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Two-Variable Expansion of the Scattering Amplitude for any Mass and Spin
and Crossing Symmetry for Partial Waves*
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We derive an in6nite number of sum rules for the process u+b —+ c+d, where u, b, c, and d are particles
of arbitrary mass and spin. Each of the sum rules involves a 6nite number of partial waves. They are implied
by the crossing symmetry of the system and are complete. A classi&cation of these relations into an inde-
pendent set suggests a basis for the two-variable expansion of the scattering amplitude. The basis has
the further virtue that it explicitly displays the kinematic singularities of the amplitude and the threshold
and pseudothreshold zeros of the partial waves. The formalism is also valid for a decay process. The partial
waves in the sum rules then refer to amplitudes where two of the three 6nal particles are in a state of de6nite
angular momentum, while the region of expansion becomes the Dalitz plot.

l. INTRODUCTION

''N previous papers, ' a general method for two-
& ~ variable expansions of scattering amplitudes for
spinless particles of arbitrary mass was developed. The
basis was constructed to be diagonal in angular mo-
mentum and to lead to sum rules which connect a finite
number of partial waves when the crossing symmetry
of the collision amplitude is imposed. The expansion
which emerged from these requirements displayed the
threshold and pseudothreshold zeros of the partial
waves. The derivation of the sum rules and of the two-
variable basis was also extended to the pion-nucleon
svstem with the inclusion of nucleon spin. "The recent
work of Roskies' and of Basdevant et al.' shows that
such a formalism is of value in the study of low-energy
processes.

Here we generalize these ideas to reactions which
involve particles of arbitrary spin and mass. Section 2
reviews some known results which are pertinent to the
work. In Sec. 3, the crossing properties of the helicity
amplitudes are exploited to derive an infinite number of
sum rules, each of which involves a finite number of
partial waves. In Sec. 4, we attempt a systematic
classification of these relations into a complete and
independent set. The analysis suggests a two-variable
expansion of the scattering amplitude which clearly
shows its kinematic singularities and its properties at
thresholds and pseudothresholds. We also identify the
basis with the spherical functions of certain irreducible

* Supported in part by the U. S. Atomic Energy Commission.' (a) A. P. Balachandran and J. Nnyts, Phys. Rev. 172, 1821
(1968); (b) A. P. Balachandran, W. J. Meggs, and P. Rarnond,
ibid. 1'V5, 1974 (1968); (c) A. P. Balachandran, W. J. Meggs,
J. Nuyts, and P. Ramond, ibid. 1/6, 1700 (1968); (d) A. P.
Balachandran and J. Nuyts, Nucl. Phys. B9, 81 (1969); (e) A. P.
Balachandran, W. J. Meggs, J. Nuyts, and P. Raymond, Phys.
Rev. 187, 2080 (1969). References 1a and 1e also contain partial
lists of other papers on the subject.

2 R. Roskies, J. Math. Phys. (to be published); Phys. Letters
30B, 42, (1969); CERN Report No. TH. 1067-CERN
(unpublished).

3 J. L. Basdevant, G. Cohen-Tannoudji, and A. Morel, Nuovo
Cimento 64A, 585 (1969). This paper also indicates a general
method for the treatment of spin in processes where m =no„
SZQ = 1Ãgo

representations of the group SU(3) when all the masses
are equal.

The application of these methods to a decay process
offers no serious difhculty although the details willnotbe
separately given. The partial waves in the corresponding
sum rules are generated by states where two of the
three final particles have a definite angular momentum,
while the two-variable basis becomes a complete system
for a suitable scalar product over the Dalitz plot. A
more vital hypothesis in the formalism will concern the
existence of the so-called Euclidean region or alter-
natively of the Dalitz plot for the reaction which is not
just a point in the plane of the Mandelstam variables.
In most of the paper, we shall also assume for simplicity
that parity is conserved, that no two of the four particles
are of the same mass, and that none of the three crossed
channels refer to a boson-fermion process. The excep-
tional cases are treated brieAy in footnotes and towards
the end of Sec. 4.

