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while the extra factors in (4.37) are

(y —y'+ ) (y.—y')(y —y'+ ) (y —y')1—

could take the square root of the product of the factors
with and without this replacement.
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The model previously proposed is extended to include multiquark trajectories. Once any trajectories
with more than a single quark and antiquark are included, it is necessary to include trajectories where
the number of quarks plus the number of antiquarks, which we call the total quark number, is arbitrarily
large. The necessary factorization properties of the multiparticle Veneziano amplitudes will hold provided
the intercept of the leading trajectory is a polynomial function of the total quark number, and the de-
generacy of the levels on all but the leading trajectory will increase with the order of the polynomial. It
is possible to construct two different models depending on whether one allows nonplanar duality diagrams.
The model with nonplanar diagrams resembles more closely the nonrelativistic harmonic-oscillator quark
model, and the nonplanar duality diagrams must be associated with the nonplanar Veneziano amplitudes
discussed in a previous paper. One can introduce SU(3) symmetry-breaking by making the intercept
depend on the number of strange and nonstrange quarks separately, and one then obtains a modified Gell-
Mann —Okubo mass formula.

I. INTRODUCTION

RELATIVISTIC quark model has been proposed
and applied to meson trajectories by Mandelstam'

and by Bardakci and Halpern. ' In the present paper we
wish to extend the model to other trajectories. We shall
discuss the general properties of the multiquark
trajectories, as well as the symmetry properties of the
three-quark states. The spin and unitary-spin degrees
of freedom will only be mentioned insofar as they are
connected with the symmetry properties. We hope to
treat the more detailed spin properties of the baryon
trajectories in a subsequent paper.

Within the framework of the model presented in I,
it appeared that one need not introduce resonances
consisting of more than two quarks. Once one requires
the presence of three-quark states, however, it is
necessary to introduce trajectories where the number of
quarks and antiquarks is arbitrarily large. We shall
examine such trajectories in Sec. 2. For baryon-anti-
baryon scattering, it has already been pointed out by
Rosner' that exotic resonances with two quarks and two
antiquarks must occur in the intermediate states, and

*This work was supported by the U. S. Atomic Energy Com-
mission.

Mandelstam, Phys. Rev. 184, 1625 (1969); hereafter
referred to as I.' K. Bardakci and M. B. Halpern, Phys. Rev. 183, 1456 (1969).' J. Rosner, Phys. Rev. Letters 21, 950 (1968).

one can apply similar reasoning to more complicated
reactions. Following Delbourgo and Salam, ' we shall
refer to the number of quarks plus the number of anti-
quarks as the total quark number, and resonances with
an arbitrarily large total quark number must be present.
Our model in its present form does not appear to
require trajectories with a net quark number greater
than 3, though it can certainly accommodate such
trajectories. Until we know how to extend our model
beyond the narrow-response approximation, we cannot
answer the question whether trajectories of baryon
number greater than 1 occur in this approximation, or
only in higher orders.

If our model is to be at all acceptable on experimental
and theoretical grounds, it is necessary that the mass
of the lightest particle with a given total quark number
be an increasing function of the quark number. As long
as the resonances with a total quark number of 4 or
greater are sufFiciently heavy, they will decay rapidly
into resonances with smaller total quark numbers, and
they will not appear experimentally as narrow res-
onances. We therefore have to inquire whether the
model allows different trajectories to have different
intercepts. The question to be investigated concerns the
factorization properties of the multiparticle Veneziano

4 R. Delbourgo and A. Salam, Phys. Rev. 172, 1727 (1968).
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amplitude, ' ' which lie at the basis of the relativistic
quark model. The original treatment of such factoriza-
tion properties assumed that all trajectories had the
same intercept.

We shall show in Sec. 2 that the residues at the poles
of the multiparticle Veneziano amplitude can still be
expressed as a finite sum of factored terms, provided
that the intercept of the leading trajectory is a poly-
nomial function of the total quark number. The
degeneracy of the resonances will depend on the order of
the polynomial. If the intercept is a linear function of
the total quark number, the degeneracy of the spectrum
of ordinary mesons, i.e., of mesons with a total quark
number of 2, will be the same as in a model without
nucleons and exotic resonances. The degeneracy of the
spectrum of other resonances will be an increasing
function of the total quark number, as is to be expected
on intuitive grounds. If the intercept is a higher poly-
nomial function of the total quark number, the degen-
eracy of all ordinary or exotic resonances on nonleading
trajectories will be increased, and even the degeneracy
of the resonances on the first subsidiary trajectory will
increase indefinitely with the order of the polynomial.

In order that the spectrum of resonances not be too
complicated, we therefore have to postulate that the
intercept of the leading trajectory be a polynomial of
low degree in the total quark number. We might be
tempted to assume that the intercept was a linear
function of the total quark number. The masses of
highly exotic resonances would then be proportional to
the square root of the total quark number, however,
and those of sufficiently high charge and hypercharge
would be stable. It is not absolutely prohibited that
such a model might be the appropriate narrow-res-
onances approximation to nature, since the range of
validity of the model will probably not extend to
resonances of very high mass. A model without the
infinite system of stable exotic mesons is obviously to
be preferred, and the simplest such model is one where
the intercept of the leading trajectory is a quadratic
function of the total quark number.

It is possible to construct two different models with
all the features mentioned above, depending upon
whether one allows nonplanar as well as planar duality
diagrams. The models with only planar diagrams and
with all diagrams will be discussed in Secs. 3 and 4,
respectively. According to the general principles of the
relativistic quark model, each duality diagram is to be
associated with the topologically similar multiparticle
Veneziano diagram. The nonplanar duality diagrams
will therefore be associated with the nonplanar Vene-
ziano amplitudes which we have discussed in a previous
paper. ~

Of the two models, that containing nonplanar as well
as planar diagrams has the closer resemblance to the

' K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).' S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).' S. Mandelstam, preceding paper, Phys. Rev. D 1, 1720 (1970).

nonrelativistic harmonic-oscillator quark model. All
baryon states on the leading trajectory of such a model
are symmetric in the three quarks, and we shall here-
after refer to it as the symmetric quark model. The
planar-diagram model, on the other hand, possesses
some nonsymmetric states as well. The presence of
one such state, the l=0 70 has already been pointed
out by Mandula, Rebbi, Slansky, Weyers, and Zweig. '
While the symmetric quark model is preferable in this
respect, the planar-diagram model is not in definite
contradiction with experiment, since the 1=0 70 is only
weakly coupled and may simply appear as a contribu-
tion to the continuum. We shall discuss such an
interpretation in Sec. 3.

