakurai-Stodolsky
distribution

1+3 cos'8. (21)

This is the case when the E*momentum is small in the
laboratory system.

When another system considered by Gottfried and
Jackson is used, the decay distribution is

H2 (8,&) =(1/42P)L3p;, ; sin28+p (1+3 cos28)

—2V3 Re(p;;) sin'8 cos2g
—2&3 Re(p;, ;) sin28 cos(tk]. (22)

Here 0 is the angle between the incoming and decay
nucleons in the Ã* rest frame and p is the azimuthal
angle of the decay nucleon measured from the produc-
tion plane. The explicit values of the spin-density
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matrix elements in this case are

p-:,—;=a(1+n) ',
pz y= ~

—
pg a&

=1—

8(1+p)
'

p;,~=0,

(23)
W(8) =-', (1+3 cos'8)+p;, ;(1—3 cos'8)

W(p) = (1/2s.)L1—(4/v3) Re(pl, ;) cos2$$,

and in terms of n and P one obtains

(25)

When the decay distribution of Eq. (22) is averaged
over angles, it becomes

where n and p are defined as

n = L(E~—m~)R/h$' —(E~—m~)R/5,
tt (E~ m~)R/6]'+ (E~ m~—)R/6—

1 2(E~ mg )R/6— —
(24)

(5+2n) —(3—6n) cos'8
W(8) =

8(1+n)

3+2P—2 cos'P
WQ) =

4s (1+p)

(26)
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If N is negligibly small in the E* rest frame, the
decay distributions become

W(e) = (5—3 cos'0)/8, W(g) = (3—2 cos'P)/4~. (28)

The first term in Eq. (18) gives the same decay
distribution as Eq. (6) does, because A„ in Eq. (6) and

Since W(0) and W(P) must be positive semideiinite,
there are restrictions on possible n and P values. From
Eq. (26) these restrictions become

e„ in Eq. (18) have the same property in the sense that
they are orthogonal to the momenta of the particles.
In the limit in which the momenta of the incoming
nucleon is very small in the E* rest frame, the second
term in Eq. (18) can be neglected and it reproduces the
M1 coupling results for &+X—+1V*. Stodolsky ha, s

used a di6erent method and obtained the same result,
i.e., Eq. (21) or Eq. (28).

Xarayanaswamy and R.enner have considered another
approach and, in the limit where the four-momentum
of the outgoing pion in the production process of E* is
zero, they have obtained a transition amplitude similar
to that in Eq. (18). Q„ in Eq. (18) is replaced by k„ in
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the limit g„~0 and the form factors are defined
ifferently. The decay distributions are then the same

and N can be replaced by k and Fl' b th
hoton ener

y e square of

p oton energy E7'. They have also considered the
threshold limit in which the cente — f-cen er-o -mass system is
the common rest frame of E* and x. Then the Adair
angle and the angle 0 in Eqs. (25) and (28) are the same.
The result of Narayanaswamy and Renner can also be
compared with the photoproduction of pions considered

the de
y ourdin and Salin where p is put

' I th
e ecay distribution has the same form as Eq. (20),

but the signs of the nz~'s are changed.
%hen the one-vector-meson-exchange model is

considered, one can obtain the absol t i ha sou e square of the

transition amplitude given by Eq. (10) immediately by
using the formulas given in the Appendix. If the incident

p oton polarizations are summed d 'tellsl y-matrix
elements can be obtained from E ~17' b h
the signs of the m~'s except for those in h. However,

decay distribution is not similar to the Sakurai-
todolsl~y distribution except when the static limit

f&4'f«f&'f (f&XQ f«f(&Q)f) in the &* rest
frame are assumed. Also in the ve tvec or-meson-exc ange
model, one cannot consider the limit in which the four-
momentum of the pion produced with E* is zero as

'arayanaswamy and Renner have done. In this limit
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the transition amplitude obtained by Stichel and Scholz
becomes Eq. (7).

IV. DISCUSSION

In Fig. 1 the density-matrix elements contain one
free parameter R which is the ratio of two form factors.
The first term in Eq. (11) seems to give the general
trend of the density matrix, while the second term with
various values of R gives the corrections. Here we
assumed that the form factors are constant, but in
general they are not. R=7 seems to given the better fit
with the experimental data at low energies, but as the
incident photon energy increases, smaller values of R
are preferable. Extensive investigation of the density
matrix together with differential cross sections will

determine the exact form of the form factors.
Any justification from which Eq. (11) can be obtained

gives the same decay distribution. There is no special
reason why we use the axial-vector-meson-exchange
model; this model is simply used as one of the other
possibilities describing E*photoproduction. In order to
con6rm the validity of one-axial-vector-meson exchange,
one should also obtain the correct differential cross
sections. However, there are three form factors un-

specified, and the investigation of density-matrix
elements seems to be the 6rst step to undertake because
we do not have to know the explicit value of each form
factor in this case.

