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Veneziano Amplitude, Current Algebra, and Vertex Functions*
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The possibility is examined of extending the 7i-vr ~ 71-7I- and 71-A& —& 7r7r Veneziano amplitudes to the case
of one or two mesons off the mass shell in a fashion consistent with chiral current algebra, partial con-
servation of axial-vector current, and conserved vector current. Soft-pion formulas for the pion-vector
form factor and the O.-commutator vertex are deduced. The hard-meson analysis shows that if one wishes
to maintain Veneziano form with tao mesons off the mass shell, some of the m-Ai —+ mm amplitudes must
develop poles in one of the o8-shell momenta at p'=0. The soft-pion vertex function equations are seen to
be a consequence of removing the leading part of this singularity at the soft-pion point p& =0. However, the
resultant amplitudes are still singular at p'=0, p&WO for a continuum of s, t, and N. The fixed poles implied
by the presence of form factors (when two mesons are oB shell) are seen to occur only in those amplitudes
orthogonal to the A I polarization vector and do not affect the amplitudes that make nonzero contributions
for xA I -+ gm scattering on the mass shell.

I. INTRODUCTION

& URING the past year, a large number of applica-
tions of the original ideas of Veneziano' have been

made to a variety of systems. While amplitudes generated
in this fashion are not unitary, they possess the virtues
of being crossing-symmetric, having correct Regge
asymptotic behavior (aside from amplitudes governed

by Pomeranchuk exchange), and obeying the principle
of duality. One of the most successful ideas in this area
has been the proposal of Lovelace' that one impose the
Adler soft-pion condition on the Veneziano amplitudes.
This suggestion leads automatically to the equality of
a number of slopes of different trajectories and quantiza-
tion of intercepts, and to a large number of valid mass
formulas. ' 4 ~ The success of this idea is somewhat re-
markable, for the Veneziano amplitude is motivated in

large part by asymptotic considerations, while soft-pion
current algebra is a threshold principle. Thus, there is
no a priori reason to expect the two schemes to be
consistent.

The hard-pion techniques' "allow one to extend the
current-algebra analyses to the intermediate energy
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region above threshold. This method is based on the
following assumptions: (1) chiral current algebra, (2)
conserved vector current (c)„V&,=0), (3) (partial con-
servation of axial-vector current) (ct„A&,=c,7r,), and
(4a) pole dominance (i.e., saturation of intermediate
sums by low-lying resonances), (4b) "smoothness
assumption" (i.e., that one can approximate meson
vertices by a low-order polynomial in the momentum
transfer). Assumption (4) is a dynamical one, and re-

places the dynamical postulate of "gentleness" in the
soft-pion method. "It is what allows one to apply cur-
rent algebra at higher energies above threshold. The
hard-meson method has been successfully applied to
a number of different systems. "On the other hand, one
cannot expect an approximation such as (4) to be valid
much beyond 1 GeV above threshold; for the number of
resonances one has to include then begins to get quite
large, and the representation of the meson vertices by
a simple polynomial becomes unreasonable. In order to
test the ideas of current algebra at higher energies, it is

necessary to replace (4) by a more realistic assumption,
and the most immediate possibility is to assume that
one's scattering amplitudes have Veneziano form. In-
deed, below 1 GeV, the Veneziano amplitudes are well

approximated by a set of s-, t-, and n-channel low-

energy poles plus a "seagull" polynomial (to account
for the higher poles) and this is precisely the form of the
hard-pion amplitude implied by assumption (4). Thus,
the implementation of the above suggestion would lead

"D. Geifen, Phys. Rev. Letters 19, '7/0 (1967); T. Das,
V. Mathur, and S. Okubo, ibid. 19, 900 (1967}."J.Schwinger, Phys. Letters 24B, 473 (1967); Phys. Rev. 16'7,
1432 (1968); J. Ness and B. Zumino, ibid. 163, 1727 (1967);
B. %. Lee and H. T. ¹eh,ibid. 166, 1507 (1968); S. Weinberg,
ib d. 166, 1568 (1968).

"One can, in fact, show that gentleness in general follows as
a consequence of postulate (4) in the region between the soft-pion
point and the pion threshold (cf. Ref. 9).

'4 The only outstanding disagreement between theory and ex-
periment, the value of ~gr/gz ( in the Aq ~ o+m. decay, has been

significantly reduced by a reanalysis of the data I see S. G. Brown
and G. B. West, Phys. Rev. 180, 1613 (1969)j. The present ex-
perimental value of this quantity is now consistent with the origi-
nal predictions of Refs. 8—10.
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to expressions that match smoothly on to the successful
intermediate-energy current-algebra results, and would
result in amplitudes which obey the current-algebra
constraints and simultaneously satisfy Regge asymp-
totic behavior and duality.