The planar-diagram model is simpler than the
symmetric quark model in regard to the spectrum of
resonances on the leading trajectory. As has been shown
in Refs. 5 and 6, the leading trajectory in a planar
Veneziano amplitude has no "orbital" degeneracy,
though there will of course be a degeneracy associated
with the spin and unitary-spin degrees of freedom. The
extra degeneracy associated with the exotic resonances
affects only the subsidiary trajectories, and no tra-
jectory is infinitely degenerate. In nonplanar Veneziano
amplitudes, the resonances on the leading baryon
trajectory are degenerate, and the degeneracy increases
with the angular momentum. The spectrum of res-
onances on the leading baryon trajectory of our
symmetric quark model is identical to that of the
nonrelativistic quark model, where the degeneracy also
increases with the angular momentum.

The meson-baryon coupling constants in the planar-
diagram model are two-thirds as large as in the sym-
metric quark model. A convenient comparison of the
BBM and JtIM3f coupling constants may be made on
the basis of the coupling with the neutral vector mesons.
We showed in I that it was possible to adjust a single
parameter in such a way that the coupling constant of
the vector mesons to the other mesons was universal,
and we can treat the BBM vertex in a similar manner.
On comparing the 883E and MM3f coupling constants,
we then find that the symmetric quark model gives
results in accord with vector-meson universality, while
the couplings of the vector mesons to the baryons in
the planar-diagram model are too small by a factor —,'.

I

The models constructed in I and in Secs. 2—4 of the
present paper possess exact SU(3) symmetry. A
convenient method of introducing symmetry breaking
is to assume that the intercept of the leading trajectory
is a polynomial function, not only of the total quark
number, but of the number of strange and nonstrange
quarks separately. The resulting formula for the mass
splitting resembles the Gell-Mann —Okubo formula

8 J. Mandula, C. Rebbi, R. C. Slansky, J.Weyers, and G. Zweig,
Phys. Rev. Letters 22, 1147 (1969).

9 The degeneracy of the resonances on the leading trajectory of
the nonrelativistic harmonic-oscillator quark model has been
discussed by P. G. O. Freund and R. Waltz (unpublished).
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without the term responsible for the ZA mass difference.
If we assume that the intercept is a quadratic function
of the quark models, our formula differs in detail from
the Gell-Mann —Okubo formula. It contains an extra
parameter, but we are able to fit the baryon and meson
multiplets with a single formula, whereas the usual
Gell-Mann —Okubo formula involves the masses of the
baryon rnultiplets and the squares of the masses of the
pseudoscalar octet. It is also worth pointing out that
our present derivation does not depend on the smallness
of the SU(3) symmetry breaking.

2. EXOTIC RESONANCES

The general principles of the model are the same as
those applied to meson trajectories in I. For meson-

baryon scattering we shall have the processes rep-
resented by Fig. 1(a) and its crossed diagram and by
Fig. 1(b), possibly together with further processes
represented by nonplanar diagrams which we shall

discuss in Sec. 4. In momentum space the diagrams

correspond to multiparticle Veneziano amplitudes'

with the external particles in the same cyclic order as
in the diagrams. From such multiparticle amplitudes
one can factor out meson-baryon amplitudes with
external particles of any spin. The lines in Fig. 1 also

represent 8 functions in spin and unitary spin. The
coupling therefore has the form originally proposed by
Capps" and, in their internal degrees of freedom, the
diagrams are the duality diagrams used by Harari, "

(b)

(c)

Fro. 2. A sequence of reactions contained in Fig. 1 idl.

by Rosner, "by Matsuoka, Minomiya, and Sawada, "
and, in a rather diGerent form, by Neville. "

The diagram for baryon antibaryon scattering is
shown in Fig. 1(c); there will be a similar diagram with
the s and t channels interchanged. It will be noticed
immediately that the resonances in the t channel are
exotic rnesons consisting of two quarks and two anti-
quarks. Rosner' was the first to draw attention to such
exotic mesons, and their presence is a necessary feature
of our model. By viewing Fig. 1(c) from the s channel,
we see that the intermediate state is an ordinary meson,
and the BBM coupling is required for consistency
with the meson-baryon amplitude.

One can employ similar reasoning to prove the
existence of exotic baryons consisting of four quarks
and one antiquark. A diagram for the process EBB~
BBB is shown in Fig. 1(d). Such a diagram must be
present in order to represent the sequence of exchanges
shown in Fig. 2. The resonances in the t channel of
Fig. 1(d) are the exotic baryons under discussion. It is
evident that exotic mes ons and baryons with an
arbitrarily large number of quarks and antiquarks are
present in the model. This type of reasoning leaves open
the question of the existence of resonances with a net
quark number greater than 3.

We have pointed out that a model with an infinity of
meson and baryon resonances would be completely

unacceptable unless the masses of the resonances

increases with the total quark number. We now wish to
investigate the factorization properties of our amplitude

when the intercepts of the trajectories depend on the
total quark number, and to prove the results already

quoted in the Introduction.
We-begin by restricting ourselves to planar ampli-

tudes. Figure 3 represents a general diagram for such

an amplitude, and we are interested in the factorization

properties when the diagram is divided by the dashed

line. As in Ref. 5, we write the Veneziano integrand in

the form

Fxo. 1. Duality diagrams for various processes.

"K.Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968);
M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969); H. M. Chan
and S. T. Tsou, Phys. Letters 28B, 485 (1969); C. J. Goebel and
S. Sakita, Phys. Rev. Letters 22, 257 (1969); K. Bardakci and
H. Ruegg, Phys. Rev. 181, 1884 (1969).

