
DUALITY IN m+p BACKWARD ANGULAR DISTRIBUTIONS

seen because of their very broad widths and low
elasticities. Several of the resonances on the other
trajectories might be seen, however. The resonances of
the 6& trajectory have relatively high elasticities in our
model, a property that favors observation, but they
have large widths, a property which makes observation
diS.cult. The situation is the opposite for the resonances
of the A~ trajectory, which have relatively small widths
(favoring observation) and small elasticities (making
observation difficult).

It is interesting, however, that the use of the set of
resonances proposed in this paper gives" a fair agree-
ment to the observed sr+p total cross section once the
diffraction contribution has been subtracted out.

An important test of the model would be a compari-
son with polarization data. Unfortunately, only pre-
liminary sr+p backward polarization data exist."There-
fore, without attempting to make a fit to these
preliminary data, we simply predict the polarization for
an incident momentum of 2.75 GeV/c. This is shown in
I'ig. 8. The remarkable feature of this prediction is that
it qualitatively agrees with the preliminary data of
Ref. 18 in that it is positive in the backward direction
and changes sign near the position of the dip in the
angular distribution. Since the polarization depends
very sensitively on the exact values of the parameters,
we expect that a slight change in the parameters could

"M. Ciftan and G. Patsakos (private communication).
"N. Booth, G. Conforto, and A. Yokosawa, presented by G.

Bellettini, in ProceedirIgs of the Fourteenth Jnternationat CorIference
on High-Energy Physics, Vienna, 196'' (CERN, Geneva, 1968),
p. 329.

lead to a more quantitative agreement with the final
data.

Lacking more complete experimental data on higher
recurrences of the Regge trajectories, one might con-
sider comparing our elasticities (Fig. 3) with those
predicted by the Veneziano model. "At the moment the
conclusion seems to be that the Veneziano model".. .fails to provide an adequate extrapolation from the
scattering data to the widths of the d, e (1238) and its
recurrences. '"'

We do not wish to claim that all the trajectories of
our model really exist. Our main point is that by in-

cluding resonances lying on trajectories other than the
Aq, we can obtain the qualitative characteristic be-
havior of the observed or+p cross section in an angular
range near the backward direction. Ke therefore take
it as quite plausible that at least one additional 6 tra-
jectory exists. Such a trajectory is necessary if duality is
meaningful at these energies.

Because of the reasonable success of the model, we are
at present extending the calculations to include the
angular distributions and polarization at all angles,
adding the forward diffraction peak as a separate
contribution.
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The general form of the coincidence cross section for electroproduction of nucleon resonances is reviewed
and discussed using the helicity formalism. The predictions of a coupled-channel relativistic X/D model
are discussed for nucleon levels in the first four resonance regions. These predictions serve to indicate im-
portant questions concerning the structure of the nucleon, and consideration is given as to how these ques-
tions may be answered by means of coincidence experiments.

I. INTRODUCTION

~ LECTRON excitation has now become a practical
~ means for studying the detailed structure of the

excited states of the nucleon. In most experiments
performed so far, only the final electron has been
detected. Some experiments detecting the 6nal charged
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pion or nucleon in coincidence with the electron have
been performed in the Ã*(1236) region, ' ' and extensive
coincidence experiments are planned for the higher
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we present predictions for the individual form factors
based on a coupled-channel relativistic E/D model.
The results of this model have been compared pre-
viously with the noncoincidence data, ~' and the agree-
rnent is good. It has been found, however, that widely
differing models can all give reasonable fits to the non-
coincidence cross section despite making quite different
predictions for the individual form factors. ' Since
coincidence experiments permit the determination of
these form factors, such experiments will provide a much
more stringent test of our present understanding of the
resonances. In Sec. IV we discuss some distinctive pre-
dictions of the relativistic 1V/D model and indicate how
they can be tested in coincidence experiments. Section
V contains a brief summary.

Appendix A summarizes the notation and conventions
and compares them to others frequently used. Some
suggestions for separating the resonant part of a
measured amplitude are also presented.

sl-- &l
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Fzo. 1. Choice of angles and helicity unit vectors
in the center-of-momentum frame.

II. GENERAL DISCUSSION OF
COINCIDENCE EXPEMMENTS

The general form of the coincidence cross section has
been discussed by several authors. " "We will use the
notation and results of Pritchett, Walecka, and Zucker. "
We shall consider the

~
7rcV) final state explicitly, but the

general discussion is directly applicable to other two-
body final states such as

~

iriV*(1236)).

A A
e ~ k

k3

resonance region. ' It is therefore important to examine
what can be learned from coincidence measurements in
general and to discuss how particular theoretical pre-
dictions can be most easily tested using coincidence
techniques. This is of interest both in planning and
interpreting experiments a,s well as in testing our present
understanding of the nucleon resonances.

In Sec. II we review what can be said about coinci-
dence experiments on general grounds. An expression
for the coincidence cross section is given in terms of
matrix elements of the nucleon current. The dependence
of these matrix elements on the c.m. angles is displayed
through a Jacob-Wick helicity analysis. The angular
dependence associated with resonances of low spin is
noted in particular, while the general partial-wave
expansion is summarized in Appendix B. Measurement
of this angular dependence permits a direct determina-
tion of the spin of a resonance as well as a separation of
the form factors describing the excitation of the
resonance. The particular advantages of making
measurements in the forward (or backward) direction
in the c.m. system are also discussed.