The hard-pion technique deals with such quantities
at the xx —& mw or m A q

—& zw amplitudes with one or
more particles oR the mass shell. These oR-shell ampli-
tudes are defined using the standard I SZ reduction
formulas with the pion interpolating field defined by
partial conservation of axial-vector current (PCAC),

n.(x)=—(r)„A".)/(F.m. '), (1.1)

and the Ai interpolating field a",(x) by the axial-vector
current, "

a .(x)—= (A&. F8&7r—)gg '. (1.2)

While, of course, it is consistent to assume that the on-
shell scattering amplitudes defi.ned by the fields of Eqs.
(1.1) and (1.2) have Veneziano form, the basic question
is whether the Veneziano structure can be maintained
for the off-shell amplitudes as well. In previous work, '
it has been seen for a number of different processes that
the hard-pion PCAC equations are consistent with
Veneziano amplitudes with one meson off shell. (The
solutions so obtained for the ~x —+ ~m- and xA ~ ~ ~x
amplitudes are reviewed in Sec. IV.) In Sec. II it is
shown that if in fact the PCAC equations are also con-
sistent with Veneziano aznplitudes with tm o mesans off
shell, one can deduce expressions for both the 0--com-

mutator vertex and the pion electromagnetic form
factor by the device of evaluating the equations at the
soft-pion point p&-+ 0. These vertex functions are ex-

plicity evaluated in Sec. V. In Sec. VI the validity of
this hypothesis is examined critically. Two difficulties
are seen to arise. The first is the well-known fact that
expressions involving the T product of two currents
leads to the presence of fixed poles. "This produces .no
intrinsic problems and the fixed poles can be segregated
as additive terms to the oR-shell xA ~

—+ m x amplitude.
More serious is the fact that if one wishes to maintain
Veneziano form for the rest of the amplitudes a pole
in the off-shell momentum at p'=0 arises in the I=0
and 1 channels. This pole then negates the validity of
the derivation of the form factors of Sec. II.Thus while
the form factors of Sec. II are consistent with the PCAC
equations, they cannot be deduced from them without
additional assumptions. One may eliminate the singu-
larity in p' by dropping Veneziano form for some of the
amplitudes. For this choice, the PCAC equations again
do not determine the form factors.

II. SOFT-PION CALCULATION OF
VERTEX FUNCTIONS

We consider here the relation between the processes

~a 1 ~b 2 ~ ~c 3 ~d 4 (2 1)

s+&+I= 2m ' —pi' —Ps'.

The xw —+ mw S-matrix element is given by

(2.3)

~---= of' (2 )'~—'(p +p p p—)—
X1V iXsfV sE4M.~,.s, (2.4)

where the oR-shell invariant amplitude is defined by

5K,&,~=i(2n)464(pi+Ps P, P—4)M—.e,

= (XsiV4) ' d'xd'y e'""e'"'"K(x)K(y)

X(z.P&c; n.P4d I
T(n (x)n-b(y)) I 0) . (2.5)

In Eq. (2.5), 1V—= [(2vr)'2&of
—'" K= — '+m —' and the

pion interpolating field z, (x) is assumed to be given by
Eq. (1.1). The 7rAi~ vrz 5-matrix element is similarly
given by

--= (2 )'~'(p, +p p p)—-
X1V i1V slV sN4M". e,,se„(Pi ', ) ) 1 (2.6)

where e„ is the A ~ polarization vector. The off-shell in-
variant amplitude is given by

DIP, ~,.s
—= (2n) 46'(P—,+Ps Ps Pg) M—".e—.b,
= (1V s1V4)

' d4xd4y e'""e'"'"p"„(x)K(y)

X (n psc; n p4d I
T(~".(x)n ~(y)) I 0), (2 7)

where P&„—= (— '+mz') b& + c)&t)„ is the A i Proca
operator and the A & interpolating field is defined by Eq.
(1 2).

To examine the Ward's identities, we consider now
the quantities T&" and TII, defined by

T"" g s—= (1Vs1V4) ' d4xd4y

and
A i,(pi)+s g(ps) ~ 7r, (p,)+s.g(P4) (2.2)

implied by PCAC when the two initial mesons are oR
their mass shells. In Eqs. (2.1) and (2.2), a, b, c, d= 1,
2, 3 represent isotopic indices and s—= —(pi+ ps) ',

(P —P)', —n=— (P —P)' o—bey

"Our currents are normalized so that the pion decay constant
F has the value F =94~1 MeV and gz is de6ned by
(0 A&, (0) ~Ai, bp, 7)=g~Nge&(p, h)b, q, where e"(p,X) is the
polarization vector of helicity X Le"*(X)e„(X')=e,„7 and
Ng = L (2z')'(gg (P)7-»s"See also H. J. Schnitzer, Phys. Rev. Letters 22, 1154 (1969)."J.B.Bronzan, I. S. Gerstein, B.W. Lee, and F.K. Low, Phys.
Rev. Letters 18, 32 (1967); V. Sinsh, ibid. 18, 36 (1967).

Xe'&'*e'"'"(xpsc; n p4d I
T(A&,(x)A" t, (y)) I0) (2.8)

T&,e,,s= (1Vs1V4) ' d4xd'y—

Xe'""e'r'"(rrpsc; n.p4d I
T(A&g(x)n. s(y)) I0). (2.9)



VENEZIANO AMPLITUDE AND VERTEX FUNCTIONS

The axial-vector currents are assumed to obey the com-
mutation relations

8(xo —y') LAo.(x),A&b(y) $
=is,b, V)', (x)f')'(x y—)+c N-o S..T. , (2.10)

where "c-No. S.T." stands for "c-number Schwinger
terms. " In addition, we assume that

f'(x' —y') LA".(*),A b"(y))
=it"",b(x)8'(x y)—+c No-(2. .11)

and

~(x' —y') LA'. (x),~b(y) 7
= if'),bZ (x)8'(x y)+—c No ,-(2..12)

where Z(x) is a scalar operator. Equation (2.11) is im-

plied, of course, by Eq. (2.10) for p, =O or p =0 and holds
for p, =i, v= j in both the field algebra and the quark
algebra. Equation (2.11) is a locality condition sufGcient
to guarantee that T&" is a I.orentz tensor. Equation
(2.12) implies that the o. commutator is a local quantity.
We have assumed for simplicity that it is an isoscalar. "

