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Multiparticle Veneziano Formulas Corresponding to Minimal
Nonplanar Feynman Diagrams*

STANLEY MANDKLSTAIK

Department of Physics, Vnioersity of California, Berkeley, California 94720
(Received 22 September 1969)

A new class of multiparticle Veneziano formulas is constructed. The amplitudes correspond to a subclass
of nonplanar Feynman diagrams without internal vertices which we call minimal diagrams, just as the
current multiparticle Veneziano formulas correspond to planar diagrams. For simplicity, we have not
examined diagrams with more than one crossed line. The r-point function is represented by an (r—3)-dimen-
sional integral, as it is for planar diagrams. While the new formula has many properties in common with
the old one, the three-particle channels of the Feynman diagram have a more complicated spectrum which
suggests a system of three quarks.

1. INTRODUCTION

'HE object of this paper is to discuss a generaliza-
tion of the multiparticle Veneziano formula

which will possibly be of interest in connection with the
quark model. '

The ordinary four-point Veneziano formula may be
regarded as corresponding to the Feynman diagram of
Fig. 1(a), in the sense that the Veneziano amplitude has
resonances in those channels where the Feynman
diagram has intermediate states. By interchanging the
external particles, we may obtain two further Veneziano
amplitudes which correspond to the other two box
diagrams.

An alternative four-point Veneziano-like formula was
proposed by Virasoro' and generalized by Mandelstarn. '
The amplitude represented by this formula has inter-
mediate states in all three channels, and corresponds to
the Feynman diagram of Fig. 1(b). The set of channels
for which Fig. 1(a) possesses intermediate states is a
subset of that for which Fig. 1(b) possesses intermediate
states. We therefore refer to Fig. 1(b) as a "non-
minimal" diagram. The Veneziano formula for such a
diagram involves a double integral, as opposed to a
single integral in the ordinary Veneziano formula. We
are not concerned with nonminimal diagrams in this
paper. For the four-point function it is a trivial observa-
tion that all minimal diagrams are planar, and possess
intermediate states in two of the three channels. The
Veneziano formula itself therefore exhausts all minimal
diagrams.

The five-point Veneziano formula of Bardakci and
Ruegg and of Virasoro4 possesses resonances in the five
channels 12, 23, 34, 45, and 51, and it therefore corre-
sponds to the Feynman diagram of Fig. 2(a). Now,
however, there is a minimal nonplanar Feynman dia-

* Research supported by the U. S. Air Force 0%ce of Scientihc
Research, OS.ce of Aerospace Research, under Grant No.
AF-AFOSR-68-1471.

'The main result of this article has been briefly reported by
S. Mandelstam, Lawrence Radiation Laboratory report
(unpublished).' M. A. Virasoro, Phys. Rev. 177, 2309 (1969).' S. Mandelstam, Phys. Rev. 183, 1374 (1969).

'K. Bardakci and H. Rnegg, Phys. Letters 28B, 342 (1968);
M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969).
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gram, Fig. 2(b), in addition to the planar diagram.
Intermediate states are present in the six channels 14,
45, 34, 12, 23, and 25. The five channels with inter-
mediate states in Fig. 2(a), or in any similar diagram
obtained by interchanging external lines, do not form a
subset of the six channels enumerated above. Figure
2(b) is therefore a minimal diagram.

Our aim is to derive a new five-point Veneziano
formula with resonances in the six channels where
Fig. 2(b) possesses intermediate states. The formula,
like that of Bardakci and Ruegg and of Virasoro, will
involve a double integral. We shall also obtain a
formula for minimal diagrams with more than five
external lines, but we shall restrict ourselves to diagrams
with only one pair of crossed internal lines. The dimen-
sionality of the integral in the r-point amplitude is again
the same as for a planar diagram, ' namely, r-3.

Our present formula is subject to the usual ambiguity
regarding the addition of nonleading terms. ' As with
the planar-diagram formula, we can select a particular
amplitude on the basis of simplicity of the spectrum of
resonances. 7 For planar diagrams it turned out that the
original single-term formula was that with the simplest
spectrum, but the nonplanar Veneziano formula is
diQerent in this respect. To obtain the simplest spectrum
one has to multiply the integrand by a certain factor,
which is equivalent to adding an infinite number of
nonleading terms to our amplitude. One may then
redefine the single-term amplitude by the new formula.
When we refer to factorization properties in the re-
rnainder of this section, we always imply that the ampli-
tude has been so defined. In certain channels we have
only examined the leading trajectory, and the formula

' H. M. Chan and S. T. Tsou, Phys. Letters 28B, 485 (1969);
C. J. Goebel and B. Sakita, Phys. Rev. Letters 22, 257 (1969);
K. Bardakci and H. Ruegg, Phys. Rev. 181, 1884 (1969).' By a nonleading term we understand any term where the
integrand is multiplied by one or more powers of the I' s, and
possibly by polynomials in the scalar products of the external
momenta. We do not imply that the leading trajectory in any of
the channels is absent, but, in at least one channel, such a trajec-
tory will lack its lowest member.' K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640
(1969); S. Fubini and G. Veneziano (unpublished); Xuovo
Cimento 56A, 1027 (1968).
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FIG. 1. Planar and nonplanar four-point
Feynman diagrams.

may require further modification when other trajectories
are considered.

The new amplitude has all the general properties of
the planar multiparticle Veneziano amplitude, but the
spectrum of intermediate states is not always the same.
If our Feynman diagram is divided by cutting two
internal lines, it turns out that the factorization prop-
erties are identical to those of the planar amplitude. '
The degeneracy of all resonances, on the leading or
nonleading trajectories, is the same in the two cases. On
the other hand, if the Feynman diagram is divided by
cutting three internal lines, the spectrum is more
complicated than that of planar diagrams. Even on the
leading trajectory, all resonances other than the lowest
are degenerate, and the degeneracy increases with the
angular momentum. The resonances on the leading
trajectory of the planar Veneziano amplitude are not
degenerate.

