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general meson masses together with various decay
parameters and form factors, have no analog in our
mass and mixing-angle formulas. With respect to
another set of papers (see especially Refs. 6, 10, and 12),
which are instead purely group-theoretical, we have
added in this approach the assumptions (1)—(4)
summarized above Lactually, the property (4) is rather
a consequence directly arising from our model when
tested with the experimental situationj, together with
the idea of applying standard techniques of spon-
taneous breakings to the case of Lagrangian models.

It should be noted, finally, that our starting point is
not a fully SU3SU3-invariant Lagrangian with a
spontaneous-breaking mechanism, nor a speci6c La-
grangian function with an ad hoc breaking term; in

our approach, in fact, the SUSSU3-breaking term is
in part contained in the contribution 2 to the La-
grangian, in part given by the spontaneous breakdown,
i.e., by the noninvariance of the vacuum. This appears
to be another di6erence with respect to the many other
approaches to the chiral symmetries.

In conclusion, we can say that the present approach
provides a self-consistent scheme where all the previous
assumptions can be simultaneously realized. On the
other hand, our Lagrangian model, constructed on the
basis of well-defined physical prescriptions, directly
leads, even in this simple stage, to quantitative results
and to mass and mixing-angle relations whose degree
of accuracy, with respect to the experimental data,
appears very promising.
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The Yang (or droplet) model and the Regge model for high-energy diffractive processes are contrasted,
their complementarity emphasized. The combination of the physical aspect of the former with the mathe-
matical aspect of the latter gives rise to a bootstrap model which has far-reaching consequences. The as-
sumptions of the bootstrap model are: (a) High-energy inelastic processes are dominated by the two-cluster
diffractive fragrnentations; (b) the s dependences of diffractive scattering and fragmentation are the same;
and (c) partial-wave amplitudes can be continued uniquely into the complex j plane. We study the boot-
strap of the Pomeranchon in both the s and the t channel using inelastic unitarity without approximation.
The Pomeranchuk singularity is found to be a branch point with e(0) =1 exactly; discontinuity of the
associated cut vanishes at the tip. Both forward and nonforward cases are considered. Various properties
of di8ractive scattering and fragmentation at high energy are obtained. On the basis of the bootstrap model,
we make predictions on (1) the asymptotic behavior of fT&,&, (2) the ratio of real to imaginary parts of
scattering amplitude, (3) the absence of physical manifestation of the Pomeranchon, (4) the dependence of
fragmentation cross section on the effective masses of the particle clusters, (5) the average multiplicity of
hadron production, (6) the di6raction peak of fragmentation process, and (7) the relationship between
pp and yp diffraction peaks. All of these predictions are consistent with whatever relevant data are available
at present. If, in addition, a technical assumption is made concerning the Reggeization of production ampli-
tudes, the precise nature of the Pomeranchuk branch point can be determined.

I. MATCHMAKING
" 'N a series of papers' ' Yang and collaborators have
~ - studied various collision processes at high energies
from a point which stresses the spatial extension of the
particles. Let us, for brevity and definiteness, associate

* Supported partly by U. S. Atomic Energy Commission
Contract No. AT(30-1) 36688.

' T. T. Wu and C. N. Yang, Phys. Rev. 13'7, B708 (1965).' N. Byers and C. N. Yang, Phys. Rev. 142, 976 (1966).' T. T. Chou and C. N. Yang, in Proceedings of the Second Inter-
national Conference on High-Energy Physics and 37zIclear Structure,
Rehovoth, Israel, 1967, edited by G. Alexander (North-Holland
Publishing Co., Amsterdam, 1967), pp. 348—359; Phys. Rev. 170,
1591 (1968); Phys. Rev. Letters 20, 1213 (1968).

~ T. T. Chou and C. N. Yang, Phys. Rev. 175, 1832 (1968).' J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev.
188, 2159 (1969).

the invariant theme of these papers with the name of
the invariant author, and call it the Yang model. There
is, on the other hand, the Regge-pole model' which has
been used extensively to interpret high-energy phe-
nomena. In this model the spatial picture of the
collision process is completely ignored, while emphasis
is put on the analytic properties of the scattering
amplitudes in the momentum and angular-momentum
spaces. The two models have thus far been developed
in such separate ways that neither has benefited from
any of the insights gained by the other approach. It is

6S. C. Frautschi, Regge Poles and S-Aviatrix Theory (W. A.
Benjamin, Inc. , New York, 1964).

~ E. J. Squires, Complex Angllar 3fomenta and Particle Physics
(W. A. Benjamin, Inc. , New York, 1964).
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the purpose of this paper not only to point out that
the two models are complementary but also to show
that they can be united to form a bootstrap model
which has much greater predictive power than either
one possesses separately.

A. Yang Model

In this model two particles undergoing a high-energy
collision are considered as spatially extended objects
going through each other. They may retain their
identities, ' be excited, 4 or be broken up. ' In the case
of elastic scattering, for which the most quantitative
work has been done, 3 it is observed that in all high-
energy collisions the differential cross section do/dt
seems to approach a limit f(t) On th. e basis of this, the
eikonal picture is used to describe the propagation of
the Lorentz-contracted object through hadronic matter
with attenuation. By assuming that the matter density
is proportional to the charge density, the angular dis-
tribution of the diffractive scattering can be related
to the electromagnetic form factor, and an impressive
no-parameter 6t has been obtained. Thus in this model
the virtue lies in the ability to discuss the t dependence
given the form factor (or vice versa), but it fails to have
anything to say about the s dependence which must be
taken from observation as granted.

On inelastic processes this model can make only
qualitative but very definitive statements. The particles
being thought of as made of constituent bits get shaken

up as they pass through each other and separate either
in excited states (diffractive excitation' or dissociation')
or in fragmented states. ' Let us refer to both of these
possibilities as diffractive fragmentation. The important
assertion in this model is that at very high energies the
emerging particles belong to either one of two clusters:
that which "comes from" the target or that which
"comes from" the projectile. Let such processes be
symbolized by a+b —&A+8, where A and 8 are
clusters of particles whether or not the particles are
decay products of excited states. The velocity distribu-
tion of particles in the cluster A (8) is finite in the rest
frame of a (b). The process is diffractive if a (b) and
A (8) have the same internal quantum numbers, or,
stated differently, only vacuum quantum numbers can
be exchanged.

In cosmic-ray experiments' it has long been noted
that there exists a pionization cloud which is relatively
unenergetic in the over-all center-of-mass (c.m. ) system.
This is in apparent contradiction with the two-cluster
picture. The Yang model disfavors the existence of
such a cloud on the ground that there are no meaningful
c. m. systems when the collision process is interpreted
in terms of interactions between the continuent bits. '

' M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).
9 M. Koshiba, in I'roceedings of the Third International Con-

ference on High-Energy Collisions, Stony Brook, 1969, edited by
C. N. Yang et al. (Gordon and Breach, Science Publishers, Inc. ,
New York, 1969), pp. 161—205.

The observed pionization is understood as a manifesta-
tion of the smallness of the pion mass. Indeed, the
relativistically invariant momentum distribution favors
peaking at low energy in any frame" and consequently
in the over-all c.m. frame, even if the matrix elements
are suppressed there. Thus there exists no experimental
evidence against the two-cluster picture for inelastic
processes at high energy.

We shall make crucial use of the two-cluster picture
to build a bootstrap model of diffractive processes.

B. Regge Model

Let us at the very outset define an equivalence rela-
tionship to establish a bridge between this and the pre-
ceding model:

(diffractive process) —= (Pomeranchuk exchange). (1.1)

%e start with no prejudice on the nature and position
of the Pomeranchuk (P) singularity (or, briefly, the
Pomeranchon) except that it lies farthest to the right
in the j plane for the even-signatured, vacuum quan-
tum-numbered, t-channel helicity amplitude. For in-
elastic processes, the final-state particles must be
grouped into two clusters as in the Yang model so that
the appropriate t channel can be defined. Under the
assumption that partial-wave amplitudes can be con-
tinued to complex j, (1.1) is no more and no less than
an equivalence relation. The location and nature of
the I' singularity, if it is known, determines the asymp-
totic s dependence of the amplitude for the diffractive
process, and vice versa.

The main virtue of the Regge model is that it is built
on principles which are generally believed to be true
for scattering amplitudes. They are Lorentz invariance,
unitarity, some domain of analyticity, and crossing.
Whetherr these properties are derived or postulated is
of no practical importance in high-energy physics.
Extension of the analyticity property to the angular
momentum plane is essentially a technical step which
is also generally acceptable in principle. The confirma-
tion of resonances lying in linear Regge trajectories has
made the model attractive to many. A real drawback,
however, is that the general principles have forced the
existence of so many Regge poles {daughters, etc.)
that the model has become ineffective either as a guide
showing the way to an eventual theory or, more
particularly, as a tool for phenomenological analysis.

For our purpose in this paper there is absolutely no
need to consider that part of the j plane marred by the
proliferating tribes of poles. We shall consider only the
domain to the right of the line Rej&1—c, e some
small positive number. For t&0 this domain is free of
singularities except the Pomeranchon, which we shall
show to be located exactly at j= 1 when t =0. For t) 0
other singularities may move in but our interest will

"M. L. Good (private communication).
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ba
FIG. 1. (a) DiGractive scattering; (b) diRractive fragmentation.

be limited to the immediate neighborhood of j=1 and
the questions that we shall ask will be completely un-
affected by the proximity of these singularities. In
other words, our concern will primarily be the mathe-
matical aspect of the theory of complex angular momen-
tum, which is more general than the imperfectly chosen
label "Regge model" usually suggests.

Since our aim is to study diffractive processes, we
are interested only in the Pomeranchuk singularity.
No other singularities will be considered or even
mentioned. The Pomeranchon has always been some-
what of an anomaly. For some time it is thought to be
hardly moving. More recently, the persistent shrinking
of the diffraction peak of pp scattering up to 70 GeV"
suggests that the E trajectory might have a gentle slope

0.4 (GeVjc) '$, although one can always question
whether the asymptotic region has really been reached.
Also, till this date there is no conclusive evidence that
it shows up as any real particle of spin and parity 2+.
The anomaly is further accentuated by the suggestion
of Harari and others" that the Pomeranchon is related
to the nonresonating background at low energies
(instead of the low-energy resonances) via a finite-
energy sum rule, and by the fact that it is usually left
out in the Veneziano model. "

In the light of this anomaly it is reasonable to suggest
that the dynamical origin for the I' singularity is unique
and different from whatever mechanism that generates
all the other singularities. The Yang model specifies that
origin, which cannot be applied to nondiffractive proc-
esses, and that is: the Pomeranchon bootstraps itself.