2. PRELIMINARIES

Let p; denote the four-momentum of particle i in the
scattering process a+b —+ c+d and let m; and J, denote
its mass and spin. The Mandelstam invariants are

where
s =5' t=T' I= U' (2.1)

~=p +P» &=P. P—~=ps P—(2.2)

P;;(x)'=P„;(x)g'/4x,

s(t —I)+(m.'—ms') (m, '—ms')

~.s(s)~ ~(s)

t (rs s)+ (m.'—m, ') (ms' —mss)—
A„(t)Asg(/)

(2.3)

(2.4a)

(2.4b)

s+t+I =m s+mss+m. s+mss

The variable P;,$(p;+p;)s) will represent the magni-
tude of the three-momentum of i or j in the i-j center-
of-mass system and s =cos8„ the cosine of the center-
of-mass scattering angle in the x channel. We have
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where

u(s —g)+ (sr' '—me') (rrzbs —m, ')

A,e(u) Ab, (u)
(2.4c)

of the problem (such as, for instance, the dependence
of Flz} on the & symbols). The partial-wave decom-
position of Flq} follows from (2.6):

If X; is the helicity of particle i in the reaction
a+b~ c+d, the corresponding scattering amplitude
j}f'q,b„,},,&,b has the Jacob-Wick expansion'

Mb„ge, b.gb
——(sin-,'8,)}"—&}(cos-,'8,) } "+&}

X P (27+1)fb,}„,q,},bz(s)Pz &~" &} }"+&}&(s,), (2.6)
J=m

where X=X,—Xb, }s=h,—)e, szs=max(~X~, ~}s~), f}q}z
denotes a partial wave with total angular momentum J,
and P„&»(x) is the Jacobi polynomial of degree ss.

The latter defines an orthogonal system on the measure
dx(1 —x)~(1+x)}'over the intervals [—1, +1j:

F}.},e.},.)„=~.(s) 2 (2~+1)
J=m

F}}}= Q C}b}}"'}G}b}. (2.10)

X[f&,&e ~ & '(s)P, „&}"-~}}"+~~ &(s,)

&f},}e, }.~b (s)Pg „}"+} ~" "~'(s,)j. (2.9)

Let us exclude boson-fermion reactions from the
t-channel process a+c-+5+2 also, ' and let Gq;q„,q,q;
denote the t-channel helicity amplitude which is free
of kinematic singularities. The bar identifies the anti-
particle. The Trueman-Wick crossing relations' express
F(q) in terms of G(q):

2
dx (1—x) (1+x)sP &»(x)P &»(x)

Wang's analysis of kinematic singularities, ' which is
based on the crossing relations, shows that C)), )

~"') is a
polyrzomia1 in s and rational in g:

(2rz+zz+P+1) ss!

I'(rs+n+1)1'(ss+P+1)
8„.. (2.7)r (u+~yp+1)

The definition of the helicity basis is singular at
certain values of s, t, I and, as a consequence, the
amplitudes 3f)),) in general have kinematic singulari-
ties as a function of these variables. If the s channel
does not refer to a boson-fermion scattering process, '
these singularities can be removed by defining new
functions F)q), which are simple combinations of Mtq).
The form of P)q) in terms of M)), ), where there are no
mass degeneracies and parity is conserved, ~ is given bys

(s)
~) c&g.&a) S

=
(sins8, )}" &}(cossr8,)}"+&}

X[j}f}„}e,),.}b~~~,be, &,. }„]. (2 g)

We have suppressed the dependence of Fig} (of Giq}
and Cib} l"'l below), and of v, on some of the variables

' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) '7, 404 (1959).
s Higher 2'ramseemdersgo/ Fuaessoas (The Bateman Manuscript

Project), edited by A. Erdslyi (McGraw-Hill Book Co., New
York, 1953), p. 168.

6 See Ref. 15 for boson-fermion processes.
'When there are mass degeneracies, the precise form of the

kinematic singularity free amplitudes can be diferent from (2.8)
(Ref. 8). However, since the analysis of the paper remains valid
with minor adaptations, we shall not separately classify and dis-
cuss all the degenerate situations. The system with all four masses
equal is partially studied towards the end of Sec. 4. See also Ref. 1e
in this connection. The form of the kinematic singularity-free
amplitudes when parity is not conserved is given in Ref. 8b. The
necessary modifications of the text are still easy and are left out
of the paper.

'There are a very large number of papers on the kinematic
singularities of helicity amplitudes. We give only two references:
(a) L. L. C. Wang, Phys. Rev. 142, 1187 (1966); (b) G. Cohen-
Tannoudji, A. Morel, and H. Navelet, Ann. Phys. (N. Y.) 46,
239 (1968).

3. CROSSING RELATIONS FOR PARTIAL WAVES

As in Sec. 2, we will continue to assume in this sec-
tion and in most of Sec. 4 that parity is conserved, that
the s and t channels do not refer to boson-fermion
scattering amplitudes and that no two of the masses
are equal. (The exceptional cases are discussed in
Refs. '7 and 15.) We will also assume throughout the
rest of the paper that the so-called Euclidean region
exists for our system. ' The definition of this region is
given below.