One finds now in the usual fashion that

zps T ):d, ))b F zzz T cdb)),
e.bus, d—f (Ps P4)"f(s—) (2zr) '8'(Pi+Ps Ps P4—) (2—.13)

vanishes (as is the case in the hard-pion approximation
where zr, is a canonical Geld), or (b) it is canceled by
a corresponding noncovariant piece" in SV Lin which
event one reinterprets the T product of Eq. (2.7) as the
T* product). One may now expand ÃV in terms of
scalar form factors. A convenient choice is

5IV =Pi"OR i+Ps"ORs+ P "OEs, (2.18)

where p"—= (ps —p4)".
Equations (2.13) and (2.14) now furnish expressions

for the vertex form factors in terms of the off-shell
amplitudes, by going to the soft-pion point. Thus, if one
assumes that ps, T""—+0 as ps, —+0, then f(s) can be
obtained in terms of TI'. This limit corresponds to t,
u —+ m ' and s —+ —pi'. Since the vector form factor
clearly contributes only to the I= 1 amplitude, and both
BRj and BE& are anitsymmetric in 3 and I in this channel,
they vanish in the soft-pion limit. One finds then"

f(s) = ——',F~gd(zzzd' —s) '(3f, &'='l) o, (2.19)

where 3f3 is the form factor defined from M&,q ~ of Eq.
(2.7). Similarly, if one assumes pi„T"—+ 0 as p» ~0
(f, u~ m ', s~ —pp), then Eq. (2.14) determines
Z(s) in terms of the I=O oR-shell zrzr ~ zrzr amplitude:

and Z(s)= ——',F (zzz
'—s) '(3f&'=o&)„, o. (2.20)

ip, sT~,—d, ,b Fzzz '&——(ps) &.(P,)Off,,d,.b

+5~ 8,bZd(s)z(2 )zrb (pi+ps ps p—4), —(2.14)

where the pion-vector-current form factor f(s) is defined

by

(JV 1V ) '( p c; p d
i
V" (0)

~
0)

ze)dr(Ps P4) "f(s) (2.—15)

and the o form factor Z(s) is defined by

(7V sÃ4) '(zrPbc; zrP4d
i Z(0) i 0) = f').dZ(s) (2.16)

and 6 (p)
—= (p'+m. s)-'. One can, of course, express T)'

in terms of the x and A& amplitudes by means of Eq.
(1 2):

cdab gA~A, )(pl))-)'))(P2)OT( cdab,
+F-(—zpi")~-(Pi)~-(Pz)Oft d,.b

+F,8"o(/Vs' 4)
' d4xd4y e))"*e'"'"b(xo yo)—

X(zrpsc; zrp4d
l
Lzr, (x) orb(y)] IO) ) (2 1/)

where Az&„ is the A& free-6eld propagator. The equal-
time commutator in Eq. (2.17) actually can be deleted
since T& is a Lorentz vector, because either (a) it

"Experimentally this seems to be the case. A recent measure-
ment of the threshold parameters in the ~m system by L. J. Gutay,
F. T. Meiere, and J. Scharenguivel t Phys. Rev. Letters 23, 431
(1969)] yields the value of —(0.04+0.01l for the ratio of the
I=2 to I=0 components of the o commutator.

Equations (2.19) and (2.20) are explicitly evaluated in
Sec. V in terms of Veneziano amplitudes deduced in
Sec. IV.

III. OFF-SHELL CROSSING SYMMETRIES AND
ISOTOPIC DECOMPOSITION

We discuss in this section the crossing symmetries
that hold for the off-shell amplitudes and the isotopic
decomposition of the PCAC equations of Sec. II.

The pion. amplitude of Eq. (2.5) with two mesons oR
shell can be decomposed into its isotopic form factors in
the usual fashion:

M)dgb f)abf),cdA($)1)u) pl )ps )+8acf)bdB($)f)u) pl )P2 )
+f').drab. C(s)f)u) Pt')Ps') . (3.1)

Crossing symmetry of the two remaining on-shell
mesons, psc~ p4d, and for the two oR-shell mesons,

"We note that since Eq. (2.14) implies that OR,d, ,b is a Lorentz
scalar, the pion equal-time commutator must have the form
&(x'—y')L)r, (x),)rb(y) j=c4b(x)84(x —yl+c-No. , where A b(x) is
Lorentz scalar.' Note that in the soft-pion limit, the I=1 part of T&,q, ,q is
automatically proportional to p&, guaranteeing the conserved-
vector-current (CVC) condition for the vector vertex function.
Recently, Y. Oyanagi [University of Tokyo Reports UT-16 and
UT-19 (unpublished) j has independently attempted to obtain
form factors by soft-pion arguments similar to those presented
here. However, in his analysis CVC is violated (and has to be re-
imposed at the end as an additional constraint) since he incorrectly
sets one combination of M1, M2, and M3 to zero. As is discussed in
Sec. IV, PCAC requires all three 3f; in the I= j channel to be non-
zero, if one wishes to maintain Veneziano form for the amplitudes.
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Pla+-+ P2b, implies

A(s, t,u; p, ')p, ') =A(s,u, t; p, ',p, ') =A(s, t,u; p, ',p, )

and

B(s,t, u; pl', p2') = C(s,u, t; pl', p2') = C(s,u, t; p2', pl') .