The difference between the two spectra can be
interpreted on the basis of a simple physical picture. We
imagine an intermediate state to consist of two or three
neutral scalar quarks, depending on whether the
Feynman diagram is divided by cutting two or three

internal lines. The spectrum of particles on the leading
trajectory of a two-quark system is nondegenerate,
whereas the degeneracy of the particles on the leading
trajectory of a three-quark system increases with
angular momentum in precisely the same way as in our
new Veneziano amplitude. ' The quarks may be given
spin and SU(3) degrees of freedom without difficulty.
The picture should not be interpreted too literally,
needless to say, since the spectrum of particles on the
nonleading trajectories is very much richer than the
simple two- or three-quark spectra.

We do not intend to treat the quark model per se in
the present paper; some results have been outlined in
Ref. 1, and we hope to give a more detailed exposition
in a subsequent paper. It is by no means obvious that
the particles on the leading baryon trajectory are
degenerate; this particular feature of the harmonic-
oscillator quark model has no experimental verification
as yet. One can construct a relativistic quark. Inodel
with planar diagrams alone, and in such a model no
resonance on a leading trajectory is degenerate Lwith
neglect of spin and SU(3)]. However, there are certain
advantages to a model with planar and nonplanar

FIG. 2. Planar and minimal
nonplanar Gve-point Feynman
diagrams.

(a) (b)

'The degeneracy of the three-quark spectrum has been discussed by P. G. O. Freund and R. g7a].tz Phys. Rev. 188, 22y0
(1969).
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diagrams, where the spectrum of resonances on the
leading baryon trajectory resembles that of the har-
monic-oscillator quark model.

The amplitude which we propose in the following
section is not the only possible 6ve-point amplitude
which corresponds to Fig. 1(b). An alterna, tive formula
has been constructed by Burnett and Schwarz, ' who
have independently examined a similar problem. The
ambiguity is probably a reRection of the ambiguity
regarding nonleading terms. Our set of equations can
readily be generalized to the r-point amplitude, as we
shall show in Sec. 3. Ke believe that the possibility of
such a generalization, and the ansatz regarding simplic-
ity of the spectrum, can be used to resolve the ambi-
guity. In the absence of any alternative proposal for the
r-point amplitude, we shall provisionally assume that
our set of equations should be adopted.

To avoid any possible confusion we should emphasize
that our nonplanar amplitudes are completely different
from those of Kikkawa, Klein, Sakita, and Virasoro. '
These authors regard the original Veneziano amplitude
as the Born term, and they allow only planar diagrams
in this approximation. In higher orders of perturbation
theory they obtain planar and nonplanar diagrams. Our
nonplanar term is an ordinary Veneziano amplitude
with linear trajectories, and is to be regarded as part of
the Born term.

A. = dQ14dS25J g SP
0 I'

(2 1)

In this and in all subsequent expressions, the product g
runs over the six channels. One can replace the integra-
tion variables N&4 and n» by any other pair of variables,
provided one changes the Jacobian factor J ' suitably.

We now have to 6nd formulas for expressing the
dependent u's in terms of the independent u's. As in the
case of the planar multiparticle Veneziano formula,
the formulas must satisfy the following requirements:

(i) It must be possible to set the s's for two non-

overlapping channels equal to zero simultaneously,
since the amplitude can have simultaneous resonances
in two such channels.

' T. H. Burnett and J. H. Schwarz, Phys. Rev. Letters 23, 257
i1969)."K. Kikkawa, S. Klein, B. Sakita, and M. A. Virasoro (un-
published).

2. FIVE-POINT NONPLANAR AMPLITUDE

The general form of the nonplanar amplitude will be
similar to that of the planar amplitude. Associated with
each of the six channels 14, 45, 34, 12, 23, 25 of Fig.
2(b), there will be a variable Q14 Q45 Q34 Q12 Q23 Q25.

Two of these variables will be independent, the remain-
ing four dependent. Each channel will have a trajectory
function o.~4, &45, 0.34, ~~~, ~~3, o». The five-point non-
planar Veneziano formula will then have the form

(ii) If a particular s is equal to zero, the s's for all
overlapping channels must be equal to unity, since the
residue at a pole in any channel must be a polynomial
in the overlapping variables.

(iii) If a particular s is equal to zero, the remaining
integration should reproduce the four-point Veneziano
formula, since the residue at the lowest pole in the 6ve-
point amplitude should simply be equal to the elastic
amplitude.

All these properties are satis6ed if the dependent u's
are given by the following four equations:

S14S28+S12S84=1,
S14S25+S12S45= 1,
S84S25+S28S45

S14+S45+S84 S12 S23 S25=—0 .

(2.2a)

(2.2b)

(2.2c)

(2.3)

S34 S45 S12 ~ 1
y S28+S25 ~ 1 ~ (2.4)

The choice of the minus sign is excluded by the range of
integration, and we observe that the u's for the three
overlapping channels are indeed equal to unity. Finally,
if Q14 is set equal to zero, it follows from (2.4) that the

"M. A. Virasoro (private communication).

Before discussing Eqs. (2.2) and (2.3), we outline
brieRy their original motivation. We took as our starting
point a formula proposed by Virasoro" for generalizing
the amplitude of Ref. 3 to the 6ve-point function.
Virasoro's amplitude has resonances in all ten channels
ij(1&i&5, 1&j&5,i & j). Five of his variables s;, are
independent; the other 6ve are determined by the
equations

S,&S51+S,5S&1+S41S&'5= 2.

Since our amplitude has resonances in only six of the
channels, we must set the remaining I's equal to unity.
When we do so, we obtain Eqs. (2.2), together with the
two equations

S14+S45+S34=2,
S12+Q23+S25= 2.

The five equations have no nontrivial solutions, and we
cannot obtain our required amplitude as a special case
of Virasoro s. An obvious modification which one may
attempt is to replace the last pair of equations by (2.3),
and the resulting set of equations turns out to be
suitable.