' R. H. Capps, Phys. Rev. 168, 1731 (1968).
"H. Harari, Phys. Rev. Letters 22, 562 (1969).

(2.1)

"J.Rosner, Phys. Rev. Letters 22, 689 (1969)."T.Matsuoka, K. Minomiya, and S. Sawada. Progr. Theoret.
Phys. (Kyoto) 42, 56 (1969)."D. seville, Phys. Rev. Letters 22, 494 (1969).
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where

N
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I ~ fA

p~ —~n
t

I
t
I

FIG. 3. A general n-point duality diagram.

ZV =Nl~ q

y;=N». ~ Nl . l i&2&j—i

yi = i ~ yi=0)

(2.2a)

(2.2b)

(2.2c)

y+l= 1, y~ ——0,
S k is,k(s k),——if k)i+1
S~~=S~+l,~+i =0

(2.2e)

(2.2f)

(2 2g)

yk =u,+q, ii. Nk, iq, j+2&k &1V—1 (2.2d)

restrictions are imposed on the b's, the residue at a pole
cannot be written as a 6nite sum of factored terms at all.

We now assume that the intercept b;& is a polynomial
function of the total quark number and, to begin, we
shall suppose that it depends linearly on the quark
number. Most of the e's are then equal to zero. Let us
examine the channel /p (Fig. 3). If we denote the total
quark number by v, we may write

v&x=3 ~ pi+i „ i=3, yi i )—4, ii+i „—2. (2.6)

As long as b,& depends linearly on v;&, it follows from
(2.5b) and (2.6) that qi„=0. We may treat the majority
of the variables e;& in a similar way. The points i and k
will be on the right and the left of the diagram, respec-
tively, and let us imagine a dotted line drawn just above
these points. The quantity v;&—v;+&, & will be equal to
~i according to whether the quark line drawn to the
point i crosses this dotted line or not. Exactly the
same rule serves to determine the value of
—v,+&,k &, so that q;k, given by (2.5b), is zero.

The only c's for which this reasoning falls are the
quantities such as q q (Fig. 3), where the points m and

q are jointed by a quark line. In that case

&mq —0 | &m+1, q—1—01 &m, q—1—1
y &m+1, q

—1 ) (2 7)
S;+l,;=—i. (2.2h)

We have used the notation of Chan and Tsou' for the
N's. The subscripts ik refer to the channel with particles
i to k in clockwise order round the diagram. Il and I2
are the Veneziano integrands associated with the two
halves of the diagram.

In units for which the slope of the trajectory is
unity, we may write

S,k=sik+b;k, k)q'+1 (2.3)

where b;~ is the intercept of the leading trajectory in
the channel ik. We supplement (2.3) with the further
definitions:

bi+&~i+& p' r (2.4a)

b~+l= i. (2.4b)

where

J.=J,Iq g g (1—~y;yk)
—'&'&k+ "k,

i=1 k=j+1

qik bik bi+1, k-1+bi, k 1.+bi+1.,k—
(2.5a)

(2.5b)

If all the intercepts are the same, so that all the
quantities b;& are zero except b;+l,;, it follows from
(2.5b) that all q's are zero except q& i+i The expre. ssion
(2.5a) thus has the factorization properties described
in Refs. 5 and 6. If the e's are not zero the factorization
properties become more complicated and, unless

The quanity p' in (2.4a) is the mass of the quark, so
that b;,; and b;+l,;+l are dined as the intercept which a
trajectory would have it the mass of its lowest member
were equal to the quark mass, We may then write
(2.4a) as

and ~, is not zero. Thus, in Fig. 3, only two of the
e's are nonzero, e, ,;+i and e ~. These two e's correspond
to the two quark lines which cross the diagram from
left to right. No e is associated with the line iÃ, since
the factor (1—wyiyiq) '»»+'» is absent by virtue of
(2.2c) and (2.2e). The quantity q;, ;+& is nonzero even
if the intercept of all trajectories is the same, but the
other nonzero e's such as e, are new features of our
present model. The number of nonzero t.'s is equal to
the number of quark lines crossing the diagram besides
the top line or, in other words, to the total quark
number of the channel minus 1.

We observed in Ref. 5 that the term e;,;+i in the
exponent increased the degeneracy of the resonances,
and any other nonzero e will have a similar effect.
As long as the number of nonzero e's is finite and
independent of the number of external lines, we may
easily repeat the reasoning of Refs. 5 and 6 to show that
the residue at each pole is equal to the sum of a finite
number of factorizable terms. The resonances on the
leading trajectory will be nondegenerate, but the
degeneracy of all other resonances will increase with
the number of nonzero e's. In ordinary-meson channels,
where the total quark number is 2, the only nonzero e

is c;,;+» so that the degeneracy of the resonances is
exactly the same as in a model where all leading
trajectories have the same intercept. The degeneracy of
the resonances in other channels will be an increasing
function of the total quark number.

We turn next to the case where the intercept b;~ is a
quadratic function of the total quark number. Thus

bk= (ui, k)'+Pv, k+y— (2.8)
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For later reference we may generalize our formula to
systems where we have several different quarks, e.g. ,
strange and nonstrange quarks in a model with broken
SU(3). Equation (2.8) then becomes

—&,k=(Z n.~., 'k) +Z P.i. ;k+V, (2 9)

+Q P.i'. , 'k
—P' —Pk+y —( Q n„v, , ;k

—n;)'

—Z P.~. 'k+O' , V (—2 n—.~., ;k
—nk)'

—E P.i., 'k+Pk V, —

i.e.,
6slg= 2O&Qp. (2.10)

The parameters n, , nk, p;, and pk represent n„and p,
for the quarks in the external lines i and k. With the
configuration shown in Fig. 4(b), one again obtains
the result e,k ——2n,nk. With Figs. 4(c) and 4(d), e;k
= —2e;n&. We may therefore write the general equation.

e;k=2e,n, eknk unless i= j and k=j+1, (2.11)

where e; is equal to +1 if the quark leading from the
external line i goes towards the top of the diagram, and
equal to —1 if the quark goes towards the bottom of the
diagram.