The comparison of our results with experimental data
is not confined to the low energies. It is known at

present that at high energies (E~)2 BeV), background
problems and low statistics make it diKcult to study
the density matrix as a function of momentum transfer,
and no results are available from the present DESY
experiments; however, high statistics may probably be
expected in the near future.

The first term of Eq. (10) for the vector-meson-
exchange model also gives the same result for the
density-matrix elements as in the case R=O when the
polarization states of the incident photons are summed,
but in general Eq. (10) gives different results.

Finally, if one wants to 6t the cross section with
experimental data, one should probably use a Regge-
pole exchange. Cooper" has considered the reaction
p+p~lV*++7ro, and the same method may be used
for the present case. However, the results of any other
model or differential cross sections will be investigated
further.
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APPENDIX

The following formulas are useful in calculating the absolute square of the transition amplitude where a spin--,

particle spinor is included and is polarized:

m~m~+ —gE*
(u„u)(u u) = t3(N&*N.*+m~"'~,.)+(KiK2+K2KB+KBK1)(2N„*N,*+2m~'8„„—3m~*'q„q„)5

4S(K(Z„Z~*

mg*
+ — {e„„)„(K,+K,+K,)(4(NN*) N i,*g, m~'*'Ni q—, 5m~ m~—Ng*q, )

96
~

K
~

E~E~*

+3K,K,K,(2(1VN*)N),*g,+m~'1Vi,g, m~'m~lV—g*rj,)
+(V„*g„„„p N„*p„)„p)$ (Ki—+K,+K,)N—iN, *pl,+3KiK2K3NilV, *rlp5} . (A1)

A special case of the above equation is

m~m~+ —EE*
fu„A„u/'= {3E(AN*) 2+m~*2A 25

+(KiK2+K2K3+K3K, )(2(AN )'+2m~'A' 3m~'(A—q)'5} (A2)

2(B1V)(B1V*) B'(NN*) B'm&m~*-—
(u„A„pB„u

~

2= (3 L(AN*) '+m~*'A '5
4g(K(IE~E~

+(KiK,+K,K3+K3K$)[2(AN*) +2m&' A 3m&" (Ap—) 5} (A3)
"F.Cooper, Phys. Rev. 1N', 1314 (1968).
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{—6 (81V~)f(A 1V~) (C1V~)+m~*'(AC) )
96~K~@ Z ~

& (Kg+Kg+K3)m~*[6(BE*)(A CrJN*)+m~*'(ABC') (A E—*)(BCgE*) (ClV—*)(ABqN*) j
+2(KgK2+K2K, +K,K,))3m~'(BN*) (A g) (Cg) 2m—&*'(AC) (BN*)—2(AE*)(BE*)(CE*)j
~3K~KgKsm~ $(AN*) (BCqN*)+ (CN*) (ABgN*) m~'—(ABC')j)

3m~~—(2(BN)((AN* )(CN*)+m~'(AC))+m~'((AN) (BC) (A—B)(CE))

+(A 1V*)((BC)(N1V*)—(BN*)(CE))+(C1V*)((AE)(BE*)—(AB)(E1V*))]
& (Kg+K2+Kg) (4(A 1V*)(CN*)(BNgN*)+4m~'(A C) (81VgE*)+3m~'(C1V) (ABgN~)

+3m~*'(AN) (BCqN*)+3m~'(NN*) (ABC') 3m~ ~ (N—g) (A 8CN*)

+2m~*'(BE) (AC qN")+m~*'(A g) (BCNN*) m~*'(C—q) (AB1VN*)$

+(KqK2+K2KS+K3Kq) m~ (2(BE)(3m~'(A g) (Cg) 2m—~'(AC) —2 (AE*)(CE*))

—5 (A1V*)((BC)(1V1V*)—(BN*)(CE))—5 (CN*)((AE) (BN*)—(AB)(EN*))

—6((Cg) (AN~) —(Ag) (CE*))((81V*)(Ng) —(Bg) (N1V*))+6m~*'(Cg)((AN) (Bv)) —(AB) (Ng))

+6m~'(Ag)((BC) (Nq) —(CE)(Bg))—5m~*'((AE) (BC)—(AB)(CN))j
~3K)KgKat 2(BEqE*)((AE*)(CE*)+m~'(AC) 3m&*'(A—g)(Cq))

+m~'( (A q) (BCNN—*)+(Cq) (A BNN*) (1Vg) (ABCN—*)+(AN) (8CgN*)

+ (CJ'V) (ABgE*)+(1V1V*)(ABC'))))1, (A4)

where the lower signs in & and W indicate the value for (u„A„y„B„u)(uqCqu), and the notation given in Ref. 4
is used. If y& is put in between 8„and u in Eqs. (Ai), (A3), and (A4), the signs of the m& s are changed.

If the spinors normalized by Jackson and Pilkuhn are used, the above equations should be multiplied by a
factor 4E~E~*/m~'. When one sums over the polarization states of N*, the terms containing the K s vanish
and the rest are multiplied by a factor 16~ K

~
/3.