I,et us return to examine Eqs. (2.2) and (2.3), and to
verify that the requirements (i), (ii), and (iii) are
satis6ed. It is possible to set two nonoverlapping I's,
such as N&4 and I», equal to zero simultaneously, for if
we do so, and if we set the remaining u's equal to unity,
all equations are satisfied. With regard to the require-
ment (ii), we may set Q14=0 and solve Eqs. (2.2) and
(2.3) to obtain the result
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remaining integral is as follows:

J 'du25u25 ~23 '(1 Q—25) ~23 ' (2.5)

Equation (2.5) is precisely the four-point Veneziano
formula for the Feynman diagram obtained by con-
tracting the external vertices 1 and 4 of Fig. 2(b). Thus,
subject to the condition that the factor J ' behaves
suitably, we observe that the requirement (iii) is met.

Another point which we can verify is that the range
of integration in (2.1) remains invariant when the
integration variables are replaced by any other pair of
nonoverlapping variables. In fact, we could replace the
restriction 0(u14(1, 0(u»(1 by the restriction that
all six u's be positive.

The proof that our amplitude has single-particle poles
at the correct positions and with the correct angular
momenta is identical to the corresponding proof for
planar amplitudes. We shall not examine the Regge
asymptotic behavior in this paper.

The Ja,cobian may be defined as follows:

Q12Q45(Q12+Q45)J——
Q14+Q45+Q34

(2.6)

&12 u12u125= u12u34 )

&41 u14u145= u14u23 )

12 u12u123= u12u45 )

~41 u14u148= u14u25 )

X34 u34u148= u84u25 )

+45 u45u145= u45u28 ~

(2.7a)

(2.7b)

(2.7c)

(2.7cl)

(2.7e)

(2.7f)

Such a Jacobian transforms correctly when the pair of
integration variables u14, u» is replaced by any other
pair of nonoverlapping variables. The Jacobian is
certainly not de6ned uniquely by this requirement,
since it is subject to the usual ambiguity associated
with nonleading Veneziano terms. Equation (2.6) ap-
pears to be the simplest possibility. The Jacobian would
have the correct transformation properties if the
denominator were omitted, but such a choice turns out
to be unsuitable when we generalize our results to the
r-point amplitude. If the variable u14 is set equal to zero,
we notice from (2.4) that the Jacobian becomes unity.
We have thus completed our verification that (2.5) is
identical with the four-point Veneizano formula.

We shall conclude this section by giving an inter-
pretation of Eqs. (2.2) which will be helpful in generaliz-
ing them to the r-point amplitude. The Feynman
diagram of Fig. 2(b) contains three plane polygons, 1234,
1254, and 3452. Associated with each polygon we define
variables s;j) m;j) and szj) which correspond to the
integration variables of the corresponding plane
Veneziano diagram. The v's, m's, and x's are defined in
terms of the u's as follows:

The rule for constructing the v's, m's, and x's is to take
the u for the channel in question, and to multiply it by
the u's for all channels which consist of the particles in
the original channel together with particles which do not
form part of the relevant polygon. Having defined the
2t's, 23's, and x's, we can rewrite (2.2) in the simple form

512+'V41= 1
~

~12+~41= 1,
$34+X45 1 ~

(2.8a)

(2.8b)

(2.8c)

Equations (2.8) are precisely the equations that the
variables would satisfy if they were regarded as Vene-
ziano integration variables for the plane polygons.

As we mentioned in the Introduction, we have to
modify our formula by the addition of nonleading terms
if we ask for the simplest possible spectrum. We cannot
derive the new formula until we have treated the
factorization properties in Sec. 4, but for completeness
we shall quote the result at this point:

~12 u12 ) ~28 u28u286= u28u154 ) &34 u84u346 )

v45 Q45Q455 p U51 Q15Q155 p (3.1a,)

~12 u12 ) 23 u23u284= u28u156 ) ~36 u36u346 )
33 55 Q55Q455 g W51 Q15Q154 p (3.1b)

du14du25~ g QP (1 Q12Q14Q23Q34)
0 P

X (1—u12Q14Q25u45)
—' (1—Q23Q34Q25Q45)

—»3'3. (2.9)

3. r-POINT NONPLANAR AMPLITUDE

Six-Point Amplitude

Before proceeding to the general r-point diagram) we
shall treat the six-point diagram (Fig. 3). There exist
11 channels with intermediate states, namely, 15, 45,
56, 23, 36, 34, 12, 456, 346, 154, and 156. To each
channel there will correspond an integration variable u
and a trajectory function e, and we shall subscript the
variables with the indices of all the particles in the
channel. Note that we have to change the notation
usually used for planar diagrams; we cannot use a
notation where each u and n has only two subscripts.
We require eight independent equations of the form
(2.2) and (2.3) in order to express the 11 u's in terms
of three independent variables. The generalization of
these equations can be found by using the require-
ments (i), (ii), and (iii), with the last requirement
appropriately modi6ed.

Equations (2.2) are most easily generalized by using
the interpretation proposed at the end of the previous
section. The diagram possesses three plane polygons,
12345, 12365, and 4563. Corresponding to each of the
polygons we construct Veneziano integration variables
e, zv, and x, which are defined in terms of the u's. Making
use of the rule given at the end of the last section, we
find the following definitions:
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8l12+ &51&23 2l51+ &121l45= 1, 8 28+112284= 1,
(l45+ 2l84V51 = 1, 184+828145 1 ~

(3.2)

Reexpressing (3.2) in terms of the Q's by (3.1a), we
obtain the equations

Q12+Q15Q28Q154Q156 = 1,
Q15Q156+Q12Q 45Q4 5 6

Q28Q154+Q12Q34Q846

Q45Q4 56+Q15Q 84Q156Q34 6

Q34Q346+Q23Q45Q154Q456 1 ~

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

Similarly, from the polygon 12365, we obtain Eq. (3.3a)
together with the following four equations:

(3.3f)Q23Q156+ Q12Q36Q346

Q15Q154+ Q12Q 56Q4 56

Q86Q346+ Q28Q56Q156Q456

QMQ456+Q15Q36Q154Q346 1 ~

(3 3g)

(3.3h)

(3.3i)

The Veneziano variables for the polygon 4563 are
related by the simple formula

I

&45+ &56 (3.2')

and from (3.1c), the corresponding relation between
the u's is

Q45Q154Q86+Q56Q156Q34 1 (3 3j)

The generalization of Eq. (2.3) can be found from the
requirements (ii) and (iii). We obtain the following two
equations:

4Q86+Q56Q156+45Q15Q4 Q23Q456 Q34 Q36 0 ) (3.4a)

Q15Q346+Q56+Q45 Q456 Q34Q156 Q36Q154 0 ~ (3 4b)

x45 u45u154u2154= u45u154u86 )

x63 u86u286u1286= u68u154u45 x35 )
(3.1c)

X5l6 —u56u156u2] 56= u5I6u156u34 7

x84 u84u234u1234= u84u156u56 x56 ~

In attaching subscripts to the v's, m's, and x's, we
always read the plane polygons in the same sense
(clockwise for the (l's and 2(l's, counterclockwise for the
2,"s). Such a notation will prove convenient for the
r-point amplitude. The pairs of variables x45 x63 and
x56, x34 turn out to be the same, as they should if they
are to be interpreted as Veneziano integration variables
corresponding to the polygon 4563. It is easy to check.
that all such consistency conditions are consequences of
our definitions of the variables v, m, and x.

The required equations are now obtained by demand-
ing that the v's, m's, and x's be related by the usual rules
for plane diagrams. Thus, from the polygon 12345 we
obtain the following five equations, not all of which are
independent:

It is first necessary to verify that (3.3) and (3.4)
contain eight independent equations. Three of Eqs. (3.2)
are independent, since they are the equations connect-
ing the three dependent variables and the two independ-
ent variables of the planar Ave-point function. Hence
three of Eqs. (3.3a)—(3.3e) are independent, a fact
which is not dificult to verify directly. Similarly, three
of Eqs. (3.3a), (3.3f)-(3.3i) are independent. There are
thus five independent equations in the set (3.3a)—(3.3i)
and, together with Eqs. (3.3j), (3.4a), and (3.4b), we
have eight independent equations in all. The reasoning
just given does not eliminate the possibility that fewer
than eight equations are really independent, but one
can solve the equations explicitly in certain limiting
cases, for instance, when the variable u154 is infinitesi-
mal. If this variable and the variables u15, u28 are
regarded as independent, one obtains a unique solution
for the other variables. It follows tha, t the set (3.3) and
(3.4) contains precisely eight independent equations.

The'six-point nonplanar Veneziano amplitude will
again be given by the integral

dQ15(fQ28dQ154 J g QP
0 P

(3.5)

General r-Point Amplitude

We now require a formula for the amplitude corre-
sponding to Fig. 4. The particles have been numbered
in ascending order from 1 to i along the upper perimeter,
from i+1 toi+j along the diameter, and fromi+j +1
to i+j+k 1along the lo—wer perimeter. The total
number of external lines is r=i+j+0 —1, while the

The three integration variables may be replaced by any
other triplet, and the Jacobian factor must be defined
in such a way that the result is independent of the
choice.

It is a straightforward matter to verify that Eqs. (3.3)
and (3.4) do ful611 the requirements (i), (ii), and
(iii). The last requirement must be generalized from
the corresponding requirement for the Ave-point ampli-
tude. If any of the variables u», u», or u» is set
equal to zero, the remaining integral must be the
integral for the nonplanar Gve-point amplitude, since
the diagram obtained by contracting any pair of vertices
12, 15, or 23 in Fig. 3 is the Ave-point nonplanar dia-
gram. If one of the variables u45 u56 u34 or u36 is set
equal to zero, the remaining integral must be the integral
for the p/ar4ar five-point ainplitude. Finally, if one of
the variables u456, u846, u154, or u156 is set equal to zero,
the remaining integral must be the product of two four-
point Veneziano integrals. All these conditions are con-
sequences of (3.3) and (3.4), provided that the Jacobian
factor behaves suitably. We must of course write down
this factor before we have dered our amplitude, but we
shall 6rst generalize our prescription to the r-point
dlagl am.
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FIG. 3. A minimal six-point Feyn-
man diagram drawn in two alterna-
tive ways.

(a)
6

(b)

total number of channels in which the diagram has
intermediate states is xmn um ~ ~ n II ul" ~ )m" ~ n p i+ 1& jN&i+j

l=1

(i—1)(j—1)(k—1)+('—1)U —1)+(i-1)(k-1) i+j&n&i+j+k —1

+(2 1)(k 1)+k'(i 1)+kjU x „=u „, i+1& j&um'&i+j —1
+-',k(k —1)—1. (3.6) x„„=u„„, i+j+1&u& jj,'&i+j+k 1—

(3 7g)

(3.7h)

(3.7i)
The diagram is symmetric in the particles i and j, and
also in the groups of particles 1 —+ (i 1), (i+—1) —i
(i+j +1), and (i+j+ 1)~ (i+j +.k/1) .