To go beyond the general discussion of Sec. II and
make specific predictions for the excitation of nucleon
resonances, it is necessary to use a model. In Sec. III

F. Pipkin (private communication).
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F&G. 2. Relation of the transverse unit vectors to the initial
and 6nal electron momenta. The pion angles 8I„and @q, are also
indicated.
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Following Walecka and Zucker, ' we choose a coordi-
nate system in the c.m. frame of the pion and 6nal
nucleon as indicated in Fig. 1. The matrix elements of
the nucleon current are denoted by"

~„—= (m/4rrW) (2po EtEsQ'/m') '/'

X&PV' 'IJ.(o)IP), (21)

(2.2)J„(0)=—(J(0),iJ,(0)).

Here m is the nucleon mass, while 8' is the total energy
and E~, E2, or~ are the nucleon and pion energies in the
c.m. frame. In Fig. 2 we mak. e a specific choice for the
transverse unit vectors el, ~ and el, 2 in terms of the initial
and final electron momenta ki and ks. From these unit
vectors we choose a spherical basis as follows: 8„=8se, P„=2a.—Q/, e. (2.9)

Jacob and Wick" ":
(8"")"~ =(4k*v) "'Z(2J+1)

J
X»-is, i '(—4~—8n4n)*

x(), IT&(wkp) ~),),&, (2.7)

(g )i, i, =(k*/kp)(4k*q) "'P(2J+1)
J

x ~~,~,'(—y.—8,y.)*
X&~s I

T~(w k')
I
xto&. (2.8)

By comparing Figs. 1 and 2, we see that the nucleon
angles 8~ and P„are related to the pion angles 8/„and
4s, by

We then de6ne

e~t—=W-,'v2(eat+ieas),
A A
eo—=e~3.

These expansions de6ne the helicity matrix elements
(), I

»(w k') I),»&.
It is convenient to introduce states of definite parity.

)tg, =&1,0. (2.4)

Thus g~' is the current matrix element for a virtual
photon of helicity X/, . From current conservation it
follows that

g,= (ka/k, )gP, (2.5)

/k' W'
+I +

E2k*s ms
tans-'8 I(lg+ils+lg-tip)

+ 2 R (a")*(a-')
2k*'

t/t/r 2 Q2 1/2

+ ( ta,n'-'e+ )
Xv2 Imp, '(g+'+g-'), (2.6)

where ~& is the initial electron energy and 0 is the
electron scattering angle, both measured in the labora-
tory. k2 is the square of the four-momentum transferred
to the target, q is the magnitude of the pion three-
momentum in the c.m. frame, and dQ,*is the solid angle
in this frame.

The c.m. angular dependence of the cross section can
be made explicit through an helicity analysis following

"We use a metric such that a„=(a,iup). We set A=c= 1, and
thus o.= e'/4e 1/13'/. =

where k* is the magnitude of the virtual photon three-
momentum in the c.m. frame, and ko is the energy of
the virtual photon in this frame.

The general coincidence cross section is then
I

see
Eq. (C26) of Ref. 71

d'0.~ n2 cos'-'0 4m'
.desdQsdQp*/4s. 4ets sin4-,'8 W k*'

Tt/s, p/s'+= ~(a+
I
Tr(w k') I-'+&

Tt/s. t/s'+= &a+I T (W k')
I
s+&

Tt/s, t+:(k*/kp)&a+I T~(W ks) ll.+&.

(2.11)

When convenient, we shall use TJ as an alternative
notation to T'+.

If the nucleon spins are not measured, one averages
over initial spins and sums over final spins. The resulting
general partial-wave expansion of the cross section is
given in Appendix B. If only one intermediate J state
is important, as in the production of a resonance, the
cross section has the form

&or sz

deed QsdQ p*/47r W 2k*'e k*

(8/p)L I Tt/s, t/s I'+2e(k'/k")
I Tt/s.

+kp (8sp) I
Tt/s s/s

+2e cos2$/„kp (8pp) Re(Tt/s p/p *Tt/s t/s )
+2L(k'!V') e(e+1)j /P sjnP,

Xkp'(8/„) Re(T1/2, Tt/s, p/2 ') }, (2.12)
"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
'3 We use the angular momentum notation of A. R. Edmonds,

Angular 3Ilomenlum in Quantum kgeckanzcs (Princeton University
Press, Princeton, ¹ J., 1957).

"We have found it convenient to work with these quantities.
They are related to the "parity amplitudes" de6ned by Walecka
and Zucker (Ref. 8) by T3/2'+ = W (4k*ad) "'Tg/2 3/3 T1/g'+
= (4ke//) "'T~/e &/s'+, and (k*/kp)D+= (4k*9) "'T~/~, '+

&!'I=——:~2I&~.=-:I~&--:Ij,
I-;+)—=—;%2LI),= ——,', z, =1&~ I-,'—1&g,

ll'&=——:~2LI-: »~ I
—:-»j,

IL+)=—s~2I la 0&~I ——,'o&j.
The superscript + refers to the notation J=/~-'„with
1 denoting the orbital angular momentum of the pion,
and the parity of these states is s- = (—1) + / = (—1)'+
We then introduce a shorthand notation for the matrix
elements involving states of de6nite parity":
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TAnLz I. 824 dependence of the resonance cross section [Eq. (2.12)7. (Note that x—= cos814.)