We first recall the method for obtaining constraints
which involve a finite number of partial waves when
the particles are spinless. "The s and t channels are
characterized by amplitudes P and 6 and crossing
symmetry requires

F(s,g) =G(t,s) . (3.1)

The partial-wave expansions of P and 6 are in terms
of the Legendre polynomials Pz, (s,) and Pz, (s&'). Let
fz(s) and gz, (t) be the corresponding partial waves.

Let R denote the Euclidean region where the mo-
menta P;; (x) are purely imaginary or zero. It is known

e T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

"The Euclidean region does not always exist. If one of the
particles, say a, can decay into b+c+d, the appropriate region E
is the Dalitz plot. The requisite alterations of the formalism are
not difhcult and will not be explicitly treated. See, e.g., Ref. 1e.
There are also some mass configurations where there is no suitable
region at all for our purposes and to which the present method does
not apply. These are tabulated in Ref. 11 of Ref. le.

Ci }l"'}=P(s,t,{)),(X'))/Q(t, () ),(X')). (2.11)

Here P and Q are polynomials in their continuous
arguments.
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Since p is a polynomial in $ and t, the expression within
the curly brackets is a polyeomiat in z, of a certain
degree L,({li})for fixed $ while, owing to the orthog-
onality properties (2.7) of Jacobi polynomials, s

dz, (1—z,) I"-sI (1+z,) I "+sIz,

XP& (I&—sl. I&+sIi(z,) =0 (3 14)

4. CLASSIFICATION OF SUM RULES AND
TWO-VARIABLE BASIS

The sum rules of Sec. 3 can be classified into an
independent and complete set by the Gram-Schmidt
orthogonalization of the polynomials p($, t) on the
scalar product (, ) appropriate to the problem. The
latter is defined by

0-=0, 1, 2, . . . , J—m —1. (f,g) = d$di 4($,i)$rf*($,i)g($, $) (4.1a)

The partial-wave sum in (3.13) can therefore be term-
inated at J=$N+L, . So 8'z, and similarly ds and hence
8, contain integrals over only a finite number of partial
waves of the s channel.

It remains to show that 5 consists of integrals over a
finite number of partial waves giiI$(t) of the t channel
as well. We use (2.10), (2.11), (3.2b), (3.8), and (3.11c)
to write

d& P&(t)t'2/I p«(])p&d(i) j
Q(~{~}{l })

„)I~-'I(1+„)I~+'I

X{(1 z )Jr—Ii'—s'I (1+z,)$r I i'+s'I p($ ])—
XP ($,t,{X},{X'})}GI&,.I. (3.15)

Since I' is a polynomial in s and t, the expression within
the curly brackets in (3.15) is a polynomial of a certain
degree L&({X},{V})in z& for fixed t. By the previous
argument, each term in the sum over {X'} therefore
contains only partial waves gi&, I upwith J~&m'+L&, where
m'=max{ ~X

' —X ~, ~its' —Xq'~}. This completes the
proof that 8' has only a finite number of parti. al waves
of the t channel. By equating the two different ways of
writing 8, we obtain sum rules with a finite number of
s- and t-channel partial waves. '4 '5

'4 The reader may have observed that we could have replaced
@~r in (3.9l by C'~r+' for any integer o and still obtained such sum
rules. However, L, and L~ would then be increased to L,+20. and
Lt+2o. for a fixed p and the results would involve more partial
waves. Thus the choice in (3.9) is optimum in a certain sense.
Since Eq. (3.11a) shows that C is a polynomial in s and t (Ref. 13),
the sum rules generated by C &+' are already included in the text
for a suitable choice of p.

"Let us brieQy consider boson (B)-fermion (F) processes. We
first observe that if the t channel refers to a B-F process, the only
kinematic singularity which cannot be removed from the t-channel
helicity amplitudes by taking simple linear combinations of the
form (2.8) is of the t'" type (Ref. 8).Let G(7t) denote the amplitude
for this channel whose sole kinematic singularity is at t=0 and
let F/)tl as usual refer to B+B-+ F+P and be devoid of kinematic
singularities. Wang s analysis (Ref. 8) still shows that the crossing
matrix from G(ltd to Ff7tl is a polynomial in s for fixed t. The
techniques of Sec. 3 are therefore effective. The resultant sum
rules relate the B+B~F+E and the t-channel B+F—& B+F
partial waves. Similarly, there is a second set of sum rules which
involves the s- and u-channel partial waves. Finally, we can elimi-
nate the s-channel partial waves to relate the t and I channels.