We again begin by constructing the variables ~, m,
and x, which are de6ned according to the prescription
at the end of Sec. 2. With regard to subscripts, we adopt
the notation that vz corresponds to the channel with
particles l to m in clockwise order along the polygon
1i(i+1)(i+j) Asimila. r notation is adopted with re-
spect to the variables u) and the polygon 1i(i+j +k 1)—
(i+j), and to the variables x and the polygon
i(i+ 1)(i+j)(i+j+1)(i+j+k —1), except that the
particles are taken in counterclockwise order in the last
case. The de6nitions are then as follows:

i+j+Ic—1

Dim u) mII u"l" mn" ~ {i+i+I—).)
n=i+ j+1

1&/&i, i&m&i+j 1(3.7a)—

~u'u ~(@+1)(n' —» ) ~u'(i+j) ~1(u' —» ~

1&p& p'&i+j (3.7j)

~n'Z ~(Z+1) (n'+1) y ~n'(i+j) ~1(n'+1) p

~n'i ~(i+j+k—1) (n'+» p ~(i+j+k—»Z ~(Z+1)i p

~Z'Z =~(Z+1) (l' —1) y ~n'n ~(n—» (n'+» p

Z (+ ) =m1(Z 1) ) 1&l(l'&i,
i+j&N'&e&i+ j+k —1 (3.7k)

&c'C —&(a+1) (C'—1) r ~ (i++~-» =~i(~ —1»

i&q&q'&i+j+k 1. (3—.71)

In (3.7j)—(3.71), we have simply equated the variables
from complementary, and therefore identical, channels
from the point of view of their respective polygons.

VZZ
——uZZ, 1&l('&i—1

v ~ =u „, i+1&m&m'&i+j 1—(3.7b)

(3.7c)

i+j-1
&En =u)" in" ~ (i+j+k 1.) II ul i—(i+1)" mn" ~ "(i+j+& 1)y-

tn=i+1

1&i&i i+j +1&N&i+j +k 1(3.7d)—
i+j—1

II
m=i+1

1&l(~ (3.'/d')
I+j+k-I

Z ll ——Ill, 1&l( l'& i—1

w„„.=u„„, i+j+1&u&u'&i+ j+k—1

(3.7e)

(3./f) Fzo. 4. A minimal e-point Feynman diagram.
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The generalization of Eqs. (3.3) to the r-point func-
tion is now obtained in the same way as Eqs. (3.3)
themselves; we require that the v's, m's, and x's be
related by the rules for planar amplitude. In other
words, "they satisfy the equations

'vg+II vp = 1 (3.8a)

~i'+II ~8=1, (3.8b)

xg+II xp = 1 ) (3.8c)

M—1

+ II II II )&&" ~" ('+~'+i—i) =0 (3 9a)
L=L+1 m=i n=i+q+a

where the product P is over all channels which overlap
with P. By making use of (3.7) we can reexpress (3.8)
in terms of the I's.

To generalize Eq. (3.4), we select one particle L in
the group 1-+i—1, one particle 3f in the group
i+1~i+j 1, —and one particle 1V in the group
i +j+1 ~i+j+k 1. Ther—e will be a separate equa-
tion for each choice of I., W, and S.The first term of
the equation will consist of the product of the I's for
all channels which include particles i+j and L but not
3f and E. In the next two terms the channels include
particles i+j and 3E but not L and cV, and i+j and N
but not I.and M. The last three terms are obtained in a
similar way with particle i replacing particle i+j, and
they occur with a minus sign. Thus,

i—1 i+j N—1 L—1 M N—1 L—1 N—1 i+j+k—1

(II n rI+II II rI+II n Ir )
L=L m N+1 n=i+ j L=o m=i+1 n=i+j l=o m, N+1 n N

L M—1 i+j+k i i+j—1 i+j+kx,...,. .-(II n rr + rr II n
l=l m=i n=N+1 L=L+1 m=M n=N+1

with the six-point function, when Eq. (3.3a) appeared
twice. The variables v~~ and m~~, with 1(l(l'(i—1,
are defined in exactly the same way by Eqs. (3.7b) and
(3.7e). It is easily seen that Eqs. (3.8a) and (3.8b) for
these variables are identical. The number of indepen-
dent equations must be reduced by the number of such
variables, which is —,(i—1)(i—2). By observing that the
variables defined by (3.7c) and (3.7h), as well as by
(3.7f) and (3.7i), are the same, we conclude that the
number of independent equations must be further
reduced by ~i(j—1)(j—2)+ii(k —1)(k—2). The total
number of independent equations (3.8) is therefore

(i—1)(j—1)(k —1) . (3.11)

To find the number of independent variables, we
substract the total number of independent equations,
given by adding (3.10) and (3.11), from the total
number of variables (3.6). The result is equal to
i+j+k 1, i.e., —to r 1 Th—e a.bove reasoning does not
prove that all these equations are really independent,
but we can again obtain explicit unique solutions in
certain limiting cases. The proof is thereby completed.

As in the case of the five- and six-point amplitudes,
we can show without difhculty that the variables u
satisfy the requirements (i) and (ii), and the equivalent
of the requirement (iii). We therefore have a suitable
form for the r-point nonplanar Veneziano amplitude.

—',(i+j—2) (i+j—3)+-,'(i+k —2)(i+k —3)
+-', (j+k —2) (j+k —3)—-,'(i —1)(i—2)

——,'(j—1)(j—2) ——',(k —1)(k—2) . (3.10)

The number of Eqs. (3.9a) is equal to the number
of combinations of L, M, and X satisfying (3.9b),
which is

Factor JThe series of subscripts 1 / in the erst term is omitted
if /=0, and the series I .(i+j+k 1) in the second—
term is omitted if n =i+j+k. There is one equation for
each value of I., 3I, and lV satisfying the inequalities

For certain purposes it is convenient to take a subset
of the v's, m's, and x's, rather than a subset of the u's,
as our independent variables of integration. With a
suitable choice of the subset of the v's, m's, and x's, each
I can be expressed explicitly as a square root of a
rational function of the integration variables; the
functional dependence is more complicated if one
attempts to express all variables in terms of a subset of
the u's.