C. Complementarity

phenomena. The spatial picture and the geometrical
aspect of the scatterer has always been important in a
variety of diffraction phenomenon, and is now extended
to hadron collisions with many of the intuitive notions
carried over. The assertion of the two-cluster picture
for inelastic processes, for example, is a simple and
direct consequence of the physical model without the
need for any deep understanding of the nature of
hadron interactions. However, its strength is also its
weakness. The physical ideas lack mathematical pre-
cision, and consequently it is dificult to develop any
farther from the original qualitative ideas, however
deep the insight might be. It is like a driver without
a vehicle.

On the other hand, the Regge theory is based on
mathematically precise principles of analyticity, uni-
tarity, crossing, and Lorentz invariance. Rigorous de-
ductions are possible, given certain assumptions about
singularities. But on the subject of diffractive processes
there has been no sound dynamical model, without

, which the theory of complex angular momentum is like
a vehicle without a driver. The multi-Regge model'4 is
the only dynamical scheme within the Regge model
that attempts to generate the Pomeranchuk singularity.
The inference of this model is directly opposite to that
of the Yang model in that the Anal particles of a highly
inelastic process are distributed more or less uniformly
in the momentum space (apart from kinema, tical en-
hancement at low momenta) and exhibit no clustering
into two blobs. We regard the multi-Regge model as
unrealistic on the ground that the partial energies
between pairs of particles in the Anal state do not grow
large enough to justify dominance by Regge poles ex-
changed; similarly, the multiperipheral model of
"elementary" pion exchanges" is unrealistic since the
average minimum of Inomentum transfer in the ex-
change chain is not small enough to justify pion
dominance. Rejecting these ideas then leaves the Regge
model fully equipped but undirected. The possibility
and need for a match with the Yang model is striking.

The two models are complementary not just in the
fact that one stresses the physical, spatial properties of
hadron interactions, while the other emphasizes the
mathematical, momentum-space properties of the scat-
tering amplitudes. It is worth noting also that, on the
one hand, in the Yang model the s dependence is
assumed, while the t dependence can be predicted, pro-
vided that the matter density distribution inside a
hadron is optimistically related to the charge density
distribution. On the other hand, in the Regge model
the t dependence is essentially assumed; at best the s

'4 G. F. Chew and A. Pignotti, Phys. Rev. 1/6, 2112 (1968);
G. F. Chew, M. L. Goldberger, and F. E. Low, ibid. 180, 1577
(1969); M. L. Goldberger, C. I. Tan, and J. M. Wang, ibid. 184,
1920 (1969)."L.Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,
626 (1962); D. Amati, A. Stanghellini, and S. Fubini, ibid. 26, 6
(1962); G. F. Chew, T. W. Rogers, and D. R. Snider (to be
published).

It is evident from the foregoing description of the
Yang and Regge models that no convict exists between
the two. On the contrary we suggest that they are
complementary pictures of the same phenomena of
high-energy collisions, and that certain aspects of the
collision processes can be readily described in one
language but are virtually impossible in the other.

The Yang model is built on physical ideas that are
suggested by classical and more familiar scattering
"G. G. Beznogikh et al. (Dubna-Serpukhov Collaboration), in

Proceedilgs of the Third Imtermatiomat Conference ort High Energy-
CollisiorIs, StorIy Brook, 1969, edited by C. N. Yang et ul. (Gordon
and Breach, Science Publishers, Inc. , New York, 1969)."H. Harari, Phys. Rev. Letters 20, 1395 (1968); F. J. Gilman,
H. Harari, and Y. Zarmi, ibid. 21, 323 (1968).

"G.Veneziano, Nuovo Cimento 5/A, 190 (1968).
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dependence can be predicted, provided that the scatter-
ing (/(0) and the resonance (t)0) regions are opti-
mistically related by linear trajectories. Note, however,
that in the diffractive case even the s dependence can-
not be predicted. It is a reasonable hope that united they
leave little ground uncovered.

D. Bootstray Model

To facilitate the general discussion here of the union,
let us use diagrams to depict some of the ideas. Let a
wavy line represent Pomeranchuk exchange. In accord-
ance with the equivalence relation (1.1), it also repre-
sents any diRractive process. Thus, in Figs. 1(a) and
1(b) are shown diffractive scattering and diGractive
fragmentation, respectively. In all diagrams in this
paper, s goes horizontally and t goes vertically.

It is generally agreed by all approaches to high-energy
physics that the cross sections for processes involving
an exchange of nonvacuum quantum numbers are
suppressed by some power of s. Therefore at high
energies it is necessary only to consider diffractive
processes. In the Yang model they are predominantly
diff ractive fragmentation into two clusters. Now, the
unitarity equation at high energy relates the absorptive
part of an elastic scattering amplitude (which is essen-
tially the amplitude itself at high energies) to a folded
integral over a product of inelastic amplitudes with
the number of particles in the intermediate state
summed over all possible values. The saturation of the
inelastic processes by diffractive fragmentation accord-
ing to the Yang model then leads to the picture in Fig. 2,
where the broken line cuts across the state in which all
variables are supposed to be summed and integrated
over. It is clear from Fig. 2 that two Pomeranchons
"folded over" give back the Pomeranchon itself. This
is what we mean by "bootstrap. "More precisely, what
is involved is an assumption that the s dependences of
diBractive scattering and fragmentation at the same
momentum transfer are exactly the same. The non-
linearity of the unitarity equation then puts a non-
trivial constraint on the s dependence. That is "boot-
strap. " Note that we have not made use of any ideas
exclusively belonging to the Regge model; unitarity is
just. conservation of probability which is basic in all
physical models. Thus bootstrap of the diffractive proc-
esses is a natural extension of the Yang model. We call
this the s channel boot-straP.

Unless we know something about how the production
amplitude depends on momentum transfer and cluster

I
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I

I

I
l

FIG. 2. Diagrammatic representation of s-channel bootstrap.

I"IG. 3. Diagrammatic representation of t-channel bootstrap.

energies, the proposed bootstrap is only a scheme that
is in need of implementation. It is here that the Regge
model can contribute in its complementary role. The
bootstrap picture of Fig. 2 implies on the basis of
crossing symmetry that if we consider the partial-wave
amplitude in the t channel and continue to the complex

j plane, then the Pomeranchuk singularity must boot-
strap itself (independent of the energy variables). This
can be done by studying the inelastic unitarity in the
t channel, which when continued to the complex j plane
contains a term corresponding to two Pomeranchons
in the intermediate state. This term generates a
singularity in the j plane. Ke require that the resulting
singularity be the same both in position and in nature
as the input singularities in the intermediate state, and
call this the t ckanrsel bo-otstrap. This is depicted in Fig. 3.
Because the energy variable s is replaced by the angular
momentum variable j, this bootstrap is self-contained.

A direct consequence of the t-channel bootstrap which
we treat in Sec. II is that the Pomeranchon is a branch
point. This can readily be seen if we recall that two
Regge poles can generate a Mandelstam cut"; the same
mechanism operates when we require two Pomeran-
chons to generate a Pomeranchon and the obvious self-
consistent solution is that it is a cut. That the I
singularity may be a branch point has recently been
suggested by this author in a related but different con-
sideration, ' and also independently by Gell-Mann, '8

by Truong, " and by Cheng and Wu."The result of
the I-channel bootstrap allows it to be either fixed (at
j=1), or moving as a linear function of t'". For the
most part of this paper we shall consider only the case
where it is fixed, although many results obtained are
also valid even if it is moving. In addition to determin-

ing the position of the branch point, we also obtain a
constraint on the nature of the singularity. This con-
straint turns out to be important to the study of the
s-channel bootstrap.

In Sec. III the results of the t-channel bootstrap are
applied to the s-channel considerations. Asymptotic

"S.Mandelstam, Nuovo Cimento 30, 1148 (1963)."R.C. Hwa, Nuovo Cimento Letters 2, 369 (1969).' M. Gell-Mann made this suggestion at a seminar given at
Stony Brook in 1969 (unpublished).

'9 T. Truong (private communication).I H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).
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behaviors of di6ractive processes are obtained. The
constraint on the nature of the I' branch point is used
to determine the dependence of the diffractive frag-
mentation process on momentum transfer and cluster
masses. Both forward and nonforward cases are con-
sidered. There emerge from the s-channel bootstrap a
number of results that have not been (and perhaps
cannot be) obtained purely within the framework of
either the Yang model or the Regge model separately.

In total we make seven predictions which can all be
checked by experiments. They are summarized in Sec.
IV. All of them are consistent with the crude high-

energy data available at present.
In the last section (Sec. V) we weaken the second

assumption of the bootstrap model and show that all
the results obtained are unchanged if only the position
of the Pomeranchon is bootstrapped, and not the nature
of the branch point.

II. t-CHANNEL BOOTSTRAP

We consider partial-wave amplitudes in the t channel,
A (j,t), for the elastic scattering of spinless, unit-mass
particles. In particular, we consider the inelastic con-
tribution to the unitarity equation coming from the
four-particle intermediate state. Let the description of
this state be in the angular momentum representation
in which the four particles form two pairs with angular
momentum quantum numbers j&, X& and j2, X2. We
shall continue the unitarity equation to complex values
of j, j~, and j2. The bootstrap condition will be the
requirement that there exists a singularity which has
the same position and nature in all three of these
variable, i.e., this singularity generates itself by uni-
tarity. It does not matter whether we start with four
or more particles in the intermediate state, so long as
we get two Reggeizable angular momentum substates.
Four is obviously the lowest possible number. Once we
achieve in identifying the (Pomeranchuk) singularity
with two similar ones in parallel, then it automatically
takes into account the possibility of identifying the
singularity with three or more similar ones in parallel,
since each intermediate one can be replaced by two,
ad infinitu. Note that these possibilities should not be
added naively, since the only unambiguous hierarchy
of terms contributing to inelastic unitarity is in terms
of channels consisting of stable particles only, and they
can all be included in a pair of angular momentum sub-
states. We discuss below first the Reggeization of four-
particle unitarity and then the bootstrap problem.