As in all previous examples, the value of "~e;~ when
i= j and k= j+1 will not be given by the 'equation
valid for other values of i and k.

If we substitute (2.11) in (2.5a), we obtain the
equation

I=I,I, iI' Q (1—ioy;yk)-'i" k+"' "k k(1 —w)",
i=1 k=j+1

where

= 6j,j+] 2' Aj 6j+1Aj+] ~

(2.12a)

(2.12b)

We may rewrite (2.12a) as the exponential of a log-

"One could also write down a more general formula in which
the first term was an arbitrary quadratic function of the variables
u, , ;&. The degeneracy of the spectrum would be greater than that
corresponding to (2.9).

where v„,;& is the number of quarks of type r in the
channel ik 16

For simplicity we shall limit our investigation to the
spectrum of ordinary mesons. The only lines which
pass from the left to the right of Fig. 3 are then the top
and the bottom lines. The channels ik may be divided
into four classes as shown in Figs. 4(a)—4(d); the
number of vertical quark lines is arbitrary. In the first
case, Fig. 4(a),

eik ( P nrpr, ik) +P Pr&r, ik+ Y+( P nr&r, sk ni nk)

(a)

k
I „, ,

I

(d)

Fxe. 4. Various channels ik in Fig. 3.

arithm, so that it becomes

I=I,I, exp 2 p —
I ( Q p;y;")( g pkyk")

v=1 p' i=1 k=j+1

—(2 e'n'y")( Z eknkyk') —"j (2 13)
i=1 k=j+1

On expanding the exponential in (2.13), we notice that
the coe%.cient of m" is indeed equal to the sum of a
finite number of factored terms. As the second term
within the square bracket does not involve the scalar
product p,p, , it does not contribute to the leading
trajectory, which remains nondegenerate. The term in
question does contribute to the subsidiary trajectories,
so that the degeneracy of the spectrum is greater than
in a model where all trajectories have the same intercept.

One may treat more complicated cases in the same
way. If the intercept is a polynomial function of the
total quark number, the degeneracy of a particular
resonance will increase with the order of the polynomial
and with the total quark number of the resonance. All
resonances are finitely degenerate, but the degeneracy
of even the first subsidiary ordinary-meson trajectory
increases indefinitely with the order of the polynomial.
One would therefore expect the intercept to be a poly-
nomial of low degree in the total quark number and, as
we explained in the Introduction, the optimal choice is
a quadratic function if we demand that there be no
infinite family of highly exotic stable particles.

We may easily generalize our results to the two-quark
channels of a nonplanar amplitude. It has been shown
in Ref. 7 that the factorization properties in such
channels are the same as those of planar amplitudes.
We had assumed that all trajectories had the same
intercept, but we can easily prove a similar theorem in
a model where the intercept depends upon the total
quark number. All results obtained in this section for
the factorization properties of two-quark-channel
amplitudes are therefore true in models with planar
and nonplanar diagrams.

If the intercept of the leading trajectory is a quadratic
or higher polynomial in the total quark number, we
cannot predict the masses of the exotic mesons. The
masses of the ordinary mesons and baryons only give
us two points with which to determine the coefficients
of the polynomial. If the quadratic term were absent,
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we would obtain a mass of 1.6—1.8 BeV for the exotic
mesons with a total quark. number of 4. The quadratic
term will increase this value, since it must be negative
in order that the mass of the highly exotic resonances
be an increasing function of the total quark number.

With a sufBciently large quadratic term, the exotic
mesons will have a considerable Q value for S-wave
decay into ordinary mesons. They may therefore be too
broad to appear experimentally as resonances. In our
present model there is no coupling between one exotic
meson and two ordinary mesons, but the linear-
trajectory dynamical scheme is only to be regarded as
a weak-coupling approximation to nature, and the
coupling in question will occur when we improve on the
approximation.

3. PLANAR-DIAGRAM MODEL

In this and the following section we are interested in
the symmetry properties of multiquark states and, in
particular, of three-quark states. One may construct
two models with diferent symmetry properties. In the
present section, we shall examine a model with only
planar duality diagrams.

The scattering of ordinary mesons and baryons will

involve the duality diagrams of Figs. 1(a) and 1(b),
together with the same two diagrams drawn upside
down. If s and e are the meson-baryon channels and
t is the meson-meson channel, the st and tN terms will

correspond to Fig. 1(a) and the sg term to Fig. 1(b).
The even orbital-angular-momentum states in the s
channel will be given by the sum of Figs. 1(a) and 1(b),
the odd orbital-angular-momentum states by their
difference.

We observe that Fig. 1(b) may be obtained from
Fig. 1(a) by intechanging the top and bottom quarks on
the right-hand side, followed by twisting the entire
right-hand side through 180'. The last operation does
not aGect the meaning of the diagram in any way, so

that the two diagrams are related to one another by
interchanging a pair of quarks in the 6nal state. It
follows that the purely antisymmetrical state and the

purely symmetrical state will be absent from the even

and odd orbital-angular-momentum trajectories, respec-

tively. The even orbital-angular-momentum trajectories
will possess symmetrical multiplets and multiplets of

mixed symmetry or, in SU(6), the 56 and 70 rep-

resentation. '~ Odd angular-momentum trajectories will

possess multiplets of mixed symmetry and antisym-

metrical multiplets or in SU(6), the '70 and 20 represen-

tations. The 20 will of course not contribute to meson-

baryon scattering. These results have been obtained by
Mandula, Rebbi, Slansky, meyers, and Zewig. '

'7 For simplicity we shall express our results in the framework
of SU{6).If we adopt the interpretation given in I, the narrow
resonances do form representations of SU{6), though the trajec-
tories form representations of SU(6,6) or SU(12).