The new choice of integration variables also allows us
to obtain a general expression for the Jacobian. To be
more explicit, let us take the set of (r—3) variables

1&L&i—1, i+1&M&i+j 1, —
(3.9b)i+j+1&1V& i+j+k- 1 .

vi„, 2&p&i+j—2 (3.12a)

wh, w&„, i+ j+2&n&i+ j+k—1. (3.12b)

This set includes all the v's and ze's whose first subscript
is 1, except those m's which are defined identically to the

We now verify that the total number of independent
equations is such that r—3 of the I's are independent.
The three polygons 1i(i+ 1)(i+j), 1i(i+j+k -1)
(i+j 1), and —i(i+1)(i+j)(i+j+1)(i+j+k-1)
contain i+j, i+k, and j+k particles, respectively.
The planar s-point Veneziano amplitude possesses
~i(s—2)(s—3) independent equations between the vari-
ables, since s—3 of the is(s —3) variables are indepen-
dent. Equations (3.8a)—(3.8c) thus provide —,'(i+ j—2)
X (i+j 3), —,'(i+k —2) (i+—k —3), and i~ (j+k —2)
X (j+k—3) independent equations, respectively.

Not all the equations in different sets of (3.8a)—(3.8c)
are distinct, however. An analogous situation occurred
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s's by (3.7b) and (3.7e). The Jacobian will then be equality 2&L&2—1 and take the variables
given by the equation »„, L&p&i+j or 1&p&L —3 (3.14a)

i+j—1 i+j+k—1

( II II 24m" n24n" ~ (i+j+5 1)i—m)~

m=i+1 n~i+ j+1

4+2—3

&& II (1—»~»(~+i))(1 —»('-i)~i~)

i+j+A:—2

)((1—2(t)42(ti(44j+5 i)) II (1 2B1n2»(n+i)) ( )
n=i+j+2

We may also select a value of I. satisfying the in-

i+j+A:—1
Vt,m =~l.i ~l,n

n~i+ j+1
(3.15)

Equation (3.15) is a consequence of (3.8a) and (3.8b).
With these integration variables, the Jacobian adopts
the form

2»4, wz, „, i+j+2&n&i+ j+k—1. (3.14b)

Again this set includes all the distinct v's and zv's whose
erst subscript is I., except the variable ml, ~;+j+1~, which
is given by the equation

i+j+k—1 L—1 i—2 i+j—1 i+j+k—1 i+j—1

n=i+j—2 2=2 l'=L m=i+1 n=i+ j+1

i+j+k—2

&(1»('+')»8) II (1»»(n+i))(1»('—i)2BI')(1 2B&42»('+'+5—i)) II (1—8r»( +i)) (3.16)
n=i+j+2

The Jacobian defined by (3.13) or (3.16) transforms correctly if we change the value of L or if we change from
the variables (3.12) to (3.14). We can write down a similar Jacobian if we take the w's and the g's, or the 24)'s snd
x's, as our independent variables, and the Jacobian transforms correctly when we pass from one such set of variables
to the other. Furthermore, if we change variables in such a way as to make one of the I's an independent variable,
and then let that variable tend to zero, the Jacobian will factorize correctly into two Jacobians associated with
smaller diagrams. The proof that the requirement (iii) is satisfied is therefore completed.

Once we have the Jacobian corresponding to a given set of independent variables, it is a straightforward but
usually very tedious matter to obtain the Jacobian for any other set of independent variables. We can thereby
obtain the Jacobian if we take a subset of the I s as our independent variables. Equation (2.6) for the five point
function can thus be rederived. For the six-point function, a convenient choice of independent variables is gg15,

2423 and Ni54, the Jacobian is then given by the formula

(1 N1524154) (1 N2824154)LN5624846(2445N456+N1524156)+N84N456(N3624846+I28N156)g

(2415N846+N56+2445) (242324456+2484+N36)
(3.17)

fmn(N12~PT)gmn(24ByPB)24128
n f m

(4.1a)

where the variables pT represent the momenta from the
upper half of the diagram, while 24B and pB represent

4. FACTORIZATION PROPERTIES

Two-Particle Channels

We shall erst investigate the factorization properties
when a diagram is divided by cutting two lines. The
spectrum of intermediate states in such a channel is
exactly the same as that of a planar diagram. Rather
than displaying the proof for the r-point amplitude, we
shall investigate the simplest nontrivial example, which
is the seven-point amplitude. We shall therby indicate
the line of reasoning without becoming involved with
too great a proliferation of subscripts.

We divide the Feynman diagram of Fig. 5 as indi-
cated. Our aim will be to express the integral in the form

the I's and momenta from the lower half of the diagram.
If the functions f „are identical to the corresponding
functions in the planar amplitude, we may assert that
the spectra are identical. It may not be immediately
obvious that we can make this assertion, since, accord-
ing to the method of Ref. 7, we should select two
variables from the lower half of the diagram (N56 and
2462, for instance), and write the integrand in the form

fmn (2412qPT)gmn (N56&2467qPB)S»3 ~ (4.1b)
n 3m

However, the two procedures are equivalent by virtue
of the following two theorems:

(a) The variables NB are functions of 156, N62, and
N»3, as may be shown from Eqs. (3.7)—(3.9).

(b) The set of functions f „ include f („8) as a
subset. This is one of the results of Ref. 7.

Proceeding accordingly, we begin by writing the
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Q457Q3457Q23457+ Q6?+ Q56 Q567

Q45Q345Q2345 Q47Q347Q2347 0
y (4.5a)

V56 —V45V85V25 ) (4.5b)

W67 = 7047'K37Z027 ) (4.5c)

which are particular cases of (3.9), (3.8a), and (3.8b),
respectively. From (4.3) and the further equations

j=6

FIG. 5. Factorization of a seven-point diagram
in a two-particle channel.

Veneziano integrand for the amplitude corresponding
to Fig. 5:

J—lu 0.56 Iu cL4$ Iu cx45 Iu —ct67—I —n567—I
56 47 45 67 Q567

0!457 Iu —cty2—Iu A23 I cx/23 —I —e84—IX 457 12 28 Q128 Q34

XQ234 + 34 Q847
ct' 4 Q2847 0'2347—lu845

—&345—I

XQ2845 Q8457 Q28457 (4.2)

The first. six factors after the Jacobian involve variables
from the lower half of the diagram alone and they are
irrelevant to the factorization. We shall attempt to
express the remaining factors in terms of the variables
v and m which refer to the polygons 123456 and 123476.
Since these variables are related to one another by the
formulas for planar diagrams, we shall then be able to
repeat the reasoning of Ref. 7.