(3.2)

(3.3)

The isotopic amplitudes M&(1) read

M" (o)(s,t,u) Pl )Pg )
= Pl"(3A 1+Cl(+))+P2"(3A2+C2(+))

+p"(3Ab+Cb( )), (3.10)
M"(1)($)t)ui Pl')Pl')

Pl"Cl(—) Pl"C~(—) P"C&(+) ) (3 11)

Since there are no crossing symmetries between the on
and o8-shell pions, the amplitude depends upon three

arbitrary functions A and C(~), where

C(p) (s,t,u; P,',P2') =C(—s, t,u; Pl', P2')

&C( ,sut; P12,P2') (3.4)

(rather than a single function as is the case for the on-
shell amplitude). Note that A, C+ are symmetric in
P12~P~'. The isotopic amplitudes M(r), I=O, 1, 2,
have their usual form in terms of these independent
amplitudes:

M(()) ——3A(s)t)u; pl')P2')+C(p)($)t)u) pl')P1') )

M(1) —— C( )(s,t,u—; pl', p2'), (3.5)

M(g) =C(+)($)t)ui pl )P2 ) '

One similarly decomposes the mA» —+~+ amplitude
(2.7) into its isotopic parts:

M)', e,.b A)"(s)t,u——
) pl') P2') t'). bb, e

+B)'(s,t,u; P12,P~') b„bbs

yc (s,t,u; p, 2,p, 2) b.,b„(3.6.)

M)'(»(s, t,u; Pl', P, ')
=Pl"Cl(+)+P~"Cl(+)+P'Cb(-) (3 12)

In terms of these form factors, the PCAC equations
(2.14) decompose to

44M (» ——2pl'Cl(+)

+(t+u —2m ')C2(+)+(t —u)C, ( ), (3.13)

&M(1) = 2P1 Cl(—)

—(t+u —2m ')C2( )
—(t —u)Cb(+), (3.14)

tbM (())
——2P12(3A 1+Cl (+))+(t+u —2m~') (3A 2+C2(~) )
+(t—u)(3Ab+Cb( ))—(3tb/F)Z( P2)Z(s), (3.15)

where M(z) are defined in Eq. (3.5), I) (P1)=pb2+m —',
and tl= 2m&'F /—gz. Equation (3.15) yields directly Eq.
(2.20), Pro()ided the amPlitudes A;, Cl 2(+), and Cb( ) are
nonsingular in the soft-pion limit pl)' —+ 0.

If only one meson is oG shell, the number of inde-
pendent amplitudes is reduced, as there exist more
crossing relations. Thus, if one puts 7rp~b back on the
mass shell (p2' ———m '), the oR-shell lr)r —+ )r)r amplitude
becomes

The A)', 8)', and C)' can be expanded in terms of scalar ~,„,b=(AT, A)',g4)—1 e'»*&(~)
amplitudes:

A pl Al($)t)u) pl )p2 )+p2 A2($)t)u) pl )P2 )
+p)'A3(s, t,u; pp, p2'), (3.7)

where p=pb —p4. Similar expressions hold for 8)' and
C". The crossing symmetry of the two on-shell pions
(p&c ~ p4d) implies t +-+ u symmetry for the A;
amplitudes:

X()rPbc; 1rP4d l)r (&) I m'P~b), (3.16)

and p2b ~ pbc, p2b ~ p4d crossing implies

C(s, t, u; p)2, —m ') =A(u, t, s; p12, —m '), (3.17)

reducing the number of independent amplitudes back to
1. Similarly, in the zA»~mw case, the C; may be re-
lated to the A; when only the A» meson is off shell:

A12(s)t)uj pl )P2 ) —A12(s)u)t j pl )p2 ) )

Aa(s)t)u) pl', p2') = —A&(s)u)tj pl', p2'),

and relates the 8; to the C; amplitudes:

81,2($)t)uj pl )p2 ) C1,2($)u)t) pl )p2 ) )

B ( bt,spu11,P,') = —C (s,bt;uP11,P2') .

(3.8)

(3.9)

Cl(s, t, u; Pl', —m ')
= Al(u, t, s; pl', —m, ') —-',

l A2(u, t, s; P12 —m ')
+AS(u, t, s; p12, —m. ')j, (3.18)

C1($) t, uj Pl )
—m)) )

= —',L
—A2(u, t, s;P12, —m ')

—3AS(u) t) s; pp) —m ')j (3.19)
Since the x and A» are dissimilar particles, there are no

P1 &-b P2 symmetries, and the two-meson oR-shell
xA» —+mw amplitude depends upon nine independent
amplitudes A;, C, (~) (rather than two functions, as is
the case for the on-shell amplitude" ). Note also that
the A, and C4(+) have no a priori symmetry in pl' ~ p2'.

"C.J. Goebel, M. L. Blackmon, and K. C. Wali, Phys. Rev.
182, 1487 (1969).

Cb(s, t, u P12 —m ')
= -',

l A2(u, t, s; p12, —m ')
+AS(u) t, s; pl', —m~') j. (3.20)

There are then three independent amplitudes, the A;,
which is still one more than for the on-shell situation.
Finally, we note that with only one meson off shell, the
PCAC equations are identical to those of Eqs. (3.13)—
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(3.15), except that the last term of Eq. (3.15) is to be
deleted, and the form factors obey the additional con-
straints, Eqs. (3.17)—(3.20).