A more detailed analysis shows that the amplitudes
represented by Figs. 1(a) and 1(b) involve the 56 and
the 70 in the following proportions:

Fig. 1(a): 15(56)+16('70),

Fig. 1(b): 15(56)—8('70) .
(3.1a)

(3.1b)

We confirm that the amplitude for states of odd angular
momenta, which is obtained by subtracting (3.1b)
from (3.1a), is a pure 70. States of even angular
momenta involve the 56 and the 70 in the ratio 15/4.

The existence of the 7'0 multiplet in trajectories of
even orbital angular momentum represents a difference
between the planar-diagram model and the nonrelativ-
istic symmetric quark model. The spectrum of our
present model is not restricted to states which are
symmetric in the spin, unitary spin, and orbital degrees
of freedom of the quarks. No 70 multiplets with even

angular momentum have been observed in pion-nucleon
phase-shift analyses. Before we dismiss the planar-
diagram model out of hand, however, we should

investigate possible changes which may occur when we

improve on the narrow-resonance approximation.
The linear Regge trajectories will acquire a curvature

as the coupling is turned on. If the forces are attractive,
the curves of Reo. against s will move upward from their
positions in the Born approximation, just as in potential
theory. Since the weak-coupling linear trajectories are
inclined at 45' to the horizontal, this upward movement
will be accompanied by a movement to the left, and
the Q value for a resonance with a given angular
moment will be decreased. The most strongly bound

particles or resonances will therefore lie in the channels
with the strongest attractive forces. We may go further
and make the interpretation that the resonances on a
trajectory which is not moved a substantial distance
to the left by the coupling will be so wide that they
appear experimentally as part of the continuum. The
dynamical scheme will now have the property, expected
in a bootstrap model, that particles or narrow resonances
exist only in those channels where the attractive forces
are sufficiently strong. We actually used such an

interpretation in I, where we assumed that the V' and
H' did not correspond to particles or narrow resonances,
and that no narrow. resonances existed on repulsive

trajectories.
We have seen that the attractive forces in the 7'0

even-/ channels are indeed much weaker than in the 56
even-l channels; the squares of the coupling constants
are in the ratio 4j15. We may therefore assume that
the forces in the 'VO even-/ channels are not sufhcient
to produce narrow resonances. The S-wave states in

such channels would correspond to the 11, 13, and 31
states of the pion-nucleon system. The latter two have
not been observed at an energy below 1.8 BeV. The
prominent 11 Roper resonance is usually assigned to
the second trajectory, and we are not proposing to
change that assignment. If the resonances in question
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(b)

(c)

Fto. S. Vertex functions in the
planar-diagram model.

(d)

had approximately the same energy as the 1= 1 res-
onances, they could easily escape detection. Their
coupling to the xS system would be about one-third
as great as that of the l=1 resonances. On the other
hand, if their partial width for decay into the x&37
mode is estimated from that of the Roper resonance
with the appropriate phase-space correction, it is found
that their total width would be roughly comparable to
that of the /=1 resonances.

A second difference between the planar-diagram
model and the nonrelativistic quark model lies in the
nature of the spectrum of resonances with higher angular
momentum. In our present model, all resonances on the
leading trajectory are nondegenerate in their orbital
degrees of freedom. The degeneracy of resonances on
nonleading trajectories depends on the total quark
number, but no trajectory is infinitely degenerate.
In the nonrelativistic harmonic-oscillator quark
model the degeneracy of the resonances will again
depend on the total quark number, but now the res-
onances on the leading trajectory will be degenerate if
the total quark number is greater than 2; the degeneracy
will be roughly proportional to the (v —2) power of
the angular momentum.

From the duality diagrams of Fig. 1 one may im-
mediately construct diagrams for the vertices. Thus,
from Figs. 1(a) and 1(b), one can infer that the BBM
vertex is given by the sum of Figs. 5(a) and 5(b).
From Figs. 1(c) one infers that the vertex which
couples an exotic meson to a baryon-antibaryon pair
is given by the sum of Figs. 5(c) and 5(d). In general,
by referring to Fig. 1(d) and more complicated dia-
grams, one may conclude that any exotic baryon or
meson is represented by a diagram such as Fig. 6,
where the top two quarks have their arrows pointing
in the same direction, following which all arrows
alternate until the bottom two quarks again have their
arrows pointing in the same direction. The vertex
between any three particles can now be drawn as in
Figs. 5(a)—5(d), with no lines crossing. Each vertex
will consist of the sum of two terms with different
cyclic ordering of the three particles. Note that it is
impossible to draw a vertex such as Fig. 5(e); at least
one quark line must pass between any pair of particles.

For processes where the number of baryons plus
antibaryons exceeds four, half of the diagrams will

FiG. 6. Quarks in an exotic resonance.

occur with minus sign owing to the Fermi statistics
of the baryons. A particular diagram can be chosen
and given a plus sign; any diagram obtained from the
selected diagram by interchanging an odd number of
baryon pairs or antibaryon pairs is then given a minus

sign.
One may construct more complicated models which

possess the exotic mesons and baryons just discussed,
together with exotic mesons and baryons where more
than two adjacent quark lines have their arrows in
the same direction. For instance, one can have a model
where states of baryon number two exists in the narrow-
resonance approximation. The method of constructing
the diagrams is straightforward.

An important feature of the planar-diagram model is
that it does not possess vector-meson universality. The
ratio between the different MMV vertices and between
the different BBV vertices is in accord with vector-
meson universality, provided one fixes certainmixing
parameters as has been explained in I. However, the
ratio between the BBV vertex and the MMV vertex is
two-thirds of that predicted by vector-meson universal-

ity, since the meson in Figs. 5(a) and 5(b) cannot
interact with the middle quark of the baryon.

In summary, we may mention the following three
features of the planar-diagram model:

(i) The baryon trajectories of even orbital angular
momentum possess a 70 multiplet as well as a 56.

(ii) The resonances on the leading trajectory have
no orbital degeneracy, as opposed to the states of the
harmonic-oscillator quark model.

(iii) The model does not possess vector-meson
universality, since the meson can only interact with the
two outer quarks of a multiquark particle.