A. Unitarity Equation with Two
Intermediate Pomeranchons

Let T22 be the amplitude for elastic scattering in the 3

channel. We define

The lt and X labels are superfluous for elastic scattering
of spinless particles, but we keep them so that the same
formula can be used later for partial-wave projections
of production amplitudes. Identifying

T„"(t)=A (t)8„, (2.2)

the usual elastic discontinuity is

AsA j(t) = A j(t+i p)
A'—(t i p)—= 2ips(t)! A'(t)! ', (2 3)

where

!ps(t) =
64m'

(2 4)

For a production process of two into four, labeled
1+2~ 3+4+5+6, let t = (p~+ ps)', t~ (pp——+p4)', and
ts (P5+Pp)'. We make partial-wave projection in the
c.m. system of particles 3 and 4 as in (2.1) with the
polar angle referred to the vector p, +p4 in the over-all
c.m. system and with the azimuthal angle referred to
the plane containing p& and p, in the (3,4) c.m. system.
Let the angular momentum labels so obtained be j&
and ) &,

' they clearly play the role of spin and helicity
of a flctitious particle representing the (3,4) subchannel.
The same can be done about the (5,6) subchannel for
which we use the labels j2 and X&. The production ampli-
tude may now be written as Tj,q, jpq, (t,tr, t&,8,&), where
the angles specify the momenta of the two fictitious
particles of the final state in the over-all c.m. system.
Finally, we make a particle-wave expansion in accord-
ance with Jacob and Wick" )inverse of (2.1)j,
Tjlklj2X2(tyt1ltsl8l@)

'j+'
Tj x,jg j(t, ti, ts)D~pj(lt, 8,0), (2.5)

4'

A4A'(t) = 2i

(g1/2—2) 2 (]1/2 t11/2) 2

dtpp4(t)

XP T„,j(ty)T„,j(t—), (2.6)
612

where + and —refer to t, tq, and tp being evaluated
just above and below the respective unitarity cuts.
Assuming that particles 3—6 all have unit mass, we have

(2.7a)

where X=X~—X~. In the following we shall use A~2 to
denote j&X&j&X2 collectively and t to denote the triplet
t, t~, and t2. The four-particle contribution to the uni-

tarity equation can now be written in terms of the four-
particle discontinuity as

Tss' (t) = d cos8dg Tps(tl8lltl)D), pl*(lt, 8,0) . (2.1)
q, = ,'(t; 4)"', j-=1—, 2 (2.7b)

@ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) '7, 404 (1959).
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le= v'„„(t),
2)1/2

(2.7c)

I'(j—X+1)
P,l(cos8) e'"e (2.8)

I (j+X+1)

where the associated Legendre function P,l(cos8) is
entire in j and ) . To exhibit explicitly this singularity
structure, we define

&gl(2(t) =Lts —2t(tl+ts)+(ti —ts)']'". (2.7d)

The labels j'&, X&, j2, and X& are to be summed over all
physically allowed values.

In order to continue (2.6) to complex j it must first
be recognized that the D' function has singularities in j
on account of the expression

from an entirely diferent approach'4 has lent further
credibility to their method. We shall follow their general
method, but differ from them in that the relevant
singularities in j& and j2 are not poles but of a nature
to be bootstrapped. The reader unfamiliar with Refs.
22 and 23 may find the following discussion somewhat
brief to be comprehensible at first reading. We suggest
that he skips the next three paragraphs at first, pausing
only at (2.18) to pick up the formal representation of
A (j,t) with branch point at j=a., and continue with the
paragraph that begins with (2.20). The details of the
the mathematical problem of continuation to the corn-

plex j plane can be studied later.
Since the Pomeranchuk singularity (whatever it is)

has even signature, we consider only the piece that
corresponds to continuation from even values of j&
and j2. Also, since the summand is invariant under the
simultaneous interchange of both ) j. and X2 with —~&

and —X2 "we have

Z =2 2' (2+2 )
~1~2 ~1)0 ~2)0 ~240

F'i = d cos8 d@ T(8&)P,l(cos8)e'"&, (2 9)

which is free of such kinematical singularities. Doing
this modification for all of the variables j, X, j&, X&, j2,
and X2, we get

The prime on the suDUnation sign means that the Xg=0
term should be divided by 2. The terms corresponding
to X~)0 and X2&0 turn out to be unimportant, so we

consider explicitly only the terms with X&)0 and
~2'=——X2)0 for which the total helicity X=X&—~2 is
always positive. Thus we have

where
r&„1(t)=C,'»(~»y;„t(t), (2.10)

Z=2Z 2 2 E+ (2.13)

I'(j—X+1)I'(jl—&i+1)I'(j,—)is+1)
C, (422) =

I'(j+)+1)I'(jr+) 2+1)I'(j2+X2+1)

) ='Ay —X2.

The discontinuity equation then becomes

DeAs(t) =2i dtldts p4(t)

(2.11)

X1=O J1=X X&'=O ~&=X&'
even even even even

~is (4i)'

dory

djj

tansÃXi K tanssr(jl Xl)

where the dots imply other terms which will not con-

cern us; the odd P; terms do not contribute to leading

singularity in j, as will become evident. The summations

may be replaced by integrals as follows:

XQ C;(A ls) Filles(t+) F2„'(t—) . (2.12)
+12

The problem of continuing an equation such as (2.12)
into the complex j plane has been studied in detail by
the Leningrad-Moscow school, notably in Refs. 22 and
23. Although the convergence of the summations in-
volved has not been proved in the case of complex j,
it is believed that the method of continuation gives
correctly the mechanism of the generation of Mandel-
stam's branch point" and the nature of the singularity
in the j plane. The fact that the same result is obtained

2' V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martiro-
syan, Phys. Rev. 139, 8184 (1965).

~ Ya. I. Azimov, A. A. Ansel'm, V. N. Gribov, G. S. Danilov,
and I. T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 48, 1/76 (1965}
fEnglish transL: Soviet Phys. —JETP 21, 1189 (1965)j.

dX2' dj2
(2.14)

irg tails%)ls Xr tansÃ(f2 X2 )

It should be pointed out that each of these 1/tan( )
factors can be added by a function analytic inside the
respective contours without affecting the replacement
of the sums by integrals provided that the usual require-
ment by Carlson's theorem is satisfied. We shall not
exhibit this freedom explicitly, since it amounts to a
redefinition of the integrand. To make use of (2.14), the
summand in (2.12) must be regarded as analytic func-

tions of the complex variables j&, X&, j2, and X&', more-

24 V. N. Gribov, in proceedengs of the 1967 Internateonat Con
ference on Particles Fields, edited by C. R. Hagen et al. (~iiey-
Interscience, Inc., New York, 1967},pp. 624—631; Zh. E»perim.
i Teor. Fis. 53, 654 (1968) LEnglish transl. : Soviet Phys. —JETP
26, 414 (1968)g.



1796 RUDOLPH C. HWA

X~ plane This equation is satisfied if we write

F4„'(t,t t, tz) =F4„&'(t,tz, t2)A;, (t4), (2.16)

0
Ql ~

where F4„'(t)has no two-particle normal threshold
singularity in ti, while A;, (ti) satisfies (2.3). Now,
using (2.16) and (2.3), we obtain

X X X X X X

j-2a+ l j-La+2

(t1/2 2) 2

dt p (t)F4„'(t+)F4„'(t—)

FIG. 4. Contour E)4 in the 'AI plane. Crosses at 0, 2, 4, . . . , are
poles of cot-', zr)1, those at j—32+1, j—12+2, . . . , are poles
of P(j—X+1) after the integration over X2'. The poles at t&,

l& —1, .. ., result from the integration over j1.

over, if the whole equation is to be continuable to
complex j, the contours of integration in (2.14) must be
carefully chosen. "Whereas E; should only enclose in
a counterclockwise direction all the poles at j~&X~ and
j&&X2 arising from the vanishing of the tangent in the
denominator, Ez should enclose not only the poles at
~~&0 and ~~'&0 of cot-,'m'A~ and cot-,'m. 'A2' but also the
poles of I'(j—P,+1) contained in C;(Atz). This last in-
clusion, as illustrated in Fig. 4, is necessary to avoid
pinching of Ei, by the poles of I'(j—X+1) with the
poles of cot-,'m'A~ and cot-,'~X2', since that would result
in poles for the integral at all odd-integer points of j no
matter how large, a circumstance which definitely
prevents the unique continuation to complex j. The
inclusion of the poles of I'(j—) +1) amounts to adding
a counter term'2 to (2.12), which vanishes at all

(physical) even j values, and is defined to cancel all
the poles at the (nonphysical) odd j values. In other
words, (2.12) as it stands for physical j cannot be
continued uniquely to complex j unless another term,
call it tanszr jS(j,t), is added. It is this term which gives
rise to the Mandelstam branch point, which evidently
disappears at physical even values of j. Similarly, the
self-generating singularity which we are searching for
must also be in S(j,t). We note that this singularity
exists whether or not one chooses to identify it with the
phenomenological vacuum singularity bearing Pome-
ranchuk's name. If one does, then by the argument
given above, the Pomeranchon can never have physical
manifestations at positive even j values, even if it is a
moving singularity.

Let us now delve into the details and look at the main
substance of the integrand, F2„'(t+)F4„'(t—). In
order to introduce dynamical singularities in the j& and

j2 variables, we first recall the discontinuity across the
two-particle normal threshold branch cut in tt (ignoring
the tz channel for the moment to avoid repetition) 2'

F&» (t, t,+, t,) —F4» '(t, t, —,t,)
=2zp2(tr)F4»'(t, tz+, tz)A;, (tz —). (2.15)

"R.C. Hwa, Phys. Rev. 130, 2580 (1963); 134, 31086 (1964).

where the contour Ci starts at (t'"—2)' —ie, loop-
ing clockwise around the threshold and ending at
(t'" 2)'+—ie Doin. g the same for the t2 subchannel,
we have

(~1/2 2) 2

dt1

(g1/2 F11/2) 2

dt2 p4(t)F2»'(t+)F4„'(t )—
dt's

p (t)
F4 '(t+)—4P2(ti)P2(t2)

1 "&'l A(t t)
A (jr, ti) = — dti

QQ

(2.18)

The lower limit is unimportant, as our result is inde-
pendent of it. We set it to be —~ for definiteness.
Substituting this representation. for A (ji,ti) and A (j z, tz)
into the right-hand side of (2.17), which in turn is then
substituted into (2.12), we obtain, with the help of
(2.14), the part that is involved in the Azs integration,

u, g cot-', mug cot-s, zr( jz—) i) dP 2'

+Cot, 7I-X2'
d j2 I'(j—) &

—) 2'+1)
cot-,'zr( j2—) 2')—

rr t2 j2 I (j+~1+~2 +1)
I'(ji—At+1) I'(j2 —) 2'+1)X— (2.19)
I'(jr+&4+1) I'(j2+) 2'+1)

In the integration over ji the poles of cotszr(ji —), t)
inside the contour E; located at jr=a» ) 2+2,

where It'q„' is now defined to have no normal threshold
singularities in both t~ and t2, and the end point of C~
are at (t'"—tt'")'&is.