1 6f

2.; d$ p, ($)$2$' 'P s($)P,~($)1' r

X dz, (1 z.s)$—rf*($,t)g ($,i) . (4.1b)

2 —1

dz, (1—z,s)$&(Pz(z, )IP, (z,) ~ hzi. (4.4)

But as SN~ is a polynomial in t for fixed s, (Pl. must be
a polynomial in z..Then (4.4) uniquely fixe" (Pz to be a
constant multiple of one of the Jacobi polynomials
I', (~~ ~». We make the identification

(Pz(z, ) =Pz&$& $»(z,), L=O, 1, 2, . . . . (4.5)

Note that because of (2.7),'

2 -1
(1—z s) JTPz ($T JT) (z )Pi(JT, JT) (z )

t (L+J~) l3'
Bzi. (4.6)

(2L+2Jr+1)L! (L+2J$)!
'6 Reference 5, p. 264.
"This is the method which was adopted in Ref. 1e for the

construction of the basis."Reference 5, pp. 157 and 168.

The method of construction of such polynomials is
known and the result is not unique due to the existence
of the two variables s and t."Since, however, the mea-
sure factorizes into parts depending on s alone and on
z, alone, it seems appropriate to choose a basis SN ($,t)
(A, L=0, 1, 2, . . .), which factorizes as follows'7:

8 ($,i) = ~.($)S~ ($)a»(z,),
E, L=0, 1, 2, . . . . (4.2)

Here Sz~ is a polynomial in s and t and we require

(SN 8 ) +N fiNn~zl y (4.3)
where KN~ is a normalization factor. We briefly explain
the form (4.2) before describing the details of finding
Sizz. The factor $z, is the so-called multiplier of Ref. 1e
and will be used below to eliminate the singularities in
$ of (Pz, for fixed i. As a result, $z IPz will be a polynomial
in s and t. Therefore, in order to ensure the polynomial
character of S~~ in s and t, we will construct S~~ to be
a polynomial in s. The reason for the choice of indices on
)z„Szzz, and (Pz will become clear below

Let us first orthogonalize S~~ on the index I.. This
requires
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Since Pz, &~r ~» has the definite parity (—1)z under
the transformation s, -+ —s„' it can be expanded in a
power series in s, consisting only of even or odd powers
of s,. its singularities in s for fixed t are therefore
factorizable owing to (2.4a) and are of the form
Lh, s(s)h, s(s)) z. We may thus set

4(s) =C~.s(s)~.~(s))', (4 7)

and require SNL to be a polynomial of precise degrees E
(X=0, 1, 2, . . .).From (4.3), {4.1b), and {4.6), we also
have

ds p, (s)L2s'"P.s(s)P,q(s))"'

xE~..()~"())"~ '()&-'( )

(2L+2Jr+1)L! (L+2Jr)!=+iv — ~xn (4 8)
L(L+J )!)'

The identification of the upper indices of SNL and S L

in (4.8) is permissible because of the presence of the
Kronecker symbol 6r, t in (4.3) when {Pz, is as in (4.5).

The polynomials SNL of precise degree 5 which ful611

(4.8) can be constructed by Gram-Schmidt orthogonal-

ization. The result is described in Refs. 19 and 1e.
The basis {S~z) can be used for the two-variable

expansion of the amplitude F(),l.2o The existence of

such an expansion which converges in the scalar product

(, ) is crucial for the equivalence of the full crossing
relation (2.10) and the sum rules given by all the

SN ."The expansion reads

(4 9)P {x{ Q 8tz SN (s)t)
N, L=O

(4.12)$z(s) = (4stt' —s)z.

(4.10) With this choice of fz, (4.8) becomes= 2 fz(s)Pz'" "'(s.)
L=O

But these are precisely the zeros which are expected to
be present in fz from the threshold and pseudothreshold

behavior of f{i{~.LHere even a behavior of the form

(&—(ttt +ttts)')*' is being called a zero. ] This follows

because (i) F{q» is free of kinematic singularities and,

therefore, a totally general polynomial approximation
of F(yl gives rise to precisely the right threshold and

pseudothreshold zeros of the derived partial waves and

hence of fz, and (ii) the zeros given by $z are common

to all the fz generated by s tpoly-nomials and these are

the only zeros which enjoy this property. Thus the
expansion (4.9) explicitly displays the zeros of fz.
These remarks can be verified from the analysis of the
~-E system in Ref. Ie. The two-variable expansion of

M{&{ Pcf. (2.8)), which may be inferred from (4.9),
will also clearly show its kinematic singularities.