C(~) (s,t,u; pi') =p(pi') V(t,u), (4.3)
where

V(s, t)—= r(1—(s))r(1—(t))/r(1 —(s) —n(t)). (4.4)

Equation (3.17) then determines the remaining ~m -+ ~s
amplitudes. The absence of exotic resonances in the
s A &

~ s.vr I= 2 channel implies by Eqs. (3.12), (3.18)—
(3.20), and (4.2) that Ps

——2y~ ——Pi+pi= —Ps. Equa-
tion (3.13) then yields yt ———Ps

———urn'pP, where
n'=2(m, ' —m ') '. One has thus the result

Ci ————,'n'pP[B(s, t) —B(s,u)), (4.5)

Cs —— ,'n'pPB(t, u) ,'n—'ti—P[B(s,t) B—(s—,u)), (4.6)—

Cs ',n'tip[B (s, t) +B(s,——u)-], (4.7)

where n(m„')= —',. Note that Ct&+~ vanishes. This is
necessary to prevent a B(t,u) satellite from occurring in

M(2). Alternatively, one might argue that a nonzero
Crt~i would produce by Eq. (3.13) a "nongentle" con-
tribution of 2PtsB(t, u) in M&s& (which vanishes at the
soft-pion point Pi"=0 but is nonzero at threshold Pts
= —m '). Such a term would correspond to the exis-

"We abbreviate here A (s&t,u; pis, —m, ') by A (s,t,N; pis), ete.

IV. SOLUTION OF PCAC EQUATIONS WITH
ONE OFF-SHELL MESON

Ke consider now the solution of the PCAC equations
(3.13)—(3.15) with only one meson off shell [i.e.,
K(ps) =0). A brief description of these results has been
given in previous work, ' " and we examine here this
case in more detail. The xA~ ~ xw amplitudes are
governed by the three "master functions" A;, and we
begin by 6rst examining the case in which no satellite
terms occur in either the +m~ xw or xAq~mw func-
tions. (A more general situation where satellites are
allowed is examined below. ) We also assume that only
the p-trajectory n(t) enters into any of the Veneziano
functions.

The assumption of no satellites implies that the A;
are to be constructed from the beta-function quantities

( t)—= ( —( ))r( —(t))/r( —( )—(t)) ( )

Thus the most general form obeying the symmetry con-
ditions (3.8) reads"

A, ,s(s)t,u; Pi') =Pi, ,(P,')B(t)u)
+7t,s(Pis) [B(s,t)+B(s,u)), (4.2)

As= Ps(Pt') LB(s,t) —B(s u)).
The assumption of no satellites in the xx —+ xw ampli-
tudes combined with the condition that there be no I=2
direct-channel poles (i.e., no "exotic" resonances) im-
plies by Eq. (3.5) the usual result'

tit= —)it+a() s+)~s),

ti = —()i +3) ),
tis ——-', ()~s —)~s),

vi ———)it+ ~~()is —Xs),

vs
———,'() s —3Ãs),

vs = —-', () s+) s) .
(4.11)

The I= 2 PCAC condition (3.13) further requires

)is(pt') =)is(pt') (4.12)

so that the asymptotic Regge behavior of the mx —& xx
amplitude is not violated. Thus the C; depend only on
two undetermined parameters )it(pt') and )~s(ps'). One
finds

Ct ——)~i[U(t,s) —U(u, s))+ (Xt—)~s) [U(s, t) —U(s,u)]
—) r[U(u, t)+ U(t, u)), (4.13)

Cs= )is[U(t,s) —U(u, s))+2)is[U(s, u) —U(s, t))
—),[U(t,u)+ U(u, t)), (4.14)

Cs Xs[U(t,s)+ U(u, s))+)is[U(u, t) —U(t,u)). (4.15)

"Cf. R. Arnowitt, M. H. Iriedman, P. Nath, and P. Pond
LNortheastern University Report (unpublished) j. Brietiy, one
may show that an I=2 o-commutator term is present in the
threshold x7t- —+ 7i-~ amplitude if M(2) contains a term linear in s
(when the off-shell momentum pI2 is eliminated in terms of
s+t+I).

tence of an I= 2 0. commutator, 23 which experimentally
does not appear to be present. "One may now show that
solutions (4.5)—(4.7) automatically satisfy the remaining
PCAC equations (3.14) and (3.15).Thus, with only one
meson og shell, the crossing relations are sufficiently
strong so that the I= 2 equation [(3.13))by itself con-
tains the full content of the PCAC constraints. We see in
Sec. V that this is not the case when two mesons are off
shell, and that then the I= 1 and I=0 equations involve
new phenomena.

We now consider the possibility of allowing satellite
structures to appear. The simplest example of this type
arises if one allows structures of the type

U(S,t)—= r(1—n(S))r(2 —n(t)) I
r(2 —n(S) —n(t)) (4 8)

to enter into the ~At -+ me. amplitude. (Such quantities,
of course, can appear in the on-shell amplitude. ")PCAC
then implies the existence of a specific set of satellites
arising in the m~ —+m-x amplitude. One may include
structures of the type of Eq. (4.8) by adding additional
terms A; to the master functions A; of the general form

At, (s,t,u; p ')
=) ..(p")[U(t, )+U(,t))

+pi, s(pi') [U(s,t)+ U(s,u))
+vi, s(pi') [U(t,s)+ U(u, s)), (4.9)

As(s, t,u; pi')
= )~s(pi') [U(t,u) —U(u, t) ]+tis(pi') [U(s,t) U(s, u)—]

+ (p ')[U(t, )—U(, )) (4.1o)