The amplitudes A;, (ti) and A;, (t2) are now regarded
as analytic functions in j& and j2, respectively. We
assume that A;, (ti) Land similarly for A,2(tz)$ has a
singularity at jt=rr(t&), and that the amplitude can
formally (apart from constant and subtractions, etc.)
be represented by
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cannot coincide with any of the Poles of I'(ji—Xi+1)
but can pinch E, by a coalition with the pole at j&——l&,

resulting in poles at Xi=I~, l~ —2, . . . . Note here that
the odd-Xr series in (2.13) would have resulted in poles
at X~=l~ —1, li —3, . . ., which are one unit lower and
therefore less important. %e shall only consider the
leading singularity at A&=l&. Similarly, the integration
in j2 yields a leading singularity at X~ =12. Now for
the X2' integration, the contour Eq encloses the poles of
both cot-', 2rX2' and of I'(j—Xi—X2'+1), but not the
one at X~' ——l~. The corresponding figure is as shown in
Fig. 4 if we replace the symbol X& there by X2', the pole
at li by l, , and j—l,+1 by j—Xi+1. Thus there can
be a pinch resulting in a term cot~~12 and another pinch
yielding a series of poles, the highest-lying one in the
Xr plane being at Xi ——j—l2+1. In the light of the com-
ments made imrnediateld following (2.14), the vanishing
of cot—,'x/2 at odd values of l2 does not force the entire
integral to vanish, since a nonzero additive term can
survive. Q'e shall therefore ignore this cotangent term
in the following, since it will not affect our later con-
sideration in the neighborhood of /2=1. The pinch
singularity of dynamical significance (with dependence
on j) is the one located at Xi =j—l2+1. This singularity
in the X~ plane must be on the same side of Eq as the
poles of cot222rkr (again for the reason of avoiding poles
at arbitrarily large j), so it can pinch Ei, by coincidence
with the pole at Xi ——l, (see Fig. 4). Thus the conclusion
is that the above quadrupole integration over A~~ re-
sults in a simple pole at j=li+l2 —1 (plus others at
unit intervals lower, which we shall not consider). It is
the contribution of this pole to the four-particle dis-
continuity function which generates the singularity in
the j plane as a result of the conspiracy of the two
singularities in j~ and j2 in the intermediate state.

I.et A4'A(j, t) denote the part of tr4A(j, t) which is
singular in j due to the above mechanism. Then, ac-
cording to the foregoing, we have

—p4(t)
4'A(lj, t) =2i dti dt2

CI C2 4~ P2(ti)P2(t2)

A (l,,t,)A (l2, t2)
dl2-j—li —i&+1

XS(j, li, 12, t+)@(j,li, 4, t —), (2.20)

where all the factors resulting from the 4~2 integration
have been absorbed in the definition of $(j,li, l2, t).
This amplitude $(j,li, l2, t) represents the scattering
of two particles into a state consisting of two substates
specified by /&, t& and l&, t2, the helicity labels X& and P 2'

being evaluated at l~ and l~, respectively. It is important
to note that S(j,li, l2, t), being directly related to
Ez„'(t),has no unitarity cuts in the ti and t2 channels,
and consequently no dynamical singularities in /& and
l2 variables. This, of course, has been the aim for the

factorization (2.16), so that the dynamical singularities
in the ti (t&) channel are contained entirely in the
A(ji, ti) (A(j2, t2)) amplitudes.

The mechanism by which a branch point is generated
in A4'A (j,t) is now explicit in (2.20). For fixed ti and t2,

the double integral over /& and 12 evidently has an end-
point singularity in the j plane at j=n(ti)+n(t2) —1.
This can further give rise to an end-point singularity due
to the t2 integration, and finally by means of a pinch
of the ti integration contour a branch point at j=n,„2(t)
arises, subject to the pinch condition

d d—n(ti) = —n(t2)
dt2

n' (t) =n. 2(t).

The solution is, dropping the subscripts,

n(t) =1+n't't',

(2.22)

(2.23)

where n' is any slope parameter. In particular, the case
o.'=0 is also a solution even though the derivation of
(2.21) apparently depends on the singularity being
moving with t. If n is fixed, then the location of the
singularity in the j plane is at j=2o.—1, yielding the
self-consistent solution o, = 1 without any of the com-
plications arising from the t~ and t2 integrations in
(2.20). Since n' is unspecified, it is clearly necessary to
examine more detailed aspects of the bootstrap dy-
namics before a unique solution can be found.

Recent experimental data" on high-energy collisions
suggest that o.'&0, although the o.'=0 case cannot be
ruled out without a more thorough phenomenological
analysis that includes also the lower-lying singularities.
As a 6rst step we consider in this paper the n'=0 case
only; that is, the Pomeranchon is a branch point fixed
at n=1. This is the case that is compatible with the
eikonal picture of the Yang model in which the trans-
mission coefficient is assumed to be a function of the
impact parameter only. ' However, many of the pre-
dictions, such as the asymptotic behavior of the total
cross section, depend only on the position of the branch
point at t=0, so are insensitive to whether it is fixed
or moving.

In the following, we shall investigate the properties
of the amplitudes only in the domain of j that is in the
immediate neighborhood of the I' singularity at 1. For

Since the t~ and t2 channels are identical, this implies
Consequently, the branch point of

A4'A (j,t) is located at

n.„2(t)=2n; (-', t) —1, (2.21)

where the subscript "in" is added on the right-hand side
to emphasize that the corresponding branch points
have been introduced in the j& and j2 variables as
input singularities with unspeci6ed positions. %e now
impose the bootstrap condition by identifying
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the elastic amplitude let us assume that the discon-
tinuity function A (/, t) across the P cut behaves in the
neighborhood of the branch point as

A(/, /)-A(t)(/ —1), /=1 (2.24)

where a is a real number. We may then write for
the singular part of the amplitude in the neighborhood
of j=1

where

H(/) =

(/i —1) (/2 —1)
dl2-

j-/i-/2+1
(2.34)

—p4(t)
dt» dt2

4p2(/i) p2(t&)

XA(ti)A(/2)B(t+)B(t —) ) (2.33)

A. '-.(j,&) =A(&)A(j), (2.25)

1
(/ 1)a

A(j) = — d/

Next consider the reaction amplitude S(j,/r, /, ,t). We
know very little about its analytic properties. For j in
the neighborhood of j= 1, the values of l» and 12 that are
of interest in the integral (2.20) are also in the neighbor-
hoods of /»=1 and 12——1. In accordance with the com-
ments made following (2.20), $(j,/i, /2, t) should not
have P singularities in the tl and l2 variables. We do
not know whether the uniqueness of the analytical
continuation into complex j, l», and l2 forces other un-
suspected singularities at l»=12 ——1. Let us assume that
the following limit exists:

B(j,t) = lim $(j,/i, /2, t) .
l1~», l2~»

(2.27)

If it does not exist, we can multiply S by sufficient
powers of (/r —1) and (/, —1), take the limit, and then
proceed analogously. One may think of B(j,t) defined

by (2.27) as the amplitude describing the reaction of
two particles into two Pomeranchons. At j=1 there
must exist the P singularity, so we may write a formal
dispersion relation

(2.28)

Again, we assume that in the neighborhood of / =1, the
discontinuity function B(/, t) behaves as

B(/, t) B(t) (/ —1) b / 1 (2.29)

B„„,(j,t) =B(t)B(j), (2.30)

(/ 1)b
g )0. (2.31)

l —j
We now use these formulas in (2.20) and obtain
near j=1

where b is another real number. Let us for the present
not identify b with a on the grounds that the strength
of the P cut for the nonphysical amplitude B(j,t) may
diRer from that of the physical amplitude A (j,/). Then
for j 1

This is the piece of the inelastic discontinuity function
which has the branch point at j=1. It is clear from
(2.32) how the bootstrap mechanism works. F(j) is
the "phase-space" factor which generates, from two
branch points in j» and j2, a branch point in j. This
singularity, being 6xed in the discontinuity function,
must also be in A (j,t) itself, which in turn justifies the
assumption of the same singularity in jl and j2 origi-
nally. Moreover, the P singularity can also be in the
reaction amplitude B(j,t); in fact, it must be in B(j )
with just the right discontinuity such that the two
sides of (2.32) can be balanced.

B. Nature of Branch Point

In Sec. II A we have used the t-channel bootstrap to
determine the position of the 6xed P-branch point in
the j plane. The nature of the singularity is speci6ed
by the real numbers a and b defined in (2.24) and (2.29)
for the elastic and "reaction" amplitudes pp ~ pp and

pp —& PP, respectively. Here we use pp to denote a
two-particle state (although it is in actuality a particle-
antiparticle pair) to distinguish from PP, a two
Pomeranchon state defined earlier. In this subsection
we investigate the relationship between a and b, and
the restrictions on their values. The nature of the
branch point so determined, of course, controls the
asymptotic behavior at large s.

As we have mentioned in the introduction of this
section, once the bootstrap succeeds in identifying PP
with P, it then becomes unnecessary to consider the
PPP state since it is equivalent to P'P', and so on. We
should not add P, PP, PPP, . . ., because the sequence
does not represent terms of any meaningfully ordered
expansion. Any n-particle state (e&4) can be repre-
sented by a two-subchannel (ji,j,) state, so if it is of
vacuum quantum number, it contributes to the PP
state. One may ask why a pP state and the like are not
considered. The reason is that, since p is spinless, the
branch point originating from the pP state is located
at j=n —1=0, and is thus of no importance to the
bootstrap of the leading singularity.

For t below the five-particle threshold, a complete
description of the discontinuity function» (j,t), which
can be continued in j, should have the following terms:

» (i,/) =PP+(PPP+PP)+(Pppp+PP) (2.35)

a, 'A (j,/) =2/a(/) p(j)B2(j), (2.32) On, the basis of the foregoing discussion we can ignore
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As we shall see in Sec. III 3, this condition implies that
the asymptotic behavior of the full amplitude A(s, t)
must satisfy, for fixed t,

~

A (s,t)
~
( (const) s(lns) ', (2.37)

an inequality previously obtained by Gribov. "
To explore other possible restrictions on a, we return

to (2.35) and examine more closely the terms that are
singular at j=1. That leads us back to (2.32). We
separate A (j,t) into two terms:

A (j,t) =A, (j,t)+A, (j,t), (2.38)

where Ae(j, t) is regular in the neighborhood of j=1
while A i(j,t) satisfies the dispersion representation
(2.18) and, consequently, also (2.25) and (2.26). Since
d, 4' is defined to be the PP part of the four-particle
discontinuity that is singular at j= 1, we have

D4'A (j,t) =64A i (j,t) .