1+
2
3+
2
5+
2
I

hi~ (Okq)

1

I+3S2
(9/4) (1—2x'+ Sx4)

(9/4) (1+Sx' —55x4/3+175x'/9)

h3~" (OI,q)

0
3(1—x')

(9/8) (1—x') (1+15x')
(15/4) (1—x')

X (1—~~'+21x4)

h4~ (01„)

0
—V3 (1—x')

—(9/8) &2(1—x') (1+5x')
—(3/4) (V'15) (1—x')

X (1—2x'+35x4/3)

h6J (6,)
0

2'~(1—~2) 1/2

—(9/4) %2x(1—x') '"(1 —5x')
(3/2) (V'») x(1—*')'"

X (1—22''/3+35r4/3)

where we have defined

0'24=—Q cos 20/4et Sln 12f), (2.13)

k2/2k*2

k2/2ka2+ (gj'2/m2) tan21()
(2.14)

Table I gives the functions k1, 2, 4, sr (OA, ) for the cases
J = —,'~, 2~, 2+, and —,'+. These are just special cases
with J=J' and x =x' for the $z's used in Appendix B.

If only the 6nal electron is detected and in the case
of a sharp resonance, Eq. (2.12) reduces to the Bjorken-
Walecka formula" for exciting a discrete nucleon
resonance"

d02 1+(2e1/m) Sins-'() k*'

O' H~g2

+ + tan'-,'0 + ' ', 2.15

provided that we identify

J+1—

I
f+I'=

I
T„2 2/2'(lfr, k')„,

I
'dw

I T1!2,1/2 (~'~~k')-~
I

d8
~ (2.16)

If I'=
J'+ 1—

k*
I Tt/2, .r (lF~k2) es

I

sd8'

The separation of the resonant parts of T~/2, 3/2

T~/2 q/2, and Tq/2, , and their connection with the
amplitudes f+, f, and f, are discussed in Appendix A.

Some general features of the coincidence cross section
should be noted. The dependence on the angle &I„ is of
particular interest because it is associated with the
interference between helicity amplitudes. The
(g+')*(g ') term leads to a cos2&/, 2 dependence, while

the g,*(rl+'+ri ') term produces a sings, dependence.
The partial-wave expansion in terms of helicity matrix
elements LEq. (2.12) and Appendix Bj is much simpler
than is the expansion in terms of the conventional
multipole amplitudes E~~, M ~~, and C~~."For example,

"J.D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966).

"The density-of-states factor [1+2(4~/m) sin'(-,'e)g ' is valid
only if e& and 0 are kept fixed. If instead k' and 0 are held fixed,
then a different factor is present. This problem is discussed in
Appendix A, where the relevant expressions are given.

mf k' y2 —k'
(P '»).~—I I

— e(e+1)
W(2k*2e)k* k*'

—1/2

Xp(J+—) Im(& T1/2, , *T1/2, 1/2 +), (2.18)

2'The coincidelce cross section for electroproduction of pions
from a polarized target has been discussed by N. Zagury and
A. F. F. Teixeira, Nuovo Cimento 61A, 83 (1969).

the T~/2, 3/2 terms do not contribute at 8/, ~=0 or m,

and for one partial wave there is no T~/2, , "*T~/2, ~/2

interference. The relation between the multipoles E~+,
M&~, and C&~ and the helicity matrix elements is given
in Appendix A. Finally, we see from Table I that a
resonance of given spin produces a characteristic angular
dependence. Thus the spin of a resonance can be de-
duced from the measured angular dependence of the
cross section. The highest power of cos8~, that appears
for a resonance of spin J is 2J—1. Thus for a J=-,'
resonance, the resonance cross section will have no
angular dependence.

At 8/„=0 and ~, the coincidence cross section has a
particularly simple form:

d' or(f)22=0, 2r) m k' 1
= —

&cV

de dQ dQ */42r W 2k*'e k*

L2e(k /k* )kr ReT1/2, ~ Tt/2, ~
J7l Jr 2r r

+k2 ReTt/2, 1/2 T1/2, 1/2 ]8„=0,. (2.17)

The functions hj and h2 depend on J, J' ', and OI,„and
are given in Appendix B. It is thus possible to separate
the Tl/2, 1/2 Tl/2, 1/2 from the TI/2, TI./2,

terms by making a Rosenbluth plot for the coincidence
cross section at 0/„=0 or ~. As Baba et ul. ' have em-
phasized, there are many advantages to this procedure
over a Rosenbluth plot for the noncoincidence cross
section. After all, the noncoincidence separation yields
only the contribution

I T»2, 1/2 'I '+
I Tr/2, 2/2r

I
', and if

the helicity 2 term is large, it is much more difficult to
separate a small Coulomb contribution by this method.
In terms of resonant parts, the 0/„=0 or m data deter-
mine f an.d f„and then f+ can be found from com-
parison with the total cross section.

There is a special reason for making an e6ort to
determine the product I T1/, 1/2'+

I I Tr/2, '+I through
coincidence experiments. The noncoincidence cross
section for scattering of electrons from a polarized
target" contains the term
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where P is the polarization of the target. If
ImT&/&, &~2'+T&~2„'~*40, this term will lead to an asym-
metry in the scattering depending upon whether the
target polarization is up or down. Christ and I.ee" have
proposed looking for such an asymmetry in order to
test time-reversal (T) invariance in the electromagnetic
interactions of hadrons. They reason that a violation
of T invariance would result in a phase difference 8
between T&~2, &~2' and 1 &~2„'+.The resulting asymmetry
would thus be proportional to

[ Tt/s, t/s'+[
[ Tt/s, .'+[ sin&.