Though point (i) may be regarded as a drawback of
the model, we have seen that it does not necessarily
imply that the model should be rejected. With regard
to point (ii), the degeneracy of the higher resonances on
the leading trajectory has thus far received no experi-
mental support, and we may therefore prefer our present
model to the harmonic-oscillator model on the grounds
of simplicity of the spectrum. Point (iii), like point (i),
may be regarded as a drawback of the model, since
vector-meson universality is an appealing feature which

may possibly be helpful in constructing a representation
of current algebra. However, since our model in its
present form cannot make exact quantitative predic-
tions of coupling constants, we should not regard the
violation of vector-meson universality as strong experi-
Inental evidence against the model.

By including nonplanar as well as planar diagrams,
we can construct a model which possesses only sym-
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metrical three-quark states on the leading trajectory.
It therefore agrees with the symmetric harmonic-
oscillator model in points (i) and (ii), and it does
possess vector-meson universality. We turn now to a
description of this model.

yL

4. SYMMETRIC QUARK MODEL (a) (b)

If all the baryon states are to be symmetric in the
three quarks, it is necessary that a quark in an inter-
mediate state of a scattering process should be able
to go into any quark in the initial or Anal states. For
meson-baryon scattering one would therefore expect
diagrams such as Figs. '7(a) and 7(b) as well as Figs.
1(a) and 1(b). There are 54 diagrams in all, since each
of the three quarks of the initial and final nucleon may
annihilate with the antiquark of the meson and, in
addition, the three quarks which pass from the initial
to the 6nal state may do so in six possible ways.

According to the principles of the relativistic quark
model, each duality diagram is associated with a
topologically similar multiparticle Veneziano diagram.
Corresponding to Figs. 7(a) and 7(b) we therefore
have the diagrams of Figs. 8(a) and 8(b), where we
have drawn dashed li'nes across the meson and nucleon.
These diagrams represent the scattering of ten external
quarks, and they are to be interpreted in the sense of
Ref. 7; we construct multiparticle Veneziano amplitudes
with responances in those channels for which Figs.
8(a) and 8(b) possess intermediate states. By factoriz-
ing the meson-baryon amplitude from the ten-point
Veneziano amplitude, we obtain the amplitude for the
scattering of mesons and baryons of arbitrary spin.

Of the 54 duality diagrams, the 18 where the quark. of
the incoming meson passes into the quark. of the
outgoing meson t Figs. 1(a) and 7(b)jhave intermediate
states in the s and t channels. They therefore correspond
to an st term in meson-baryon scattering. The remaining
36, such as Figs. 1(b) and 7(a), correspond to an su
term in meson-baryon scattering.

In duality diagrams for processes where the total
number of baryons and antibaryons exceeds four,
some of the diagrams will again occur with minus signs
owing to the Fermi statistics of the baryons or the
para-Fermi statistics of the quarks. Each quark will

be given a three-valued degree of freedom in addition
to its spin, unitary spin, and orbital degrees of freedom.
The three quarks in a single baryon have diferent
values for this degree of freedom. We insert an extra

FrG. 8. Nonplanar Veneziano amplitudes.
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minus sign for every pair of crossed lines between two
quarks with the same value of the new degree of
freedom.

The vertex diagrams are obtained by combining the
quarks in all possible ways. The meson-baryon vertex
will consist of the sum of 18 diagrams, since the quark
and the antiquark lines of the meson may pass into any
of the three quark lines of the nucleon, and the remain-
ing two nucleon lines may pass into one another in two
possible ways. Vertices such as Fig. 5(e) are excluded.
In order that the vertices combine consistently in both
the s and t channels to give the duality diagrams such
as Figs. 1(a) and 7(b), it is necessary to multiply all
BB3f= vertices and all meson-baryon amplitudes by a
factor of —'.

Our present model does possess vector-meson
universality, because any of the baryon quarks in the
BBM vertex may pass into the meson quarks. The
BBM coupling constant is ~ as large as in the planar-
diagram model, there being 18 vertex diagrams and an
over-all factor of 6, as opposed to the two diagrams in
the latter model.

We next examine the factorization properties of our
amplitude, and we shall show that the spectrum of
resonances on the leading trajectory is indeed the same
as in the nonrelativistic harmonic-oscillator quark
model. In the analysis of nonplanar diagrams given in
Ref. 7, we had shown that the most direct formula had
to be modified in order to obtain the amplitude with the
simplest spectrum of intermediate states. We shall
repeat some of the formulas here in order to exhibit the
relationship between planar and nonplanar diagrams.

The general nonplanar diagram has been represented
in Fig. 9(a). All the solid and dashed lines in Figs. 8(a)
and 8(b) have here been represented by solid lines, and
we are interested in the spectrum in the channel cut
by the dashed line. The factorization properties of the

(b) (a) (b)

FrG. 7. Nonplanar duality diagrams. FIG. 9. Nonplanar and planar multiparticle Veneziano amplitudes.
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amplitude can be obtained from an expansion of the
Veneziano integrand in powers of m, the integration
variable corresponding to the channel in question. If
we are only interested in the leading trajectory, we

may drop all but the highest power of the angular
momentum for a given power of m. The expansion for
the general unmodified nonplanar amplitude has the
form

I1I2 Q (72!) '(2P1P2+2PSP4+2P7PS —2P1P6 —2P1PS
n=o

—2P,P,—2P,P,—2P7P, —2P7P4)"w" ~', (4.1)

where I~ and I2 are the Veneziano integrands for the
two halves of the diagram, and n is the trajectory
function for the channel of interest. The I"s are defined

by the equations

and I'5 are zero for the diagram under consideration, as
there are no terms in the summation (4.2) when r is
equal to 4 or 5. We thus observe that the same formula
(4.1) holds for planar and nonplanar diagrams.