Hence, by (2.32), we have

64Ai(j, t) =2iH(t)F(j)B'(j).

Using (2.25) for Ai(j, t) yields for j=1
A(j) =hiF(j)B'(j),

where
2iH(t)

hg=
54A (t)

(2.39)

(2.40)

(2.41)

should be a constant.
From (2.26), (2.31), and (2.34) we can obtain the

asymptotic behavior of A (j), B(j), and F(j) near j=1.
In the Appendix we give the method for proving the
asymptotic behavior of an integral of the same generic
type. Applying the result obtained, we get (with the
supposition that a and b are not integers or half-integers)

A U)-(j—1),
B(j)-(j—1)',

a+integer

b4integer

(2.42a)

(2.42b)

F(j) (j—1)'+' aA2(integer). (2.42c)

"V.N. Gribov, Nucl. Phys. 22, 249 (1961).

(PPP+PF) insofar as the singularity at j=1 is con-
cerned. The PP term is introduced to cancel the un-
wanted poles of the pppp term so that the sum has no
wrong-signature poles at arbitrarily large j and can
consequently be continued uniquely to complex j.The
Pomeranchuk branch point is, however, found only in
the PP term. The strength of the associated cut must
be vanishing at the branch point, since the pppp term
has no such branch point at j= 1 and it is this term at
all positive odd integers that defines the continuation
of PP. Thus we conclude that the real number a must
satisfy the condition

(2.36)

Using these behaviors near j=1 in (2.41), we obtain

a = 2a+1+2b or a = —(2b+1) . (2.43)

Since a)0, this implies that b( ——,. This condition
means that the discontinuity of B(j) across the F cut is
divergent at the branch point, so the dispersion relation
(2.31) needs modification. If —n(b( n+1,—where n
is a positive integer, then

B(j)=
4r(j—1)"

i (t 1)b+n

dl— (2.44)

for j near 1. The universality of the P singularity im-
plies that b+n=a, whereupon (2.43) becomes

a =-', (2n —1), (2.45)

Thus we can determine the value of a uniquely at the
expense of an assumption of a specific Reggeization
procedure for the production amplitude. Although the
assumption is not implausible, we want to proceed, how-

"J.B. Bronzan, J. Gerstein, B. W. Lee, and F. E. Low, Phys.
Rev. 15'7, 1448 (1967).

provided that n&2 (mod 3).
The question thus arises as to why B(j ) has a pole

multiplying the integral as shown in (2.44). Let us trace
back the family tree: B(j) represents the j-plane
property of the singular part of B(j,t) in the neigh-
borhood of j=1 Lsee (2.30)7; B(j,t) is the limit of

$(j,li, l~, t) as li and l~ —+ 1 Lsee (2.27)7; insofar as
j-plane analyticity is concerned, $(j,ji,j2, t) is essen-
tially Fz„'(t)with Xi= ji and X2= —j2 (remembering
that A» stands for ji, Xi, j2, and X&); and finally
Fz„'(t)is defined for Physical j and X (=Xi—X2) by
(2.9) in which all the subchannel variables of the pro-
duction amplitude have been omitted. Evidently, the
singularities of B(j) depend on how F'" is continued to
complex j and X. %e have thus far proceeded on the
assumption that a unique continuation exists without
specifying how. Present understanding of the analytic
structure and other properties of the production ampli-
tude is too primitive to provide an indication of a
rigorous Reggeization procedure, not even in j, let
alone A. However, for the question at hand one could
conjecture that Tz„(s,t, ti, t&) has a spectral representa-
tion of the Mandelstam type for fixed tj, t2, and A», so
that the Froissart-Gribov' i definition of Fx„'(t)may
be given. Then for j& =A& = 1, and for j2= —X2= 1,
which is the case of interest here, the problem is
identical to the Reggeization of the amplitude y+y —+

7r+ir already considered by Bronzan and others. 'r It has
been found there that a fixed simple pole can indeed
occur at j=1 owing to the presence of a term with a
Legendre function of the second kind, Q; q(s). Using
this result, we can put n=1 in (2.44) and (2.45) and
obtain

(2.46)
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ever, on the basis of the weakest possible set of assump-
tions. Our results in the following are completely inde-
pendent of this extra assumption and the specific value
of u thus predicted.

We return to the general constraint between a and b

as given by (2.43). We must now look for other possible
constraints involving these parameters. This naturally
points to the discontinuity equations for the reaction
amplitudes, which should be investigated anyway so
as to ensure that unitarity is not violated in the presence
of a fixed divergent singularity. Now, B(j,t) represents

pp —+ PP; let C(j,t, t') represent PP ~ PP. We assume
that the discontinuity equations for B(j,t) and C(j,t, t )
can be derived in the same way as for A (j,t) based on
the reasoning that unitarity equation depends primarily
on the intermediate states and not on the external
states. This is the same assumption that underlies the
hypothesis of generalized (or extended) unitarity, 2'

which, for example, describes the discontinuity across
the ~A cut in the XN elastic amplitude below threshold.
In the present case the PP state, though not physical,
presents no special diS.culty. Thus, defining

(2 4'I)

for j= i, we can immediately write down the equations
for B(j) and C(j) parallel to (2.41):

B(j)=&~p(j)B(j)CU),

C(j)=hgF(j)C (j),

(2.48)

(2.49)

where h2 and h3 are some constants which, for con-
sistency between these two equations, must be equal
to each other. Assuming

C(j) (j—1)' as j-+ 1, (2.50)

we get the constraint

c = —(2a+1) . (2.51)

Thus we get no additional information on a or b. We
also see that the inelastic unitarity with the j=i
singularity is not violated, while all other unitarity
contributions without the fixed j singularity are, of
course, harmless.

To summarize, we cannot obtain, on the basis of the
discontinuity equation alone, any results beyond what
are contained in (2.36), (2.43), and (2.51), which are
insufficient to fix uniquely the real constants except
to give the bounds a&0, b& —~, and c(—i. As we
have seen, however, unique values for these constants
can be determined if an additional assumption is made
which is tantamount to supposing the existence of a
nonsense fixed (simple) pole in the amplitude pp~ PP.

28 R. J. Eden, P. V. Landsho6, D. I. Olive, and J. C. Polking-
horne, The Analytic S-SIctrix (Cambridge University Press,
New York, 1966), Chap. 4.

C. Summary of Assumptions and Conclusions
of t'-Channel Bootstrap

We have considered the inelastic unitarity equation
for partial-wave amplitudes in the t channel. The inter-
mediate state is described in terms of two angular
momentum subchannels, labeled principally by j&, t&

and j&, t2. We have assumed that the unitarity equation
can be continued uniquely to the complex j plane. The
condition for uniqueness demands that the singularities
in the j& and j2 variables must be taken into account.
Our main assumption which is the backbone of our
bootstrap dynamics is that there exists a singularity in
each of the j& and j& planes which is identical to the
one in the j plane, the total angular momentum vari-
able. This problem should be considered whether or not
the singularity is to be identified with the Pomeranchon.
It should be noted that the (ji,ti) subchannel Lor the
(j2, t&) subchannelj can involve any number of physical
particles, although for convenience we have dealt with
only two. The point is that, whatever number it is,
there is only one "total" angular momentum ji (or j2)
for the subchannel and our interest is in the singularity
in this variable. Thus this singularity is coupled to any
state that the subchannel is coupled to, two-, three-, or
e-particle states. Evidently, this is equivalent to the
assumption in the s-channel bootstrap (mentioned in
Sec. I and to be exploited in Sec. III) that the s de-

pendence is exactly the same for diffractive scattering
as for fragmentation.

We therefore have two equivalent pairs of assumptions.
t chaeme1 assmm-Ptioes (a) Sin.gularities in ji, j2, and

jare identical in position and nature; (b) these channels
can be coupled to any number of physical particles.

s chgnnet as-surgptioes. (a) Inelastic processes at high
energy are predominantly diffractive fragmentation;
(b) the ratio of diffractive scattering to fragmentation
at some common fixed t approaches a nonzero limit
ass~ ~.

Of course, the bootstrap model relies also on the
assumption (c) that unique continuation to complex
angular momenta is possible.

The result of the t-channel bootstrap is that the P
singularity is a branch point whose position o. satisfies
the equation n(t) = 1+n'P~', with an unspecified slope n'.
The discontinuity across the cut must vanish at the
branch point when +=1.Because of the tan~z j factor
multiplying the term that contains the P singularity,
the cut contribution vanishes at even values of j. In
other words, if we examine the effect of the P singularity
in the t plane for various but fixed values of j, we find

that in the case o,'/0 there is a corresponding branch
cut in the t plane for all j except even-integer values.
If n'=0, there is no corresponding cut in the t plane
for any value of j. Thus the Pomeranchon in the
bootstrap model can never have timelike physical
manifestations.
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In the case where the branch point is fixed (i.e.,
u =0), we have obtained explicit algebraic equations
in the neighborhood of j= i relating the amplitude
A (jb) for pp ~ pp to the amplitude 8(j t) for pp-+ PP.
Assuming that the nature of the branch point is either
algebraic or transcendental, i.e., the discontinuity of
A (j,t) approaches (j—1)' and that of 8(j,t) approaches

(j 1)—b, as j—+ 1, where a and b can be rational or
irrational real numbers, we find the constraint 0(a
= —(2b+1). This relation is used in the following sec-
tion as a condition that the s-channel bootstrap must
satisfy, as a consequence of which nontrivial informa-
tion on the s-channel properties emerges. If, in addition,
the Froissart-Gribov continuation is assumed to be
meaningful for the pp —+ PP amplitude, then the uni-
versality of the P singularity Pi.e., a= 6 (mod 1)j leads
to the unique determination of a = 3 ~

III. s-CHANNEL BOOTSTRAP

The t-channel bootstrap considered in the preceding
section is originally motivated by the s-channel boot-
strap, which, as described in the Introduction, is a
natural extension of the Yang model. However, because
of the lack of knowledge about the dependences of the
di6raction fragmentation process on the momentum
transfer t~ and the effective masses s~ and s2 of the
clusters, the s-channel unitarity integral cannot be
performed. There is no similar problem with the
t-channel unitarity because we use there the angular
momentum representation in which the transition
matrix elements are diagonal. Having accomplished the
t-channel bootstrap, we can now turn back to the
s channel and reverse the question: What should the
dependences on s~, s~, and t~ be such that the result of
s-channel bootstrap agrees with that of the t-channel
bootstrap?