One proceeds in a fashion similar to the above discus-
sion by calculating C; by Eqs. (3.18)—(3.20). The ab-
sence of exotic resonances allows one to express the p;
and v; in terms of the X;:
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Inserting these solutions into the right-hand sides of
Eqs. (3.13)—(3.15) then determines the additional satel-
lite contributions M(y) to the 7r~ ~ ~z amplitudes:

un'M (2) ——SX2W(t,u)
—(24+4pgkg)[V(t, u)+B(t,u)]) (4.16)

un M(1) = SXe[W (s)t) —W($)u)) —(2X2+4p1 ~1)

X [V(s,t) —V(s,u) B(s,t—)+B(s,u)], (4.17)
and

sun (~(o& —~(~))
= p.,+2n'pg9, g) [U(t,u)+ U(u, t) U(—t,s)

—U(s, t) —U(u, s) —U(s,u)]
+43 2[W(s, t)+W(s, u) —W(t,u)], (4.18)

where

W(g, t) —= I'(2 —n(s))I"(2—n(t))/I'(2 —n(s) —n(t)) . (4.19)

We note that the explicit pP dependence in the I=2
amplitude of Eq. (4.16) implies the presence of an I= 2
0- commutator, and so the experimentally favored"
choice is X~—0.

V. EVALUATIONS OF VERTEX FUNCTIONS

In this section we give an explicit evaluation of the
vertex functions derived in Sec. II assuming that the
Veneziano forms derived in the previous section holds
with two mesons off shell. We defer a critical evaluation
of this hypothesis to Sec. VI.

From Eq. (3.11) one sees that the quantity 353'r
of Eq. (2.9) is simply —C3&+~. Thus Eqs. (4.7) and (4.15)
yield for the pion electromagnetic form factor the result

f(s) =my'F '(n')(no~' —s)
—'B(s)m ')

—2F.g~h2(no~' —s) U(m ',s), (5.1)
and hence'4

The I' functions of the first term asymptotically behave
as s 't' while those of the second term behave as s 't' .
However, one must be cautious in deducing asymptotic
behavior of f(s) from these results. For, since we are
now dealing with two mesons oQ shell, one has in
general

t3 p(pl yp2 ) I X2 ~2(pl tp2 ) ~ (53)
The limit needed to evaluate the form factor is P~& ~ 0,

"Results similar to Eq. (5.2) have been independently ob-
tained by J. L. Rosner and H. Suura, Phys. Rev. 18/, 1905 (1969).
These authors, however, introduce additional "subtraction" terms
in the PCAC equations (3.13)—(3.15) which would not naturally
arise from the viewpoints adopted in this work, The two pro-
cedures agree when X2 ——0. However, the subtraction terms give
rise to structures going asymptotically as ~s'" when P 2&0, com-
pared to the s '12 of the text.

mg' I'(1—n, (s))
f(s)

2nzp' I'(-', —np(s))
(5.5)

The condition f(0) = 1 follows from Eqs. (5.1) and (5.4).
We turn next to the o. form factor obtained from Eq.

(2.20). Equations (4.3) and (4.18) imply

I'(1 —n(s))
Z(s) = —[Pn'+2(p) 9 ](~)'" . (5.6)

I'(-' —(&))

The form factor vanishes asymptotically as s "'. If we
consider again the no-satellite case of X2=0, then
neglecting m '/m, ' terms,

(5 7)

Note that Z(0) is determined to be approximately
—(F-) '.

VI. PCAC CONDITIONS WITH
TWO MESONS OFF SHELL

We consider in this section the current-algebra and
PCAC equations (3.13)—(3.15) when two mesons are
off shell. We see that the nature of the solutions changes
significantly from the one-meson —off-shell case, and
that if one wishes to maintain the Veneziano form for
the amplitudes, poles at pp=0 develop in the off-shell
momentum dependence.

We begin by noting that the Veneziano amplitude
solutions of Sec. IV do not satisfy Eqs. (3.13)—(3.15)
for the more general case of two mesons off shell for two
reasons. First the equations now possess the additional
Z(s) term in the I= 0 channel. Thus if one were to make
a partial-wave analysis of this amplitude, one would
find a fixed pole in the J plane. Such an addition is not
serious, however, for as we see, it is possible to arrange
things so that the fixed pole is an additive contribution
to the A ~ amplitude. For from Eq. (3.7), this function
does not contribute to the total vrA~~ xw amplitude
when one multiplies in the e„(pq, X) factor. Thus the
fixed poles appear only in the off-shell pieces.

The second difficulty with the Sec. IV solutions is
more serious. As can be seen from Eqs. (3.2) and (3.3),

pP —+ —s and so in general P and X& may be functions
of s. In the following we neglect this diS.culty and as-
sume that P(—s, 0), X(—s, 0) are actually independent
of s [which could, for example, be achieved if p(pp, p, ')
had the form po+pipi'p2'].

The simplest possibility involves the choice X2
——0

corresponding to no satellites in the mm ~mw ampli-
tudes. For this situation, one may evaluate P by requir-
ing that the x~ scattering lengths agree with the current
algebra values. Neglecting m '/m, ' corrections, this
implies' 4

(5.4)
and hence
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the 2rlr ~2r2r amplitudes M(r) are symmetric in p12~
P2' interchange. However, the right-hand sides of Eqs.
(3.13)—(3.15) contains explicit P12 factors and so does
not automatically guarantee this constraint. In fact,
it is easy to see that if one inserts the Sec. IU solutions
for the mA ~

—+ xm amplitudes on the right, and uses now
Eq. (2.3), the resulting 2r2r -+ 2r2r amplitudes will violate
the P12+-+ P22 symmetry for the I=0 and 1 channels.
%hat must be the case, then is that the mA ~ ~ mm. ampli-
tudes must possess additioeat pieces antisyrnmetric in
Pl' and P22 when two mesons are off shell so that the
Pl' ~ P2' symmetry is restored in M (r). (This is possible
since there is no a priori syrnrnetry in p)2 and p2' for
the A;.) Thus, Eqs. (3.13)—(3.15) divide into two parts:
The part antisymmetric in P12 ~ P22 on the right-hand
side is to be equated to zero, and the symmetric part
equated to the 3E(~).