The v's and m's which we shall require are defined as
follows:

V56 Q56Q567 ) V45 Q45Q457 )

we can rewrite (4.5b) as an equation for the Q's as
follows:

Q56Q567 Q45Q457Q345Q2346Q3457Q23457 (4 5d)

Similarly, we can rewrite (4.5c) as an equation for
the u's:

Q67Q567 Q4?Q45?Q34?Q234?Q345?Q23457 (4.5e)

We can solve (4.5a), (4.5d), and (4.5e) to give the three
expressions u8457Q23457, Q845Q2345, and u847u2347 in terms
of the variables u457, Q67, Q56 Q567 Q45 and Q47, which
all refer to the lower half of the diagram. The last factor
of (4.4) may therefore be ignored.

We still have not specified our independent variables.
It is convenient to take the set (3.12), which in our case
is the following:

V12 ) V18 ) V14 V56) ~14 ~76 ~

The Jacobian will then be given by the formula

S56?S457(I 7'127)13) (& 7)137)56)—(& 7)1376)76—) . (4.6)

The first two factors of (4.6) refer to the lower half of
the diagram and may be ignored.

We can now substitute (4.6) into (4.4). After re-
moving the last factor of (4.4) and the first two factors
of (4.6), we arrange the reinaining factors in two groups
as follows:

V12 ~12 Q12 )

V84= Q34Q847 )

V25 Q2845Q28457 )

V28 28 Q28 ) V13 18 Q128 )

7)24 Q234Q2347 7 2)35 Q345Q3457 7 (4.3) &12 ~23 ~13 ~34 s24

%87 Q347Q3475 ) Z027 Q2347Q23457 e X&35 "' '7)25 "" '(& 7)127)13) '(& —2)137)56) ', (4.7a)

The expression (4.7a) contains precisely the
factors as the six-point planar amplitude, 7 apart from
factors which involve variables from the lower half of
the diagram only. We can write (4.7b) as a function of
m» =v», m» = v», and m76 by using the ordinary relation
between the Veneziano variables for planar diagrams.
The expression is thus equal to

&—I —ay2—I —a23—I —nI23—I —a34—I —a234—IJ V12 V28 V18 V84 V24

—~345—IV —~2845—I~ -u& —2@7 |.'u3+u4)XV85 25 87

X7()27 » 2%7 (»+PB+P4) (Q345?Q28457)
——»—P7 (4.4)

The linear combinations of the n's in the last three
indices have been expressed as scalar products of the
momenta. We have used units for which the slope of the
Regge trajectories is unity, and we have taken a time-
like metric with all momenta directed into the diagram.

The last factor of (4.4) is not a function of the 2's and
m's. It will now be shown that the product Q3457u28457 is
a function of variables from the lower half of the
diagram alone, so that it is irrelevant to the factoriza-
tion. We use the three equations

f —V»~76
——2 7'—2~7 (2 3+2 4)

1—V12V13~76-

X (] —'6127)igg?6)» P? (»+»+ jl4) (I 7) 7() )
—1

= (I—7)137()76) '"'(I 7)127)1374)7 )—2»»

X (I ?)137()76)» 2n4» 1(48)—

One can then rearrange the Jacobian and the last eleven 2()37 7(727' ~' 2"7(»+»+») (I—2)1376)76)
—'. (4.7b)

factors of (4.2) to give the expression
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In its dependence on the variables vis, mrs, ps, and ps,
(4.8) again has exactly the same form as the correspond-
ing expression for the planar amplitude. The factoriza-
tion properties of our present amplitude in the channel
123 are therefore identical to those of the planar
amplitude.

Three-Particle Channels

Now let us turn to the factorization properties of an
amplitude when the diagram is divided by cutting three
internal lines. The simplest nontrivial example is the
six-point amplitude, and we shall examine the factoriza-
tion properties of the amplitude corresponding to Fig. 3
in the channel 154. It will turn out that this case is in
fact too simple to illustrate the general features of the
problem, and we shall later have to study a more
complicated example.

The general method of procedure is the same as in
Ref. 7. We express the integrand of the Ueneziano
formula as a function of variables from the left and
right halves of the diagram and the variable N154, and
then we expand in powers of 1154.The residue at the nth
pole will be proportional to the coefficient of u154" '. As
we shall restrict ourselves to the leading trajectory, we
need keep only the lowest power of u»4 for a given
angular momentum, or the highest power of the angular
momentum for a given power of u154."

The integrand of the Veneziano formula will be

J—ll A)5 ll ct45—1~ cx23 1N —&36—1
15 45 23 36

CLI2 lN CL56 l~ CL34—ll CL456 1
12 56 34 456

Xus46 ~ 46 ui56 ~'" iui54 ~'54 i (4 9)

The Jacobian will consist of a product of factors from
the hvo halves of the diagram when 113=0, and it will
therefore not aGect the factorization properties of the
leading trajectory. The next four factors of (4.9) involve
variables from one-half of the diagram, and they may be
ignored. In evaluating the remaining factors, we shall
express the n's as scalar products of the momenta pi, p4,
p„p„and p,+p,+p4. As we are neglecting lower
powers of the angular momentum, we need only keep
the products pips, pips, p4ps, and p4ps. We shall also
combine the u's into products which occur in Eq. (3.3).
We obtain the result

ui2 (uMu4M) (u34u346)

X (ussu84uiss) n u'u&54 &34— (4 10)

To express the I's in terms of 115, u23, and u154, we
begin by rewriting the factors of (4.10) with the aid of

"Again, we should really choose a minimal set of variables
from each half of the diagram, and express the amplitude in terms
of these variables and N»4. However, when n»4 is equal to zero,
all the variables from a particular half of the diagram are func-
tions of this minimal set; in our case the relations are simply
%15+Q45—1 s23+Q36 —1.Hence, in the approximation to which we
are working, we need not select minimal sets.

j=6

I

I

I

I

I

5 I
4

I

I
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I

l
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I

l

FIG. 6. Factorization of an eight-point diagram
in a three-particle channel.