The t-channel bootstrap is based on the assumption
that the P singularities in j& and j2 are identical to the
P singularity in j.The exact translation of this to the
s-channel language is that the s dependence of diffrac-
tive fragmentation process is identical to the s de-
pendence of diffractive scattering process. Indeed, the
task in the s-channel bootstrap is to balance the powers
of s and lns on the two sides of the inelastic unitarity
equation.

It is worth pointing out that what we attempt to
achieve is a representation of the elastic amplitude
A ($,t), valid in the region of large $, which corresponds
to a boxlike diagram as shown in Fig. 2. Two opposite
sides of this "box" are two clusters which saturate the
s-channel inelastic unitarity in accordance with the
Yang model, while the other two opposite sides are the
two Pomeranchons. Like the Mandelstam representa-
tion, this representation satisfies both s- and t-channel
unitarity and crossing.

We discuss below 6rst the high-energy inelastic
unitarity in the two-cluster form and then the boot-
strap problem in the s channel.

We define

alld pB= p p&.
igB

PA= Z P'
igA

gg&

$1 PA&$2 pB,
tr (P. PA——)'= (—Pb —PB)',

12= (P —PA)'= (PA —P )'.

Consider the rest frame of cluster A in which p~ =0.
The vectors p, pg, and p~ are coplanar; let them
defne an "in-frame" with polar axis along p, . Let a
"body-fixed" coordinate system be assigned to
calling it the "2 frame with respect to which the
internal variables of the cluster may be described. Let
the orientation of the 2 frame relative to the in-frame
be specified by a triplet of Euler angles collectively
denoted by 0&'". Similarly, Qz '"' may be defined rela-
tive to the out-frame in which p, specifies the polar
axis. Concentrating on cluster A only to avoid repeti-
tion, we expand the production amplitude in terms of
the rotational D functions in the rest frame of 3,
TAB, ab(S&QA &PA)

21+1
-T„„'(s,„)D„'(Q '"),

t ~n 4g
(3.1)

where s implies s, s~, and s2, while p~ represents all the
variables besides sI and 0&'" that are necessary to
describe completely the configuration of the cluster A .
Similarly, we have

TAB, cd(s&QA & p&A)

2t'+ 1
T „'(s,pA)D .„.'(QA'"') . (3.2)

, m, &, n

Using these in the unitarity equation

A, ($,t)=—(1/2i) t T,A,.b($, r) —T,g,bt($, t)j
ds&4$2d kd D~d Qgg

XdIAAdpBpAB(s) TcA, ABt TAB„b, (3.3)

A. Inelastic Vnitarity in Two-Cluster Form

In Sec. II A we have written down the four-particle
unitarity equation for partial-wave amplitudes. Here
we derive a specific form without approximation of the
e-particle unitarity equation for the full amplitude.

To avoid confusion with the notation used in the pre-
ceding section for t-channel processes, let us adopt a
difierent set of labels here for s-channel processes. Let
an elastic process be symbolized by a+A —& c+d, so
that $ = (P,+Pb)' and t= (P,—P,)'. Let an intermediate
state for large $ be A+8, where A and 8 represent two
clusters of particles whose c.m. momenta are, respec-
tively, PA and PB, i.e.,
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distorting the contour as usual, and picking out the
leading singularity at j=1 as s-+~, we obtain

In the limit of large s, s~, and s2 with t near t, this
becomes

A (s,t)
1+e—)~&

dt P(l t) s',
sinful

(3.10)

s,—1+ (2s/sis2) t. (3.15)

If we fix t&t and let s ~, then the asymptotic be-
havior of P (z&) is

where t3(l, t) differs from A (t, t) only by a multiplicative
factor. Using (2.24) and the asymptotic behavior of the
integral

dt (t—1) s' (—1)~F(1+a)s(lns) '—

2st )P (z))
sis2)t

Using this to generalize (3.11), we obtain for the
diffractive fragmentation process the following asymp-
totic formula due to the same I' branch point at j=1:

where q)0, we get as s~~

A (s, t)
s (1+a)

+i P(t)s(lns) —'— . (3.11)
2 lns

7l 5
T«)))gl))n)(S) tl)t'ai)P2)— +z)l)l I (s ill s,ll; t )

2 lns
st~

(lns)', (3.16)
Sysg

where
Sy the optical theorem the total cross section behaves as 8—= —(1+a) . (3.17)

o„., $P(0)/4)r)(lns)
—'—,a) 0. (3.12)

This essentially reconfirms the Yang model, which
assumes the constancy of asymptotic total cross section
apart from logarithmic factors. ' The power of lns being
less than —1 has also been predicted by Gribov" in a
work before the advent of the Regge model.

Equation (3.11) also predicts the asymptotic be-
havior of the ratio

ReA (s,t)

ImA (s, t)

m. (1+a) c)0.
2 lns

(3.13)

which is an asymptotic relationship between the slopes
of two appropriate plots.

The diGractive fragmen. tation process a+b —+ A+8
has the same s dependence as for elastic scattering
except that the inelastic kinematics requires additional
attention. Regarding 2 and 8 as fictitious particles of
(mass)' si and s2, the minimum (momentum transfer)'
in the s channel is

t = —
i
t i;„=—(si —1)(s2 —1)/s (3.14)

in the limit where s is very large. In the t channel, the
scattering angle in the c.m. system is

2t(s —2)+(t+1—si) (t+1—s2)
Gg

v;„(t)v gem(t)

That it is negative and small at large s is an experi-
mental fact. The present data are not accurate enough
or for high enough energy to provide a check of either
(3.12) or (3.13). However, when higher-energy data
become available, they can both be used to determine a.
Alternatively, a can be eliminated from the two equa-
tions to give

d(lno). ,) dR

d(ln lns) d(lns) '

The P function here is, of course, again related to the
discontinuity across the I' cut.

Now, the discontinuity function need not factorize.
However, for the convenience of discussion in the
following, let us assume a specific nonfactorizable repre-
sentation for it,

P«m)«m)(sl tel s~, ti~; ti) = dri f(ti, ri)1 «))))(si,pi,' tl rl)

X&&, ,(s9 t)2 ti,ri), (3.18)

where f(ti, r) is some weight function whose exact form
is not needed for our purpose. The representation (3.18)
is suggested by the work of Cheng and Wu, " who
obtained in quantum electrodynamics an asymptotic
form involving impact factors. Our only reason for
assuming such a representation resides in the advantages
of separating the variables pertaining to the two
clusters 2 and 8 without necessitating factorization.
We may then loosely associate F«~, (si,ti„tiri), say,
with the coupling of the Pomeranchon with particle u
and cluster A. Such a quantity is conceptually meaning-
ful in both the Yang and the Regge models separately.

C. Balancing s Dependence and
Predicting t~ Dependence

We are now prepared to return to the inelastic
unitarity equation (3.7) and examine its high-energy
behavior. Let us first discuss D, , "(co~). Recall that
co~= (—$„0„,)t),), which in general depend on all the
variables s and t. As s —+~, we consider two possi-
bilities: (a) si also approaches infinity, or (b) si stays
finite. In the first case, for fixed t, O„vanishes as s~ '.
Thus we have

D)))lml' (&)i) ~

&mimi�'

~

"H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1899 (1969).
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In the second case, 8,. remains finite but depends only
on s» and t. For fixed t, as s —+~, the vectors pg and pg
in the rest frame of 2 approach collinearity and become
asymptotically equal in magnitude. This means that
p becomes perpendicular to p&. Similarly, p, is also
perpendicular to pe. Hence, )t and )t), both approach
~g 111 the limit of infinite $. Thus we have

D„,;"(ppg) —+ e' ' "d„,„;"I8.,(sl,t)]e ™~

In general, then, D, ;"(co~) depends on no more than
sl and t. Similarly, D,m, "(pp&) depends on no more
than s2 and t.

Taking into account this fact and using (3.16) and
(3.18) on the right-hand side of (3.7), we obtain for
large s and to the leading power of lns

p= —(1+b) .
Then we have for large s;, i=1, 2,

(3.23)

p~e(s)/Lp2(sl)p2(S2)$, which has square-root branch
points only at s= (sl't'&S2'")2) as it should.

Because the integrals over sl and s2 in (3.19) extend
to infinity, as s~~, it is necessary that we examine
the high-s, behavior of W, (s;,t,r). By virtue of (3.22)
this implies the asymptotic behavior of $(s,,t,r) as
s; ~~. Since the I' singularity can be exchanged in the
t channel, it must dominate the large-s; behavior. Once
again the parallel with the t-channel bootstrap is
evident. There it has been found that the amplitude
B(j,t) has a singularity at j=1 so that the unitarity
equation can be balanced. In fact, the discontinuity
function diverges at the branch point as (t 1)', whe—re

—
2

A, (s, t) = dslds2 pge(s) dtldt2 L (s,t)

X drldr2 f(rl, tl)f(r2 t2)tlt2(s/sls2)'

lrp

$(s, ,t,r) = +i ~p(t, r)s;(lns, ) ',
2 lns,

(3.24)

where p(t, r) is real in the physical region of s;. If we
X(lns) "Wl(sl, t, r)W2(s2, t,r), (3.19) substitute this in (3.22) and then in (3.19), we whould

obtain
where r signifies r» and r2 collectively, and

Wl(sl, t,r)

(/1+ 2)Dm)ml' (~A) dtll Fl)m) (Sl)IM1) tl, rl)
31m»mI. '

(lns 1 lns2) '
A, (s,t) =s'(lns)" dslds2 pp(s)

$»$2

X dtldt2 L,
—'t'(s, t)G(t), (3.25)

W2(s, ,t,r)

where
XF~,...*(s„t„tp,r2), (3.20)

(t2+2)Dmpm2' (ppB) dt12 Fl m2(22S )t21)lt)rl)
$2m2m2'

pp(s) = 42r'pze(S) S(S)

P2(sl)P2(s2) 642r's
(3.26)

&V,(s, ,t,r) = ImS(s, ,t, r) .
P2(s')

(3.22)

The two-body kinematical factor arises because of our
original expression for the phase space used in (3.3),
where pzz(s) is given in terms of a hypothetical four-
particle intermediate state. It is clear that after (3.22)
is substituted into (3.19) the net phase-space factor is

XF t,„;*(s2)p2)t2)r2) . (3.21)