While these are nice features, there are some dis-

advantages in this basis since it is not diagonal in the
s-channel angular momentum unless the system is

spinless (Jr ——0). It is, however, "quasidiagonal, " since

each generalized partial wave fz is a 6nite linear com-

bination of the f{i}~that are diagonal in the total
angular momentum J.

We 6nally illustrate the construction of SNL for the

kinematically simple process consisting of four particles
of equal mass m. These functions will also be identified

with the basis vectors of certain irreducible representa-

tions of the group SU(3).
When the masses are equal, the factorizable singu-

larity in s for Axed t of Pz, {sr ~» is (4ttt' —s)~. The

multiplier $z, of (4.7) therefore has an unnecessarily

excessive number of powers of s for our need. "The
"minimal" choice" of $z, is

The generalized "partial wave" fz(s) is a finite linear

combination of f{q{~,and has the expansion
ds ss&{4ttt' s)s~r+"+'Sitz(s)5„z(s—)

f..()=&.() 2 '& '().
N=O

(4.11)

(L+2 Jr)!
=XNz(2L+2 Jr+1)L! 5~„, (4.13)

I:(L+ Jr)!)'

A where SNL is a polynomial of precise degree Ã. Hence
We observe that fz vanishes whenever $z vanishes

(provided the series is well behaved at these energies).

"Reference 5, p. 158.
"The completeness of f Qr~} can be proved as in Ref. 12 of

Ref. 1e (see Ref. 12 of present paper). Note however that the sum
rule due to any polynomial in s and t is not always a Pntte linear
combination of the sum rules obtained from S~~. For example, if
ns, &mb, m, /mp, the projection of t on I'&&~& ~» has a singularity
at s= 0 which the &IS~~ do not have. Therefore, for such masses,
t is not a 6nite linear combination of S~~. This remark is due to
J. Nuyts (private communication).

s —2'
Stzz (s,t) = (4ttt' s)zP~ ts~'+"+—'~'&

2m2

XPz, &~'~" (s,), X, L=O, 1, 2, . . . . (4.14)

2' Reference 9 of Ref. ie.
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Consider the group SU(3) on the column vector

gl/2g'Stion]

]1/2~q', egg

, NI/2~iq3
(4.15)

The harmonic functions which carry its left regular
representation in an irreducible way have been con-
structed by Beg and Ruegg. "Their results show that
the functions S~~ can be identified with a subset of
these basis vectors. The identification is not unique
perhaps because the expansion (2.6) assumes a certain
phase convention. 4 To perform this identification, we
change our measure over R from dsdt 4~~ to dsdt by
redefining the basis to be {4i~»sSAI~). A comparison of
this set with Eqs. (3.27) of Ref. 22 shows that in a
notation where (X,tt) labels the basis of an irreducible
representation of SU(3), and I, Is, and I' denote the
amount of "isospin, " its "third component, " and
"hypercharge" in its members, any one of the following

"M. A. B.Beg and H. Ruegg, J. Math. Phys. 6, 677 (1965).

eight assignments is possible:

) = s(3+ot+p+v) Jr+N+L,
tt =-', (3 ot —P —y)—JT+N+L,
I=JT+L,

Is=a(P ~)»
1'='s(~+P 2—V)JT ~

(4.16)

Here tr, p, y= ~1 and each of them has the same value
in all the equations.

These remarks generalize some previous work" 'd on
the group-theoretical foundations of the proposed two-
variable expansions.
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The asymptotic behavior for electroproduction of one hadron in the limit q ~ io (spacelike) with (labo-
ratory energy)/q' large and fixed is derived by means of the Bethe-Salpeter equation, which takes account
of the vector Droperty of the photon.

I. INTRODUCTION

'HE structure functions of inelastic electron-
nucleon scattering have become of considerable

experimental and theoretical interest. Bjorken' has
put forth a conjecture called a scaling rule on the
asymptotic behaviors of these functions in accord with
the experimental measurement. 2 Combining his con-
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jecture with Regge asymptotic behaviors, Abarbanel,
Goldberger, and Treiman' have argued that the
Pomeranchon in the Regge asymptotics also dominates
in the Bjorken limit' with 2m'/q' fixed large where q'
and s are the squared four-momentum and the lab
energy of the photon, respectively. This line was sub-
sequently pursued by Drell, Levy, and Yan, ' and also
by Altarelli and Rubinstein in the ladder approxi-
mation to the generation of Regge particles. It was
thus argued that the scaling rule is derived from the
Pomeranchon contribution. It is, however, believed
according to recent developments in hadron physics
that the Pomeranchon is generated by a mechanism
entirely different from that for the other (ordinary)
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