In Ref. 7 we showed that one can obtain a simpler
spectrum of intermediate states by multiplying the
Veneziano integrand by the function

(1 2 )-nrys (4.5)

The product is over pairs of momenta from different
groups 11 21, 51 ~ 41, and '/1 ~ 81 of Fig. 9(a); the
variable z„, is defined as the product of the I's for all
channels which include one of the particles r and s and
one of the particles 3 and 6. In the modified formula,
(4.1) becomes replaced by the expression

P-=E P-e'-7
P

(4.2)
I1I2 Q (I!) '(2P1P2+2PSP6+2P7PS P1P6 P1Ps

k=0

P5P2 P5P8 P7P2 P7P4)

where y p is the product of the I's for all left-hand
subchannels which include the particles nP and 6 if
12p is on the left of the diagram, or the product of the
I's for all right-hand subchannels which include the
particles np and 3 if 12p is on the right of the diagram.

Let us compare this formula with the corresponding
formula for a planar diagram. Figure 9(b) represents a
general such diagram, the middle solid line correspond-
ing to the middle quark line of Figs. 2(a) and 2(b).
The expansion of the amplitude in powers of m has been
given in Refs. 5 and 6. With neglect of lowest powers of
angular momentum, it has the form

I1I2 Z (~!) '(2(& P18$'18+PCS+& P76'»)
n=o P

X(Z PSP32t+P333+2 PSST'SP))"~" " '.

The variables y have been defined in Ref. 5, as well as
in Sec. 2 of the present paper. We may eliminate the
momenta PS and PS by using the equations

2 P1IS+PS+Q P7P Q P2IS+PS+Q PSP 0 )

to leading order in the angular momentum. On doing
so and making use of the relations between the I's,
we may rewrite (4.3) as follows:

I1I2 P (I!)—'$2( —P1+P7)(—PS+Ps)]"76"—~-'
n=o

=I1I2 Q (I!) '(2P1P2+2P7Ps

=I1I2 P (73!) 'LS'(2P1 —P5—P7)
n=0

X (2P2 —P4 —Ps)+3(—P1+2P5—P7)

X( PS+2P4 —PS)+-', ( —P1 PS+2—P7)—

X(—P2 —P4+2P2)fw" '. (4.6)

We may also modify the planar amplitudes by
multiplying the Veneziano integrand by (4.5). The
effect is again to replace (4.1) by (4.6). As in (4.4), at
least two of the I"s will be zero for a planar diagram.
In a model with only planar diagrams we would not
modify the formula in this way, since it results in a
complication of the spectrum; the leading trajectory,
which previously had no orbital degeneracy, now
becomes infinitely degenerate. In our present model,
however, we already have an infinitely degenerate
leading trajectory due to the nonplanar diagrams, and
we shall now prove that the effect of modifying the
planar amplitudes is to remove the nonsymmetrical
quark states.

In Fig. 9(a), the three solid lines cut by the dashed
line represent the transfer of three quarks from the left
to the right of the diagram. I et us denote the quarks on
the left of the diagram by the indices 1, 5, and 7, those
on the right by the indices 2, 4, and 8. The tensor
I1(2P1—P5—P7)"'(—P1+2P5—P7)"'(—P1—PS+2P7) "'
corresponds to an initial state where the three quarks
are in an ~~th, e2th, and eath level of the harmonic-
oscillator spectrum. Spurious states are eliminated by
the relation

n=o

2P1Ps 2P7P2)"w" —~ '(4—4)—(2P1 P5 P7)+( P1+2P5 P7)

+ ( P1 P5+2P7) =0. — —

where the P's are de6ned as in (4.2). The variables P4 The curly brackets of (4.6) may then be represented
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symbolically by the expression

~12~54~78 ) (4.7)

to complete our scheme in the narrow-resonance
approximation.

the subscripts on the Kronecker 8 referring to states of
the harmonic-oscillator spectrum. Since the lines going
across the diagram also represent quark lines in a
duality diagram, we may interpret the subscripts as
referring to spin and isotopic-spin indices as well as to
states of the harmonic-oscillator spectrum.

In addition to Fig. 9(a), there will be five further
diagrams where the groups 1, 5, and 7 are joined to the
groups 2, 4, and 8 in all possible ways. When we take
the sum of all six diagrams, (4.7) is replaced by

'tI12~54~78+~14ti58~72+~18~52~74+~14~52v78

+~12~58~74+fs18~54~72 ~ (4 8)

It is evident from (4.8) that the only intermediate
states are those which are symmetric in the space, spin,
and isotopic-spin degree of freedom of the quarks
taken together.

The factor (4.5) will of course modify the meson-
baryon amplitudes which have been factored out of the
general amplitude. We discussed this point in Ref. 7

and, although we confined our attention in that paper
to nonplanar diagrams, the same reasoning applied to
planar diagrams. The st and tl terms are unaffected by
the modification, and they will be given by an ordinary
P function. The s24 term, on the other hand, is given by
the formula

d2: x— ~'&—'(1—x)
—&"&-'

&(L1—x(1—x)]*~'+n ~ &'1 (4 9)

Let us verify that the l =0 and l = 1 states consist of a
pure 56 and a pure 70, respectively, as implied by the
symmetry of the quark states. The st and sl terms will
again involve the 56 and 70 in the proportions given by
(3.1a) and (3.1b). In the present model there are twice
as many sN diagrams as st diagrams, so that the sum of
the diagrams will give a pure 56. For the /= 1 resonance
it is not diflicult to show that the last factor of (4.9)
reduces the residue in the su term by a factor of 2.
The multiplet constitution is therefore obtained simply
by subtracting (3.1b) from (3.1a), and the resonance is
a pure 70.

We conclude with the remark that the duality dia-
grams which we have drawn in Figs. 7 and 8 are the
simplest possible nonplanar diagrams. In general, we
could construct nonplanar diagrams with any number of
crossed lines, and it is necessary that all diagrams be
present in a consistent bootstrap scheme. In Ref. 7 we
confined our attention to diagrams with only one pair of
crossed lines, but it would be surprising if the methods
could not be extended to the general case. We must
assume that such an extension is possible if we are

S. SU(3) SYMMETRY BREAKING

In the SU(3) -symmetric model which we have
examined thus far, the mass of the lowest resonance on
the leading trajectory depends only on the total quark
number. An obvious method of introducing SU(3)-
symmetry breaking is to make the mass depend on
the number of strange and nonstrange quarks sep-
arately. The octet character of the mass formula then
arises naturally out of the theory. One does not obtain
a suSciently general mass formula by this method, as
the formula for the mass splitting of the nucleon octet
contains only one term, the Z and A. having the same
mass. It may be necessary to introduce another type of
SU(3)-symmetry breaking or, alternatively, the term
responsible for the ZA. mass difference may appear as a
higher-order effect in the width of the resonances.