In order to conclude anything about b from a search for
such an asymmetry, one needs to know the value of

[ Tt/9, t/s'+ [ [ Tt/s, ,'+ [
. Since this quantity can be deter-

mined from coincidence experiments at 0~,=0 or x, it
would be useful to perform such experiments over as
large a range of k' and 8' as possible. Experiments per-
formed so far have detected no asymmetry, " but a
knowledge of [Ti/s, i/2'~[ [Tt/s, ,'~[ may suggest looking
in diferent regions of the inelastic spectrum than have
been investigated so far.

III. COUPLED-CHANNEL N/D MODEL

In this section we present predictions of a covariant,
gauge-invariant model for the inelastic form factors f+,f, and f, The pre.dictions of the model agree well with
the noncoincidence data, but comparison of the in-
dividual f's (presented here for the first time) with
results of coincidence experiments will constitute a
much more stringent test of the model.

Detailed explanations of this model have been pre-
sented previously, ' and so only a brief review will be
given here. Let a(IV, k') denote a particular electro-
production amplitude for producing a state of definite
spin, parity, and isospin. As indicated schematically
in Fig. 3, a(W, k') is considered to be the result of two
separate processes. First the nucleon is excited by the
virtual photon to produce an intermediate state such
as [vrA') or [7rÃ*). The excitation of this state is de-
scribed by a set of exchange graphs. The appropriate
helicity projections of these graphs, denoted by
a'"'(W, k'), give the contribution to the amplitude under
consideration. The strong interactions, which depend
only on the total c.m. energy t/t/, then act in this state
to build up a phase and create a resonance at the
appropriate mass.

The simplest calculation one can perform within this
framework is to keep only the [vrlV) intermediate state. '
The expression for a resonant amplitude then takes
the form

a(W, k') = a'"'(W, k')/D(W), (3.1)

where D(W) is a final-state interaction factor. The
amplitude thus has built into it the correct threshold
and analyticity properties. In addition, in the elastic

"J.R. Chen, J. Sanderson, J. A. Appel, G. Gladding, M.
Goitein, K. Hanson, D. C. Imrie, T. Kirk, R. Madaras, R. V.
Pound, L. Price, Richard Wilson, and C. Zajde, Phys. Rev.
Letters 21, j.279 (1968).

lhs pa (W, k~~ tr D(e)
FIG. 3. Model for electroproduction of nucleon resonances.

region it satisfies the 6nal-state theorem and is an
approximate solution of the Omnes equation.

For resonances other than 1V*(1236) a realistic calcu-
lation must include the effect of inelastic intermediate
states. A more sophisticated calculation has been per-
formed' in which the [orÃ*(1236)) state is kept in
addition to the [7rE) state. '4 It is then assumed that
only one linear combination, or one eigenchannel, of
these two strong-interaction channels is resonant. The
other eigenphase shift is assumed to be small. The
production amplitude in this resonant eigenchannel is
given by

A PV,k')
= L'ail™(Wk') cosf+as'"'(W, k') sinl j/D(W) . (3.2)

The mixing angle f' is related to the partial widths for
decay into channels 1 and 2 by

cos'f = I'r/I',

sin't = I's/I'.

(3.3)

(3.4)

The amplitude for production of the resonance followed
by decay into channel 1 is obtained by multiplying
Eq. (3.2) by cosf. D(W) is related to the real eigenphase
shift $ by

(W —M, )
D(IV) =e*p(—

P(W') dW'
(3.5)

s., (W' —M, )(W' —W —ig))
D(M, ) =1. (3.6)

$ can be obtained from the results of phase-shift analyses
of xÃ scattering, and thus the shapes of the resonances
are also obtained in this calculation. The subtraction is
included since it appears that P

—+-,'w asymptotically.
The unknown M, is found7 by normalizing to the data
and, interestingly enough, turns out to be approximately
equal to the nucleon mass for all resonances considered.
This two-channel calculation has been performed for
the states -s+

ss (1236)"; —', ,-', (1525); —', , -', (1680);
ss+, rs(1688); and s7+Pss(1950). The J = —', , I= ', partial-
wave contains two overlapping resonances, one of which

s4 Only the [mX*(1236)) channel corresponding to the lower
orbital angular momentum is included."For this resonance the mixing angle g—=0.
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decays largely into (Ert). For this partial wave it is no
longer sufhcient to assume that only one eigenchannel is
resonant and to approximate all inelastic effects by
the (irA "(1236))channel.

As excitation mechanisms for the (ircV) and
(rrlV*(1236)) states, rr, to, E, and the convection current
part of 1V~(1236) exchange are used. All the necessary
coupling constants are known except for the sign of the
combination g„~g„~~, and this sign is crucial. With the
present choice of sign, it is the high-spin resonances
which dominate the inelastic spectrum, and the J=2
contributions are unimportant. In the simple one-
channel calculation, the opposite sign of this quantity
gives a qualitatively different 6t to the resonance cross
section in the second and third resonance regions with
the J=-,' states dominating the spectrum for k'& 0. The
fact that the two-channel calculation, which makes an
attempt to include inelastic sects, produces qualita-
tively reasonable spectra in H/' at all k' is the strongest
theoretical reason for believing that the high-spin states
do in fact dominate the resonance spectrum. The actual
determination of the resonance spinsin electron scattering,
particularly as regards the role of the J=tsresonances,
will be one of the most useful results to be obtained from
coincidence experiments

Figure 4 presents the predictions for the individual

amplitudes f~, f, and f, for the —,'+,—,'(1236) resonance
Decays into states other than (irE) are negligible for
this resonance. Figures 5—9 give the predictions for
exciting higher resonances followed by decay into the
(iran) channel. These are the results of interest for
coincidence experiments that detect only the (ircV)
Anal state. The two-channel predictions for the.