We restrict our discussion in this section to the no-
satellite solutions built out of the B(s,t) function of Eq.
(4.1). (One may extend the following analysis to the
more general situation without changing any conclu-
sions. ) As we saw in Sec. IV for this case, Cl(+& then
vanishes and the explicit asymmetry in P12&—+ P22 no
longer appears" on the right-hand side of Eq. (3.13).
The absence of I= 2 s-channel resonances again implies
C3( ) vanishes, reducing this equation to the identical
form it had with one meson oR shell. For the I=2 case,
then itis consistent to use the one-meson —o8-shell form
and choose

C2(+) = )n'13B(t,u—),
with M(2) given by Eq. (4.3). Of course now

(6.1)

and is symmetric in Pl' ~ P2'.
However, matters are not as simple in the I=O and

1 channels, for the solutions of Sec. IV, Eqs. (4.5)—
(4.7), require Cl( &

and Al to be nonzero. This implies
that at least these quantities must have antisymmetric
parts in Pl'~ P2'. We write A1=A1(+&+A, (—&, where

A 1'+'(s, t,u; p12 p22)

—2[A1($)tt)tui pl pp2 )&A 1($)t&ui p2 )pl )$ q (6 2)

with a similar decomposition for C~( ~. The other form
factors, C2 3 and A2, 3, may also have parts antisymrnetric
in pl' ~ p2'. However, such additional deviations from
the usual Veneziano forms for these amplitudes do not
change any of the following conclusions and so we will
here assume C2 2 and A2, 2 are symmetric in Pl'~ P2'.
Equating the antisymmetric part of Eq. (3.14) to zero
then determines C~( ~( ' in terms of C~( )

'+&:

Cl(—)
—(pl —p2 )(pl'+p, ') 'Cl(, '+) . (6.3)

"Note that since s, t, and I are related to PI2 and p22 only via
the symmetric relation, Eq. (2.3), one may view them as symmetric
gnder P12 ~ p22.

C2(-) = —2( n')3)[B(s,t) —B(s,u)),

C2(+& =
2 (t n'0) LB(s,t)+B(s,u) 3.

M(~) will have the normal form' provided that

(6.5)

(6.6)

2pl'p2'(pl'+ p2') 'Cl(-) "'
=(p'+p'+2&2-')( —lt 'P)[B(s,t) —B(su)7 (67)

Equations (6.3) and (6.7) then imply that the total
C&~ ) is given by

C, ( )
——[1+(p, '+ 2&2.')/p, '1

X (—2)ln'P) [B(S,t) —B(S,u) $. (6.8)

A similar analysis can be carried out for the I=0 equa-
tion (3.15). The vanishing of the antisymmetric part
yields

A 1 (p12 p22) (p12+p22)
—1

X [Al(+)+2&1F 'Z(s) j, (6.9)

and the assumption that A2, 3 and M(0) have normal
Veneziano form implies

A 1
——(-,')ln'p) [B(s,t)+B(s,u)]+ [(p2'+2&2 ')/pl'j

X {(-'t(n'P)[B(s,t)+B(s,u)]+-,'tlF 'Z(s)) . (6.10)

The above solution to the two oR-shell meson PCAC
equations have maintained the normal Veneziano forms
of Sec. IV (where only one meson is off shell) for the
C2, 3, A2, 3, and M(1) amplitudes. Deviations appear only
in Cl and Al [which are the amplitudes that vanish
when e„(P),')() is multiplied into the total 2rA1-+2rlr
function M&j.The fixed pole involving the o. form factor
appears only in A &. While this solution is the one closest
in form to the original on-shell amplitudes, ' "we see
that it possesses unusual behavior in the oR-shell mo-
rnenta. For both Cl and Al are singular at p12=0 (the
singularity, of course, correctly disappearing when the
second meson is put back on its mass shell, P22= —

2&2 ').
Aside from the unphysical nature of the singularity, we

note that it invalidates the derivation of the form fac-
tors given in Sec. II. For, if one proceeds to calculate
Z(s) from Eq. (3.15) by taking the limit pl& —+0 (as
prescribed in Sec. II), one sees that the term p)2A1 no
longer vanishes. In fact, since A~ possesses the term
Z(s)/P)2, one easily verifies that Z(s) cancels out at
P11' ~ 0, and that Eq. (3.15) becomes an identity in the
soft-pion limit rather than a determination of Z(s).
One cannot therefore decude the value of Z(s) from the
PCAC equations with two mesons oR the mass shell
without additional assumptions. One possible extra as-
sumption is, of course, that A ~ should be regular at the
soft-pion point (Pl"=0; t, u=2&2 '; s= —P22). The con-

Equation (3.14) is then reduced to

tlM(1) 4pl p2 (pl +p2 ) Cl(—)
—(t+u —22&2 ')C2( )

—(t—u)C2(+). (6.4)

If we now assume. C2( ) and C3(+~ have the normal
Veneziano form of Sec. IV, then
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dition that cancels the singularity in Eq. (6.10) at this
point does indeed evaluate Z(s) to be

Z(s) = —pF.n'B(s, vvv„'), (6.11)

which is, in fact, precisely the result of Eq. (5.7). How-
ever, this assumption is somewhat artificial. For while

Eq. (6.11) does eliminate the leading singular piece at
the soft-pion point" pi&=0, Ai is still singular at all
points Piv=0, Pi"&0.