The interpretation of 8'» and 8'2 is quite clear. S"»

represents the absorptive part of the amplitude for the
"process" a+P —&c+P, integrated over all possible
intermediate states at fixed "total" energy squared s»

and Inomentum transfer squared t. 8'2 is the correspond-
ing part of the amplitude for b+P ~ d+P. These
amplitudes when crossed over to the t channel described
the processes a+ e -+ P+P and b+d —+ P+P. Recall
that the partial-wave amplitudes for these processes
have been denoted in Sec. II by 8(j,t), which, accord-
ing to (2.27), is the limit of $(j,tl, tp, t) as tl and l2

approach unity. Now, let the full amplitude be 6) (s, ,t,r),
i =1, 2. Then by extended unitarity we have

G(t) = tlt2 drldr2 f(rl, tl) f(rp, t2)p'(t, r) . (3.27)

(lns1 lns2) '
s '(lns) —'= dslds2 pp(s)

S»$2
dt»dt2

XL ' '(s,t)E(t), (3.28)

If in (3.25) the integrations over tl and t2 do not
result in a factor that significantly alters the nature of
the integrand for s» and s2, as will be seen to be the case,
then the high-s» and high-s2 ends are important. Because
of this, it is reasonable that we need only use the asymp-
totic expression (3.24) for $(s,,t,r), as s ~p)), and no
significant discrepancy will arise on account of the in-
accuracy on the low-s» and low-s2 ends of the integrals.
Thus (3.25) is a faithful asymptotic expression for the
absorptive part, as it stands. In this equation G(t) is the
only unknown function on the right-hand side. The
left-hand side, which is just the imaginary part of
(3.11), involves also an unknown P(t). To combine the
two unknowns we write out the expression for the
quantity

A, (s, t)p-'(t) )s(lns)'$-2
as follows:
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double integral in (3.35) then becomes
(3.29)

One might at first sight think that if it were not for the
s dependence of I., the s dependence of the whole equa-
tion would not be affected by what E(t) is. This is,
however, not true because the upper limits of the t~ and
t2 integrations depend on 8. Thus to balance the s de-
pendence on the two sides of (3.28) E(t) cannot be
arbitrary. We consider now the restriction on it in the
two cases: (1) t=p and (2) t(0.

1. Fonvard Case

When t=0, the Gram determinant for the three
vectors p, p&, and p, in the total c.m. system is
trivial. We have

s
I.—"'(s,t) =4m. 8 '(s) 8(t,—tg), (3.30)

s —4
so that as s —&~

tm(S)

dxidxg (xix2) ' = (1+e)
—'x'&'+'& (3 37)

I(s) I,e zais2(s g)—p (3.38)

—then the solution to (3.33) is obviously

Comparing now the powers of lns on the two sides of
(3.35), we see tha, t the constraint (3.32) is exactly
satisfied. Hence, consistency with the t-channel boot-
strap is achieved.

The problem of finding the suitable function E(ti)
such that I(s) has the required properties is easy,
although no unique answer can be expected. The
simplicity of the problem is due to the remarkable fact
that the relationship between s, s&, and s2 as required
by (3.36) is just what t (s) can provide Lcf. (3.14)).
If the damping structure of I(s) is of the exponential
form —more specifically,

dt idt2 L 't 'K ~ 4~ 8—'(s) dtiK(ti), (3.31) E(ti) =Eoe"& y) p (3.39)

where t (s) has been defined in (3.14). The criterion for
a suitable E(ti) is that the $ dependences on the two
sides of (3.28) balance; in particular, the powers of ln$
should check. Now, the relationship between 8 and e is
known. From (2.43), (3.17), and (3.23), we have

8= —2(1+e). (3.32)

I(s) =— dtiE(ti), (3.33)

strongly damps the high-s& and high-s2 integrations for

Si$2)' (collst)$. (3.34)

This does not contradict the earlier observation that the
asymptotic region of s~ and s2 integrations are important
since s ~~. Suppose that the assertion is true. Then in
the reduced form of (3.28) and (3.31),

We assert that this is indeed consistent with (3.28) if
the integral over E(ti),

tm(S)

This exponential tj dependence is, of course, just what
is expected in the diGractive picture. The exponential
form for I(s) is not just a crude approximation of a
function with a sharp falloff. Substituting (3.38) into
(3.35) and evaluating the integral to the leading power
in ln$, one can obtain the required condition (3.32)
exactly. One could consider other possible forms for
I($) with appropriate damping property, such as a
Gaussian, and the corresponding E(ti) can just as
easily be obtained. However, that is unnecessary since
we shall show in the nonforward case that the expo-
nential form is the only reasonable one.

As a final remark on the t=0 case, we mention that
the result of Ref. 17 corresponds to the special case
&=0 here. ln that work only s-channel bootstrap is con-
sidered; the lack of additional constraint coming from
the t-channel bootstrap necessitates the simplifying
assumption of no logarithmic dependence on s~ and s2,
mainly due to knowing nothing better. Also, the tj
dependence is assumed in Ref. 17 but is predicted here.

$
—'(ln$) '= (167r'$)—'

s1mtLx

dsy

s 2mg, x

d$2

(ln$i ln$2) '
X I(s), (3.35)

sysg

Z. Eonforward Cg$e

For t(0 the problem is only slightly more compli-
cated. I,et us proceed in the same spirit as before by
defining

s
I(s) = — dtidt2 L "'(s,t)X(t), (3.40)

4m g)p

$i$2 ——(const) $.

Using the notation x=lns and x,=lns;, i=1, 2, the

@re can approximate the final integrals by omitting
the I(s) factor but cutting off the upper limits of inte-
grations at

(3.36)

so that (3.35) again follows from (3.28). The condition
that the constraint (3.32) is satisfied then demands the
same damping property for I(s). The problem is to
find the suitable E(t) that can provide this property.
The kinematics at infinite s is not complicated. From
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(3.8) we obtain for s ~~
L, (s,t) = (—'s)'L —(t,—t,)'+2t(t,+t,—2t )—P$. (3.41)

This describes a parabola in the (ti,t,) plot symmetrical
about the ti t, l——ine with the apex located at -', (ti+t2)
=t +i~t. To investigate the ti and t, dependences of
E(t), it is only necessary to consider infinitesimal t. In
that case the parabolic area in which I&0 shrinks to a
very narrow pencil hugging the symmetry line along
which the t =0 case has been studied. Since the dynamics
of the diffraction problem has uniform behavior in the
neighborhood of t=0, it is reasonable to make the
approximation, when t is infinitesimal, that E(t) varies
only along the parabolic area but not across it. Thus,
if we transform to the more natural variables

Now, taking the two properties together, we have

E(t,+.t,) =~(t,)~(t,) .

Clearly, the only solution is exponential:

E(ri) =Eo(bt)e" &"+'&'/', X)0.

(3.46)

(3.47)

E(t) Eo(t) ex itg+t2) /2 (3.48)

Substituting this into (3.40) and integrating yields

Eo(t) =Eoe ""4 (3.49)

This, of course, reduces to (3.39) as t —+ 0.
Since the t~ and t2 dependences should not depend on

the values of t, we have for arbitrary t

ri =
~ (ti+ t2) q t, —

7.2 —ti —32)

then for t=Q we have
G(t) Eog(t) eX iti+t2i/2

which implies

(3 42) By virtue of (3.29) we can write

(3.43) (3.50)

P(t) = ""g(t) (3.51)
(3.44)

dr (a' —r ') "'I(s) =—

E(bt, t„t,) =E (r,) .
From (3.27) we see that the t dependence of G(t), and
therefore of g(t), comes from the square of p(t, r), which
measures the P-cut strength of the amplitude for tile

fm(S) +0' "process" a+P ~ c+P. The i! dependence of this
dri E(ri) process is, of course, not known. However, let us

7l —QQ —0' assume that it has the usual exponential peak
tm(S)

dri E(ri) (3.45) P(t, r) =P'(ti, t2; ri, r&) e"', /~) 0. (3.52)

which is identical to (3.33). Hence, E(ri) is the same
as the E(t,) function dealt with in the t=0 case.

Having recognized, on the one hand, that E(Q,ti, t2)
depends only on the sum t&+t&, we now argue that it
should, on the other hand, be factorizable into a product
form r/(ti)it (t2). To see this, let us trace from the defini-
tion of E(t) in (3.29) back to Wi or W~ defined in (3.20)
and (3.21). There ti and t2 appear separately in fac-
torized product form under integration and summation
over the cluster variables. If s is not very large so that
the cluster A is essentially an excited state a* of
particle a, then we indeed have factorization. The
general picture more or less persists at higher energies.
In other words, at t=0, E(ti) gives the ti dependence
of 0(a+b —+ A+. 8), but at t (0, E(t) gives the t, and t,
dependences of the two-step reaction

a+b +A+8 &a+b. — —
$2

If t is in6nitesimal, it cannot be too wrong to regard
each step to contribute a E'"(ti) factor. We do n.ot
pretend that the argument is rigorous. In fact, a
factorized form cannot be exact. But we are not
interested in an exact E(t). We are only interested in
representing it by a simple and explicit function. In that
case, the factorizability property is a very reasonable
and important requirement.

This can be related to the diffraction peak of the
elastic process

P(t)=P,e, »O.
By (3.51) we have

y = 2/~+ —„'X,

(3.53)

(3.54)

where, to repeat, y, ~, and —,'A are halves of the slopes of
diffraction peaks for the processes, respectively,
a+b —& a+b, a+P —+ a+P, and a+b —&A+P.

Experimentally y is known to be about 5 (GeV/c) ',
corresponding to (do/dt)»~el'. The value of X is not
precisely known, but is expected to be smaller. This is
reasonable physically, since one expects the diffraction
peak to be broad for a process as highly incoherent as
the fragmentation process. In the Yang model one would
argue that it is more likely than not for a particle to
break up into pieces if it is to suffer a large momentum
transfer. Hence, we expect X(2 (GeV/c) '. This implies
roughly, from (3.54),

2.5 (GeV/c) '. (3.55)

This cannot strictly be checked experimentally since
it refers to the "mathematical process" a+P —+ a+P.
However, this can be checked indirectly if one adopts
the view of Chou and Yang' that the hadron matter
density can be estimated by the charge density so that
Pomeranchuk exchange can be related to the photon
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exchange. Thus in the Yang model it is possible to Pomeranchon never manifests itself (as particles, en-
speculate that tt can be estimated by looking at the dif- hancements, or whatever) at any physical j values.
fraction peak of the Compton scattering y+p —+ y+ p.
Data for this process are not yet available, but a 4. Dependence on Effective Masses of Clgsters
preliminary guess" is that

By the optical theorem we have
(do/dt)~„~ e&', 4(tt(9 (GeV/c) '. (3.56)

The value of tt should be compared to 2tc (squared of
amplitude), which according to (3.55) is 5 (GeV/c) '.
It is within the estimated range.