$,—,'(1525) resonance are shown in Fig. 5, while for
comparison, and to attempt to get some feel for the
model dependence of these results, the one-channel
predictions for this same state are given in Fig. 6. We
emphasize again that the two-channel calculation is
the more realistic one. Figures 7—9 give the two-channel
Predictions for the ss+ rs(1688); ss, —', (1680); and
s+,s (1950) resonances, respectively. The one-channel
predictions for these resonances are fairly similar.

To obtain the correct helicity amplitudes for all k' is
a severe test of any theory and clearly involves the
detailed dynamics of the strong interactions. The pre-
dictions of the present model can probably be expected
to give only a qualitative indication of the true behavior.
In particular, comparison with the photoproduction
results shown in Figs. 4, 5, and 7 gives some idea of the
reliability of the predictions. However, comparison with
the noncoincidence data shows that the model appears
to provide a much better description away from k'= 0.~ 8'
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Fio. 5. Predictions of
two-channel calculation for
f+IGs„, f IGs„and
f,IG@„for excitation of the
ss, —',(1525) resonance fol-
lowed by decay into the
Iirllr) final state. The points
at k'=0 are obtained from
the photoproduction analy-
sis of Ref. 27.
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IV. IMPLICATIONS FOR COINCIDENCE
EXPERIMENTS

We now use the results of the previous section to
discuss specific features of the resonances that should
be observable in coincidence experiments.

(i) ss+, ss (1236). One of the more striking predictions
for this resonance is the existence of a diRraction mini-
mum in

I f, I

' near k'=-0.4 GeV'. The total cross-section
measurements of Lynch et al. 26 appear to show such a
minimum, but one cannot tell whether this is a property
of the resonance or of the background. The ~' coinci-
dence experiment of Mistretta et al. ' o6ers additional
support. They detected a Coulomb-transverse inter-
ference at O'=0. 13 and 0.24 GeV' but found none at
0.4 GeV'. Future coincidence experiments should
attempt to confirm the presence of this zero in the
resonant amplitude. In particular one would expect to
see a Coulomb-transverse interference for k') 0.4 Gev'.

A second prediction is that
I
f+I' completely domi-

nates the transverse contribution. In photoproduction
this is not the case since f+If = —2.10+0.50." The
"H. L. Lynch, J.V. Allaby, and D. M. Ritson, Phys. Rev. 164,

&635 (&967)."R.L. Walker, Phys. Rev. 182, 1729 (1969); S. D. Ecklund
and R. L. Walker, ibid. 159, 1195 (1967).

experiment of Baba et al. ,
' however, indicates that

I f I

' decreases considerably between k'= 0 and
k'=3 fm ' (0.12 GeV'). Combining this measurement
with the results of Lvnch et al. ss (which showed that

I f~I'+ I f I' increases slightly over this range), we
estimate that If+IIIf I=302~143-at &'=3 &~ '.
Thus it is possible that ! f~!))!f I

away from k'= 0.
(fi) Second resonance. There are two resonances in

this region: ss, r, (1525) and —', Prs(1550). At k'=0 this
resonance region is known to be dominated by the ~

state. '~ While there is theoretical evidence that the —,
'

state dominates at all k' as discussed previously, it is
crucial to have an experimental determination of the
spin of this resonance for O'QO. From Table I we see
that the cross section for a pure spin--,' state has no 0&q

or @~, dependence. It should thus be possible to obtain
a clear-cut experimental decision between spin —', and —,'."

The results of the two-channel calculation for the ~3

state contain some interesting features. All three ampli-
tudes f+, f, and f, are predicted to have zeros. It is

"If the —,
' state becomes dominant, the angular dependence

should disappear at large k', but in the transition region angular
dependence can arise from interference between the —,

' and ~
states. In such a case one would expect a large cos2@q, sin'Hq~ term
resulting from the interference of Tif2, 3f~'" and T1q2, 1I2'f' .
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FrG. 6. Same as Fig. 5
except now predictions of
one-channel calculation are
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0.5

0.0

FIG. 8. Same as Fig. 5 for the
$,-', (1680) resonance.
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interesting to observe how the relative importance of
the three amplitudes changes with k'. In particular, the
ratio f+(f varies quite rapidly for small changes in k
above zero.

0.5

We thus see that a complete separation of the form
factors for the second resonance in the low k' region
(0(k'&0.5 Gev') would be extremely useful.

(iii) Third resonance There are .four well-established

N (1950) 7/2, 5/2

f+/GEp———f /GE p
fC/GEp

FIG. 9. Same as Fig. 5 for' the
-,'.+,s3(1950) resonance.
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resonances in this region: 2'+P, (1688); —,', i (1680);
2,—,'(1710); and —,',2(1640). In photoproduction the
two spin-2 states are dominant. " But just as in the
second resonance region, it is crucial to have an experi-
mental determination of the resonance spin in this
region for k'QO.