Let us assume that the intercept depends quadratic-
ally on the total quark number; we have shown in
Sec. 2 that this is the simplest possible assumption if
we are to avoid stable particles of high charge and
strangeness. From Eq. (2.4), we find that the mass of
the lowest resonance on the leading trajectory is given
by the formula

—(nnvn+nsve) +pnvn+psv +7 ~ (5.1)

where v, and v are the number of strange and non-
strange quarks. We may rewrite (5.1) in the form

~'=L "+( .—-) .1'+P- +(P.-P-) .+~, (5 2)

where v is the total quark number. Hence

where

122 =Av, 2+Bv,+C,

A = (n, —n„)',

B=2n v(n, n)+P, P-, —

C=n 'v'+p v+y.

(5.3a)

(5.3b)

(5.3c)

(5.3d)

We notice that the constant A is independent of the
multiplet, while 8 is a function of the total quark
number. If the symmetry-breaking parameters are
small, A will be a small quantity of second order.

Equation (5.3a) provides us with a mass-splitting
formula. We may compare it directly with experiment
for the spin-~ decuplet and for the vector-meson nonet,
where each particle contains a definite number of strange
quarks. We shall not compare the formula with experi-
ment for the nucleon octet, as the ZA, term is absent.
The mass splitting of the pseudoscalar octet cannot be
treated rigorously until we have a model where the
35 is not degenerate with the q'. In such a model the g
would not contain a definite number of strange quarks.
We shall make the assumption, justified by the success
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of the Gell-Mann —Okubo mass formula, that one can
simply put v, for the p equal to its average value of —', .

We then find that the masses of the three multiplets
are reasonably well represented by the following
formulas:

Spin-2 decuplet: p'=0.02v, '+0.17v,+1.56;
Vector-meson nonet: y'=0.02v, '+0.18v,+0.59;
Pseudoscalar octet: p =0.02v, +0.20v, +0.02.

The formula for the pseudoscalar octet is the least
accurate, since it would give a mass of 575 MeV for the
g, as opposed to the experimental mass of 550 MeV.
However, our present formula is not appreciably worse
than the ordinary Gell-Mann —Okubo formula.

If the constant A in (5.3a) were zero, we would obtain
a Gell-Mann —Okubo formula in the squares of the
masses, without the Z-h. term. If A =B'/4C, we obtain
a Gell-Mann —Okubo formula in the masses. By leaving
A arbitrary, we have one more parameter than the
ordinary Gell-Mann —Okubo formula, but we can fit
the three multiplets under consideration with a mass-
splitting formula of the same type. The term Av, 2 is of
second order in the symmetry breaking, and in any
case it represents a fairly small effect, but the fit with
such a term is definitely better than that with a simple
Gell-Mann-Okubo formula in the squares of the masses.

Another point worth mentioning is that our formula
is not a perturbation formula in the symmetry breaking,
at least not for the spin-2 decuplet and the vector-meson
nonet. We nowhere assume that the SU(3)-symmetry-
breaking terms are small.

6. CONCLUDING REMARKS

At first sight our model appears to differ from the
usual quark models by the presence of exotic mesons
of arbitrarily high total quark number. The distinction
between ordinary and exotic resonances is that the
latter have a higher Q value for decay across a given
centrifugal barrier. It is to be expected of any reasonable
model that poles should occur in all channels of the S
matrix. The channels would differ from one another
according to the distance of the poles from the real
axis. Our present model may be favored from the point
of view of nucleon democracy, since it admits of no
difference in principle between two- and three-quark
channels on the one hand, and multiquark channels on
the other.

Since the total quark number in our model can assume
any positive integral value, it may be of interest to
attempt to Reggeize the quark number in the manner
proposed by Delbourgo and Salam. 4 We shall not
investigate this point in the present paper, however.

We have left open the question of choosing between
the planar-diagram model and the symmetric quark
model. The two models do not differ drastically from
one another in their experimental predictions and, as
neither is meant to be an exact representation of nature,
it may be difficult to make such a choice. The difference
between the coupling constants provides one obvious
possible method of distinguishing between the models.
Using the fact that vector-meson universality is fairly
well satisfied in nature, we might decide in favor of the
symmetric quark model. We should bear in mind the
limitations in accuracy of our model, however, and, in
particular, the model predicts a value for the ratio
g,„/g, which is somewhat smaller than the experi-
rnental value. If one compares the meson-baryon
coupling constants with the constant g,„ instead of
with g „one obtains roughly equal good results with
the two models. The "experimental" determination of
the coupling constant g,„is of course subject to some
uncertainty.

If the higher resonances on the leading baryon
trajectory turn out to be complex, we would have strong
evidence in favor of the symmetric quark model. It
would be difficult to draw any conclusion from a failure
to resolve the resonances. The degenerate trajectories
may be so close together that the spacing between the
resonances is small compared to their width, in which
case they would appear experimentally as a single
resonance. On the other hand, the degeneracy may be
broken to a considerable extent, so that the relationship
between the degenerate resonances is not evident. The
resonances which are increased in mass by the breaking
of the degeneracy may not appear experimentally as
narrow resonances.

It is quite possible that the two models are equally
good representations of nature in the narrow-resonance
approximation, and that the differences between them
are of the order of magnitude of the effects due to finite
widths of the resonances. Each model possesses trajec-
tories which do not appear in the other, and the
symmetric quark model has a greater degree of degen-
eracy. The extra trajectories, and the breaking of the
degeneracy, could appear as higher-order effects. It may
even be that the two models are different starting-points
which eventually lead to the same dynamical scheme.
We cannot discuss such questions until we are able to
improve on the narrow-resonance approximation,
however.
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