IV. SUMMARY OF PREDICTIONS

The bootstrap model of diGractive processes is built
essentially on the following three assumptions: (a)
High-energy inelastic process is dominated by two-
cluster diffractive fragmentation as suggested by the
Yang model; (b) the s dependences of elastic and frag-
mentation processes are exactly the same; and (c)
partial-wave amplitudes can be continued uniquely
into the complex j plane.

The predictions of this model are listed as follows.
They can all in principle be checked by experiments at
high enough energy. The first four predictions are inde-
pendent of the assumption that the Porneranchon is
fixed; the rest are dependent on this assumption.

l. Asymptotic Behavior of o„,
The self-consistent P singularity is a branch point

located at j=1 when t=0. This discontinuity of the
cut vanishes at the branch point as (j—1),a)0. Thus
asymptotically the total cross section behaves as

A, (s,0) =8irhsit 2 dsids2dti
ds»ds2dt»

From (3.25), (3.29), and (3.31) we obtain for a diffrac-
tive fragmentation process a+6 ~A (si)+B(s2) the
following asymptotic expression for s, s», and s2 all large,
independent of whether or not the P singularity is
fixed (since t =0):

ds»ds2dt»

(lnsi) ' (1nss) '
[E(t ) (lns) "]

$2

6) 2 ) 8(

Even apart from the logarithmic factors, the inverse s»

and s2 dependence cannot be checked by the present
inadequate data. However, this dependence is con-
sistent with constancy of total photoproduction cross
section in an indirect comparison, if it is assumed as in
the Vang modeP that the hadron matter density is
related to the electromagnetic form factor, or put
differently, the Pomeranchuk exchange is related to
the photon exchange. For inelastic electroproduction
e+p ~ e+A, at large incident energy and near forward
direction the differential cross section in conventional
notation" is

d'0- 4mo. '

Define

oi,,r, (s) oc 1/(ins)'+', a)0.

Z. Ratio of Real to Imaginary Parts

R(s,t) = ReA (s,t)/ImA (s,t) .

where
dg'dv q'

v —tl /2M o'z+oe

8n'n 1+v'/tl'

Then from the signature factor and the cut nature of
the Pomeranchon can be derived the asymptotic be-
havior for forward scattering:

R(s,0) —n-(1+a)/2 lns, a)0.

If, furthermore, the P singularity is assumed to be
fixed, then this behavior is true also for t/0.

3. Physical Manifestation of Pomeranchon

If the P singularity is fixed, then of course it will never
leave the wrong-signature point at j=1. But even if it
is a moving singularity so that it can reach the right-
signature point, the physical amplitude at some even-
integer value of j does not have a corresponding branch
point in the t plane because the term that contains the
P singularity vanishes at all even j values. Thus the

'~ C. N. Yang (private communication).

This is to be compared with the behavior for the had-
ronic process p+p ~ p+A(si) by identifying q' with

t», and v with s». From the above conclusion we have

dt»ds»

(lnsi) '
ac 1

) 2)
s»

The inverse-first-power dependences of s» and v agree.

» W. K. H. Panofsky, in Proceedings of the Iiourteenth Inter-
national Conference on High Energy Physics, Vienna, -t9N, edited
by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
pp. 23-39.

Evidently, for fixed q' and large'v, the constancy of
o-z for q'=0 extrapolated to spacelike g' implies

d 0 1

dq dv v
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5. Average IVulti plicity of Hadron Production

It has been observed'4 that the effective mass of a
cluster is roughly proportional to the number of
particles in the cluster. %hen they are all pions, each
pion has about 350 MeV. Secondary protons, being
more massive, have larger fractions of the energy.
Assuming that at high energies most of the particles
produced are mesons, we may reasonably take the aver-
age multiplicity (n) to be proportional to the effective
mass of the cluster. Thus, we have

elastic process. This is because it is related to an un-
known t dependence of the "mathematical process"
a+P —+ a+P. However, if we assume the latter to have
a diffraction peak, e"', then the elastic process would
also have a diffraction peak, e&', where y=2~. This
relationship is a definite consequence of the bootstrap
model. But to make contact with experiment we must
go beyond the bootstrap model itself and again adopt
the Chou-Yang viewpoint that P can be related to the
photon. Then the relation p=2v. implies that the pp
elastic peak is twice as sharp as the yp elastic peak.
Taking the usual formula for pp to be

whereas
g1/2 da

$1/2 ~$1/4

dsy

If the logarithmic divergence is a matter of concern,
then the cut nature of the Pomeranchon must be taken
into account, and this is precisely the main concern of
Sec. III.

This is consistent with cosmic-ray data" on the average
multiplicity which can be fitted by either ln$ or some
power dependence like $'t'4. One can reconcile this
behavior with the constancy of the total cross section
(apart from logarithmic factors) by noting that

do 1
gt t ——P a'„~ dsi ~ dst —~0(lns),

n d$1 $1

(do/dt) ~ e"' t in (Gep/c)'

we infer that

(dtr/dt)» ~ e", t in (GeV/c)'.

It is remarkable that the three qualitative assump-
tions of the bootstrap model can lead to so many
quantitative predictions, none of which is inconsistent
with the high-energy data available at present.

The value of a which appears in the asymptotic ex-
pressions for o&„(s)and E(s,0) can be fixed if we make
the additional assumption that the production ampli-
tudes can be continued to the complex j in such a way
that the Froissart-Gribov definition applies to the
pp ~PP amplitude. If that is true, then we have a= —', .

6. DQFraction Peak of Fragmentation Process

The I~ dependence of diffractive fragmentation is
found to have a strongly damping behavior such as
an exponential. The exponential form

K(ti) =Eve"" X)0

is not a rigorously unique solution; however, it not only
is a possible exact solution, but also is the only reason-
able one among simple forms like a power or a Gaussian
dependence. The value of X is undetermined except
that it is positive. By physical arguments it is expected
to be small.

7. Relationshi p between pp and yp Digraction Peaks

The bootstrap model can only predict the i de-
pendence of the fragmentation process but not of the

'4P. Franzini, in Proceedings of the Th& 8 International Col
ference on High-Energy Collisions, Stony Brook, 1969, edited by
C. N. Yang et al. (Gordon and Breach, Science Publishers, Inc. ,
New York, 1969), pp. 97—126.

» D. H. Perkins, in Proceedings of the International Conference
on Theoretical Aspects of Very High-Energy Phenomena, Geneva,
I961, edited by J. S. Bell et al. (CERN, Geneva, 1968), p. 99;
O. Czyzewski, in Proceedings of Ii olrteenth International Conference
on IIigh-Energy Physics, Vienna, 1968, edited by J. Prentki and
J. Steinberger (CERN, Geneva, 1968), pp. 367-387; V. S. Bora-
shenkov, V. M. Maltsev, I. Patera, and V. D. Toneev, Fortschr.
Physik 14, 357 (1966); C. B. A. McCusker L. A. Peak, and R. L.
S. Woolcott, Can. J. Phys, 46, S655 (1968 .

V. WEAKENING SECOND ASSUMPTION
OF MODEL

The second assumption of the bootstrap model, i.e.,
the exact equivalence of the $ dependences of diffractive
scattering and fragmentation, may be too strong. We
want to show in this section that all the results ob-
tained above remain unchanged if we relax the assump-
tion to an equivalence modulo lns factors. The only
sacrifice is that the constraint on the parameter a is
even less stringent; without the universality of the P
singularity the value a= 3 cannot be obtained even if
the Froissart-Gribov continuation applies.

We have seen that the position of the P singularity
determines the power of $, while the nature of the
branch point determines the power of ln$. More
precisely, if -the singularity is represented by

(t—n)'dl, g&0

then the asymptotic behavior is s (lns) ' . The con
verse is also true. Thus a difference in the ln$ depend-
ences of two asymptotic behaviors corresponds only to
a difference in the nature of the branch points, not in
their positions.

Let us now weaken the second assumption of the
model to read: At large $ the diffractive scattering and
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a= 2a'+ 1+2b. (5.1)

This is to be compared with the corresponding modifica-
tion entailed in the s-channel bootstrap. That modifica-
tion is trivial, since the only change is in the power of
lns on the right-hand side of the unitarity equation. We
may reorganize (3.28) and write for the present case

s(lns) —'—' = [s(lns)-' —"]'

fragmentation amplitudes vary with the same power
of s but possibly with different powers of 1ns. Thus the
Pomeranchuk singularities for the two processes are
located at the same position but may have different
strengths. Let the discontinuities behave as (/ —1) for
scattering and (/ 1) —for fragmentation, as l —+ 1.

We can proceed just as before and obtain the first
four predictions without modification. The difference
between u and a' shows up first in the constraint
equation (2.43), which now reads

APPENDIX: SINGULARITY STRUCTURE
OF AN INTEGRAL

Consider the function F(y) defined by the integral

F(y) = dss (s —y)', a)0, b)0

F '"'(y) = (const) ds sa(s y)
b n—

where 3 is some arbitrary constant which may be
taken to be real. We are interested in the nature of the
singularity of F(y) at y=O. Let F(y) be written as a
sum of regular, E(y), and singular, S(y), parts in the
neighborhood of y= 0:

F(y) =Z(y)+S(y) .

Taking the eth derivative, we have

Let a+b —m+1(0, so that Jz" ds s (s—y)™is con-
47r (lnsi) '—'(lns2) ' ' vergent; it is also regular at y=O. Since E&"&(y) is

regular at y=0 we have
S ~j. Sg

ff I(s) has precisely the same properties as before, then
the double integral yields asymptotically s '(lns) ".
Obviously, (5.1) is satisfied. Hence, all the remaining
predictions are also unaffected.

We thus conclude that all our main results are conse-
quences of the bootstrap of the position of the Pomeran-
chuk singularity. The requirement that the nature of the
I' branch point is also bootstrapped leads to a unique
determination that it is three-sheeted, provided that
the Froissart-Gribov continuation is assumed.
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S&~&(y) =(const) ds s'(s —y) i

= (const)y~+'+' ~ dx x~(x 1)i—
9

The convergence of the last integral implies

S&~i(y) = (const)y~+ +' ~.

From this we work back by successive integrations and
obtain:

(1) a+bWinteger,

S(y) = (const)y'+'+';

(2) a+b=integer,

S(y) = (const)y'+ +i lny.