Both the one-channel and two-channel calculations
for the spin-~ states do not give good fits to the low-k'
data. ' If experiments show that the spin- —,

' states do
indeed remain dominant in this region, the results of
these experiments will be useful as a guide in attempting
to improve the calculation for these states. Using the
same subtraction point in the Anal-state enhancement
factors for these two states, however, the two-channel
calculation was able to obtain the experimental value
0.07&0.03" for the ratio of the —,

' to the —,'+ state in
photoproduction. From Figs. 7 and 8 we see that for
k'WO the ~ amplitudes are predicted to remain small
relative to the dominant ~5+ amplitudes, and one would
like to confirm this in the coincidence experiments.
Relative sizes of amplitudes for these two states can be
determined from the ~+-~ interference, which contains
terms with one higher power of cosOI„ than do the
corresponding terms for a pure —,

'+ or ~ state. To decide
whether a particular amplitude belongs to the —,

'+ or ~

state is not easy. It may be possible to determine the
parity by looking for an interference between the
second and third resonances. '~ For example, if the
second resonance is taken to be —,', then only odd powers
of cos{5)I„enter if the interference is with the —,+ ampli-
tude, while only even powers enter if it is with the ~ ."

(zv) Fourth resozzazzce. In pion-nucleon scattering
this resonance is the —,'+,~3(1950) state, and photo-
production experiments indicate a spin- —, resonance in
this energy region. " In the total cross-section experi-
ments it has been very difficult to see this resonance
because of the large background, and consequently very
little has been learned about the excitation of this state.
In coincidence experiments this state can be identified

by looking for a cos'81„dependence in the cross section.
Any information that is obtained concerning the excita-
tion of this resonance will be useful.

V. SUMMARY

We have attempted to indicate the important role
that coincidence experiments can play in obtaining an
understanding of the nucleon resonances, and we have
discussed some procedures that simplify the determina-
tion of the inelastic form factors. In order to obtain some
specific predictions, we have presented and discussed
the detailed results of a coupled-channel relativistic
E/D model for nucleon levels in the first four resonance
regions. These results have emphasized several im-
portant questions concerning the structure of the nu-

'QThis is true for all terms except the Coulomb-transverse.
Here the form of the interference with the —,

'+ amplitude is
sin81„(cosHI„)'" and with the —,

' amplitude is sin8q, (cos81,~)'"+',
n an integer.

cleon that can be answered by coincidence experiments.
First of all, what is the role of the J=—,

' resonances? An
experimental determination of the resonance spin for
k')0 will decide if the J=~ resonances do grow in
importance away from photoproduction. Do the in-
dividual form factors possess detailed structure such as
zeros even though the total cross section appears to be
a smooth function of k'P Also, does one particular form
factor tend to dominate the others at large k'?

It is hoped that the discussion given here will prove
useful in planning coincidence experiments. In addition,
comparison of the results of such experiments with the
predictions discussed above will permit a much more
stringent test of the present model and contribute to a
better understanding of the nucleon resonances.

APPENDIX A

A problem we have encountered in discussions with
both experimentalists and theorists is the wide variety
of notations, formulations, and phase conventions used
in analyzing electroproduction. In this Appendix we
discuss and relate various commonly used notations
and formulations while explicitly explaining the con-
ventions and formulations we have used. We shall also
examine some of the special considerations that enter
when a fit of the resonance shape is performed or an
integration over final energy is carried out.

For simplicity and convenience we have chosen to
work with helicity matrix elements rather than the
more traditional multipole moments. The many phase
conventions contained in our defj.nition of the helicity
matrix elements (see Sec. II) are most easily sum-
marized by giving the relation to the traditional multi-
poles used by Chew, Goldberger, I.ow, and Nambu, '~

Zagury, 3' and others:

(4k*q) '"(i+1)3fi~
= —zzv2{ Tiiz, iiz'+ E(1+2)/1 j"'Tiiz, ziz'+) (A1)

(4k*q) '~'(1+ 1)Ei~
= —z-,'V2{Tigz, i)i'++0/(3+2) j"'Tip, , zip'+), (A2)

(4k*q) "'lcV&

= —zz&2{Tip~, ygz

—L(i—1)/(1+1)0'"Tisz, is~' ) (A3)
(4k*q) "'/Ei

= z-,'@2{Tiiz,i(, '-

+t (1+1)/(i—1)j"'Ti~~,~/~ } (A4)

(4k+q) i'zCi~= iTi(g, (A5)

"G.F. Chew, M. L. Goldberger, I". E. Love, and Y. Nambu,
Phys. Rev. 106, 1345 (1957)."N. Zagury, Phys. Rev. 145, 1112 (1966); 150, 1406(E) (1966);
165, 1934(K) (1968).
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Depending on how the kinematic factors are treated,
there are several ways of writing the inelastic cross
section. We illustrate with the simple noncoincidence
formula, and then in Appendix 8 choose a convenient
notation and give the general unpolarized coincidence
formula.