The singularities in the pi' variable is a consequence
of requiring that ones amplitudes have Veneziano form
when two mesons are off shell. If one relinquishes this
constraint, then one can easily obtain A; and C; regular
in pi' (as is the case, for example, in. the smoothness
approximation in the hard-pion method). However,
then M&0& possesses a term proportional to Z(s) and if
one evaluates Eq. (3.15) at the soft-pion point, Z(s)
cancels out and the relation again becomes an identity.

VII. CONCLUSIONS

In this work we have examined the possibility of ex-
tending the Veneziano amplitude to situations where one
or two mesons are off shell in a fashion consistent with
PCAC and current algebra. For the case of one meson
off shell, no difhculties appear to exist; the off-shell
amplitudes maintain precisely the same form as in the
on-shell case. The PCAC equations then allow one to
relate different processes (e.g. , vrvr ~ vrvr to vrAi ~ vrvr).

When one considers two off-shell mesons, the Ward
identities lead to the presence of an additional vertex
function term in the PCAC equations, arising from

differentiating the jump discontinuity. Thus, for this
case, one has the possibility of evaluating these vertex
function in terms of scattering amplitudes (by continu-
ing to the soft-pion point) and thus obtaining vertex
functions that automatically include the infinite number
of recurrences of a given spin implied by the Veneziano
function. However, with two mesons off the mass shell,
the assumption of Veneziano form for the invariant
amplitudes produces some problems. First, one finds the
expected fixed-pole pieces arising from the vertex func-
tions. (It is interesting to note, however, tha. t such terms
need only be included in the parts of the xA& —+ex
amplitude that are orthogonal to the A~ polarization
vector. ) More remarkable is the fact that the oR-shell
amplitudes grow poles in the oR-shell momenta at p' = 0.
These poles, in fact, negate the possibility of deducing
the vertex functions in the fashion discussed above
without additional assuvNpti ovvs.

One may recover at least the a-commutator vertex
expression by requiring that the leading singularity
vanishes at the soft-pion point p"=0. While this is a
reasonable hypothesis, the amplitude is still singular for
all s, t, and u [except for s at the o. meson, n(m, ') = 1),
"Actually, Eq. (6.11) eliminates only the term going as ~1/p&'

at p&&=0. A& still has a singularity going as 1/p&& near the soft-
pion point.

when p'= 0 with p&40. The reason that the singularity
of Eq. (6.10) cannot be canceled for all s, t, and u is due
to the local current-algebra assumption [e.g. , Eq.
(2.12)]which makes Z a function of s only. This suggests
that the Veneziano amplitude is perhaps inconsistent
with local-current commutation relations, and one may
have to modify the latter if one is to get smooth off-
shell behavior. Alternatively, perhaps one can learn to
live with apparently unphysical singularities in p'.

Finally, while we have examined here mainly the
vrAi~vrvr amplitudes (which are related to the 0.

vertex), a similar analysis could be carried out for
xAy~mA~ scattering. One would expect that these
amplitudes also will grow poles in the off-shell momenta
negating the soft-pion derivation of the pion vector form
factor. Again, if one were to cancel the leading singu-
larity at the soft-pion point, one would expect to repro-
duce the soft-pion evaluation of the vector form factor,
though the remaining amplitudes may still be singular
for p2=0, p~&0.

Note added in manuscript. After completing this work
there appeared an article by Suura' suggesting that one
extend the PCAC and field-current identities, Eqs. (1.1)
and (1.2), to include all the 0 and 1+ recurrences along
the pion trajectory. Thus one would write

A~=+ (g a"„+F 8"vr ) (7.1)

and
B„A~=+ F.vN..'~. , (7.2)

where ~„and a&„are the phenomenological fields de-
scribing the vvth pion and vvth Ai meson [vri(x)—=vr(x)
and a&i=—a&(x), where vr and a& are the fields for the ex-
perirnentally observed vr and Ai mesons]. Thus the off-
shell amplitude for vr„+vr —+ vr+vr reads

DE z p
——(N3N ) ' d'xd'y e'"*e'"'"E~(x)E(y)

X(~P,c,~P4d I 2'(~-(x)~~(y)) I 0), (7 3)

"H. Suura, Phys. Rev. Letters 23, 551 (1969).

with a similar expression holding for the off-shell
vr+Ai„—+ vr+vr amplitude. Following Suura, we as-
sume that each of these amplitudes has normal Vene-
ziano form. Thus for the case of no satellites, we write

C~+&.(s,t,u; pi2pv') =p„(pi', p, ') V(t,u), etc. , (7.4)

for the generalization of Eq. (4.3), etc. (We do not, how-
ever, make any specific assumption on the nature of p„,
as was done in. Ref. 27.) It is straightforward to extend
the analysis of Secs. III—V to this more general case.
One finds, just as in the text discussion, that singulari-
ties arise at Piv = 0 in at least one of the amplitudes. Thus
the inclusion of m. and A~ recurrences does not remove
the difficulties in extending the Veneziano amplitude to
the case of two off-shell mesons.