The approach of Drell and Walecka32 uses the Mott
cross section to isolate the electron kinematics. (Here,
as everywhere else in this paper, we assume the electron
mass is negligible. )
d Og 1

(r2—r g LW2~ (W k')
d02de2 m

+2Wi (W k') tan' —'8) (A6)

osr =—(n' cos'-'8)/4ei' sin'-,'8. (A7)

X (I Tl/2, 1/2 I +
I
Trt2, 3/2

I ) ~ (A10)

The c.m. momentum k* is given in terms of 8' and k' by

k*'=k'+ (ks' ) '= k'y L(W' —m' —k')/2W]' (A11)

Here e& and ~2 refer to the electron laboratory energies
and 8 and 0 to the electron lab angles. It is convenient,
however, to display the transverse and Coulomb
excitations separately in terms of the helicity matrix
elements. From the definition of I/ ~ and 8'2 in terms of
the matrix elements of the current operator, we find"

Wr~ = -'WL(J+-,')/k*]
X( ITr/2, ri2' I'+ITris. w2 I')

~ (Ag)

w2 = (m'/w) [(J+-')/k*]{(k'/k"')
I Try, ,

+{k2/2k*2)I:
I Tris, ii2'I2+

I Tris, v2' I2]) (A9)

with the result

d'o r, m J+-2, k4
= —~~Z—

dQgde2 8'
k2 W2

+( + ten'-', 4)

E= (W—'—m')/2m. (A15)

x(I Trgs, r)2' I'+
I Tr)2, 3(2' I'), (A 6)

o,= (W/m)(22rsn/E) Q I (J+-'2)/k*]

X(2k'/k*')
I
TJ, /2, g I'. (A17)

Although this procedure is convenient when the k' —& 0
limit is taken, we prefer to avoid the introduction of
such extra factors as 2~2n/E and therefore isolate the
electron kinematics and use Kq. (A10). A very compact
notation is to use the "virtual photon polarization" e

in Eq. (A10), giving

d'o r, m k' J+-' k'
ITrgs. ' I2

d02deg W ~k*'e J k* k*'

+ I Tris, rls' I'+
I
Tris, sl" I' (A»)

Note that as 0~ x

k' 8" o.'

2k+~6 0 ~ ~2 46 2
(A19)

The coincidence cross section in Appendix 8 uses the
notation of {A18).

In the case of a resonance, it is desirable to isolate
and integrate out the resonant 8' variation and thereby
obtain inelastic form factors that depend only on k'.
We use form factors f+, f, and f, like those defined by
Bjorken and Walecka" for the case of a stable isobar,
and extend the definition to resonances of finite width.
It is convenient to introduce a shape function E{W)
satisfying

The constant E can be interpreted as the lab energy
of a real photon needed to give a c.m. total energy t/I/.

By comparison with (A10) we see that

= (W/m)(2 ' /E) P L(J+—', )/k*)

Alternatively, Hand'4 discusses the inelastic cross
section by isolating the kinematic factors that corre-
spond to photoproduction. He introduces the extremely
convenient parameter ~, whose definition is equivalent
to the one in Eq. (2.14) or to

IZ(W) I'dW=1,

z(w, ) = Iz(w~) I

s'-&2

(A20)

(A21)

k'/2k~'e =
I
k'/2k*'y {W / 2)mtan'-'8] (A12)

The cross section is then written

d'o. r/dQ2de2 I', (o,+ea,)——, (A13)

I'4= (k'/2Pse)rsr{m'/W2)(E/22r'42) (A14)

32 S. D. Drell and J. D. Walecka, Ann. Phys. (N. Y.) 28, 18
(1964).

"For simplicity only the contribution of the ~sf'') final state
is given. Contributions of other final states can be included in a
similar fashion using the helicity formalism.

'4 L. N. Hand, Phys. Rev. 129, 1834 (1963).

and then define resonant and background parts by
writing

T~ (W,k') = TJ' (k2)~R(W)+T~ (W,ks)ii. (A22)

This procedure is model-dependent in that just what
value of the quantity T~ (k') z is extracted from Gts to
experimental data will depend on the speci6c shape
assumed for E{W).It is possible that one may eventu-
ally need to choose different functions R for different
helicities or values of k', but until the data can distin-
guish such possibilities, a simple model for R(W) is
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sufficient. Making the identification that IR(W)I' is a
generalization of 5(W —W/i), we define for a given J

f+(k') = —
I 9+l)/k*3"'T /, /

' (k') (A23)

f (k') = —i[(J+-')/k*j'/'Ti/Q i/Q (k')/, (A24)

f (k') =+i[(J+-')/k*j'"T '(k') (A25)

with k* evaluated at 8"=&V~."
In Figs. 4—9 we presented predictions for the form

factors based on a model reviewed in Sec. III. We
summarize here how that particular simple model
defined T~ (k')~ and E(W). The resonant part of an
helicity amplitude (X=-'„—,', or c) leading to the ICE)
channel is written

cosl (W) A i/2, /,
~ (W k') '"8/D(W)

= Ti/2 g~ (k')/iR(W), (A26)

where D(W) is the eigenchannel denominator function
satisfying the final-state theorem

We illustrate the integration over 8' with the non-
coincidence cross section, and suppose for simplicity
that we are dealing with a single resonance. The
resonant part of the cross section is defined by

dQgdeg g 5' 2k*'c

x
I
Ti/2, .' (k )~I +

I
Ti/2, 1/2' (k )~I

+ I Ti/g, a/2 (k )aI jIE(W) I
. (A33)

In order to integrate over W, we need the Jacobian
Be2/BW, which has two values depending upon whether

ei or k' is held fixed throughout the integration. (We
assume that 8 is also fixed. )

(
Beg ) W e2

BW/ g,„m eg+k'/2m

D(W) =
I D(W) I exp[ —i((W)), (A27)

with $(IV~) = ~~. Ai/~, i~ (W,k')'"' is the excitation
function described in Sec. III. The model assumes that
in the vicinity of a resonance the numerator varies
slowly and that the final-state enhancement factor can
be expanded in a Taylor series:

DPV)=[ReD(W~) j[(W—W,)+-;iFj. (A28)

The resonance is defined to be the place where

kV

m 1+2(ei/m) sin'-', 0

Be2

BW g i2 m eg+ei

m k'+4ei2 sin'-'0

(A34)

(A35)

ReD(W) =0.
Thus the model gives

cosf'(W) Ai/2, y (W,k ) "

cosf(WR) Al/2, yJ (WB k2)lhs

Re'D(Wa)

(A29)
If k' is held fixed, and if the resonances are assumed to
be sharp enough so that the kinematic factors e~, k*,
and e [see Eq. (2.14)j may be evaluated on resonance,
we obtain

(
d0 I.

dQ k'+4& ' sin' —'0 2k*'e

)&[2&(k2/k*')
I f,(k') I'

+I f (k')I'+If (k')I'g, (A36)

X — —,(A30)
W —W, +-;iF

'

(A31)

(A32)

E(W)= —(I'/2 )'/'/[(W —W/i)+-'iF j,
Ti/2, ),'"(k') ~

(2~/F)1/2 cosf'(WB) A 1/2, l J~(W/i k2) ihs

Re'D(W/i)

where everything is evaluated at W=Wz and the f's
have been introduced using (A23)—(A25). On the other
hand, if e~ is held fixed, the assumption that all k~

dependence in the kinematics and in the form factors can
be evaluated at H/'=- 8'~ is needed to obtain the formula
given in Eq. (2.15). Keeping k fixed is evidently the
more desirable procedure since any variation across the
resonance then enters through known kinematic factors.

APPENDIX B

In this Appendix we give the coincidence cross section in terms of the helicity amplitudes and of the angles
defined in Fig. 2. The general result follows from Eq. (2.6) after a Jacob-Wick expansion and a spin sum are

"In the limit of a sharp resonance, the f's dered above can be identified with those (denoted by f w) used byjBjorken
and Walecka I'Ref. 20): f~ w= f+ and fP w= —f,.
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performed:

m k'—= —ok/ —Q {24(k'/k*')hl Re(T1/2, Tl/2, )
dqqdQ2dQq*/4zr W 2k*22 k* J',&'"

d ag

+2[(k'/k*')6(2+1)]"' sinpkq hq Re(T1/2, , *Tl/2, 2/2 ")}. (B1)

+k2 «(Tl/2, 1/2 Tl/2, 1/2 ")+kz «(Tl/2, 2/2 Tl/2, 2/2 )

+22 cos2&kq Izq Re(T1/2, 1/2 Tl/2, 2/2 )+2[(k'/k*')q(q+1)]'/' singkq kk Re(T1/9, Tl/2, 1/9 )

The functions h~—h6 depend on J, J' ' and OI, „and are given below. The sum over J and J' ' is unconstrained.
For compactness we define a sign function by

5=+1 if zrzr'= (—1)~+~'+'

= —1 if zrzr'= (—1)~+~'.

Equivalently, if the interfering states are both of normal or abnormal parity (I= /+ 2, J'= 1'+—', or
,', J'=—/' ——-',) then S=+1, otherwise S= —1. Now we express the dependence on the c.m. angles in terms

of derivatives of Legendre polynomials:

kl [Cos (98kq)+5 Sln (98kq)](PJ'+1/2 PJ'yl/2 +PJ 1/2 PJ' 1/—2 )—
—[Cos'(-', 8„,)—5 isn( 2 Hk)q]( Pg 4 1/'2'. , /2+ P~ 1/2'Pg 4-1/2')

& (B3)

k = [5cos'( ,'8,)+si '—(,'8,)](P +-,i,'P +,i,'+P, i,'P, ,i,')
—[5COS (28kq) —Sln (28kq)](PJ+1/2 PJ'—1/2 +PS—1/2 PJ'+1/2 ) p (B4)

k =- {(s '8 .)/[(~+l)(~-l)(~'+-'-)(~'-l)]""}
X {[COS (28kq)+5 sin'( —',Hkq)](PJ'4-1/2"Pz yl/2"+Ps 1/2"Pz —1/2")

[COS (28kq) 5 S» (28kq)](PJ+1/2 P&'—1/2 +PJ—1/2 PJ'+U2 )}~ (B5)

cos2&kq k4= cos2pkq{ sin28k2/[( j'+ 2) (J' —2)]'i'}
X [2(5—1)(Peal/2'PZ Pl/2" —Pz-1/2'Pz -1,2")+ 2 (5+1)(Ps+1/2'Pz 1/2" Pz 1/2'PZ Pl/2")—], -(B&)

sin@A, ~ h&= sin@I, ~ sinL9A,

X[,'(1 S)(P,-'P —~,' P'P —
/ ')+ ', (1+5)(P /

-'P
/

' P /
'P ~

/ ')]—, (B/)

singkq kq= singkq{sinHkq/[(J'+2)(J' —-';)]'i'}
X{[cos(28kq)+S sin'(2'Hkq)](Phyl/2 PJ'yl/2 +PJ'—1/2 PJ' —1/2 )

—[cos'(28/, q)
—5 sin'(28k, )](Pj~l/2 PZ' 1/2 +PS 1/2 P—Z'+1/2 )}— (B8)

In the above, the primes indicate total derivatives of the Legendre polynomials. Thus,

P J+1/2 = P J~l/2(COSHkq) .
d(cosHk, )

(B9)

Note that if- J=J' and 7t. =7t.', then h~ ——h2 and h5 ——0.