('I ) (2piu15p2u23 2plulsp6u86 2p4u45p2u28
n=O

—2P4u45Psuss) "ui54" '" '. (4.13)

The six-point amplitude is still somewhat too simple
to illustrate the general features of our result. The line
5123 contains two particles between the points 5 and 3,
one in the final state and one in the initial state. The
lines 543 and 563 contain only one particle each. Let us
therefore examine the eight-point amplitude (Fig. 6).
The integrand of the Veneziano formula, with neglect
of factors which depend on one-half of the diagram only,
will be

(3.3). The expression then becomes

(1 uisui54ussulss)

X (1 u15u154u86u846) (1 u45u154u28u456)

X (1 u45ui54u36) ui54 (4 11)

Although (4.11) is not yet a function of the required
variables, we can make further approximations in the
leading order of the variable u154. When this variable is
zero, all overlapping variables are equal to unity, so
that we can drop factors of N]56 N346 and 1456 when they
are multiplied by a factor of u»4. On doing so we obtain
the expression

(1—uisuissuss)

X (1 uisui54uss) '~—'"'(1 u45ui 54uss) '3—""3

X (1—u4:ui54uss)'"4"'ui54 "4 '. (4.12)

The integrand has now been expressed as a function of
the required variables. We could reduce the number
of variables still further, since the two equations
u$5+u45 1 uss+u36 1 are satisfied when ui54

——0. It
will not be helpful to do so, however.

By writing each of the first four factors of (4.12) as
the exponential of a logarithm, we can isolate the lowest
power of n154 for a given power of the angular mo-
mentum. Our Anal approximation is then
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&—1 —a12—1 —a45—1N —a78—l~ —a678—1, —a456—1, —a345—1, —a378—ll —a5678—1N —a 456'7—1N —a3458—1+12 @45 78 678 N456 1345 1378 5678 4567 3458
—a3478—lu —a123—lu —a126—lu —a1673—lu —a1468—lu —a1567—1 (4 1 4)

On expressing the o.'s as scalar products of momenta, neglecting powers of zero order in the angular momentum and
rearranging factors, we obtain the result

u12 u45 u78 (u 78u5678u123) (u845u3458u126) (u456u4567u123)

X (u378u3478u126) (u345u678u1678) (u456u378u1456) u1567 (4 15)
—2pI+2~ —2@5+4~ —2+7+8~ 2+Ip8p 2+5+2~ 2@1+~ 2@7+2+ 2+5+8+ 2p7p4N —a1567—1 (4.16)

We now express the Zi's, w's, and x's by (3.8a), reexpress the Zi's, 76i's, and x's in terms of the u's, and put all
I s which overlap the channel 1567 equal to unity when they are multiplied by the variable N»67. The expression
then becomes

(1 u16u156u167u1567u23u284u238) (1 u56u156u567u1567u34u234u348) (1 u67u167u567u1567u38u238u348)

X (1 u16u156u167u1567u38u238u348) (1 u56u156u567u1567u23u234u238) (1 u16u156u167u1567u34u234u348)

X (1 u67u167u567u1567u23u234u288) (1 u56u156u567u1567u38u238u348)

X (1 u67u16zu56zu1567u34u234u848) u1567 ~ (4 17)

As in the treatment of thesix-pointfunction, we canisolate the lowest powers of N1567 by writing each factor as
the exponential of a logarithm. Our integrand thus approximates to the expression

P2 p2u28u234u288 ) P6 p4u84u284u348 y P8 p8u88u288u348 ~

Q (73!)-'{2PVP2+2P5P4+2PVP8 —2P1P4 —2P1P,—2P5P2 —2P5P8 —2PVP2 —2PVP4) "u1567
n=o

where
Pl plu16u156u167 y P5 p5u56u156u567 1 P7 pVu6vu167u567 y

(4.18R)

(4.18b)

One can repeat the foregoing analysis with the general r-point function. One again obtains an expression of the
form (4.18a), with more colnplicated formulas for the P s. To write down the formulas it is convenient to change
our notation slightly. Each of the external lines 1, 5, 7, 2, 4, 8 will be replaced by a series of lines which we denote
by 1P, SP, 7P, 2P, 4P, 8i8. We denote the corresponding mornenta by P i7, where n takes the values 1, 5, 7, 2, 4, 8.
The expression for the I"s may then be written

Pa=+ Pasyas ~ (4.18c)

If n = 1, 5, or 7, the factor y 6 is equal to the product of the u's for all subchannels on the left of the diagram which
include the particles j and np. Sirnlarly, if n=2, 4, or 8, the factor y 8 is equal to the product of the u s for all
subchannels on the right of the diagram which include the particles 7' and np.

In order to investigatethe factorization properties of our amplitude, we write the expression within curly
brackets of (4.18a) as the sum of factorized terms as follows:

Q (73!) '{(4/9) (2P1—P5 —P7) (2P2 —P4—P8)+ (4/9) (—Pl+2P5 —PV) (—P2+2P4 —P8)
n=o

+(4/9)( Pl P5+2PV)( —P2 —P4+2P8) ———',(Pl—+P5+PV)(P2+P4+P8)) "u1567" " -'. (4.19)

l,et us begin by neglecting the last term within the
curly brackets. The remaining expression has been
written as the sum of three factorizable terms but, since
the sum of the initial factors and the sum of the final
factors is zero, the expression is really equal to the sum
of two factorizable terms. On raising it to the nth power,
we obtain the sum of (n+1) factorizable terms. The
residue at the nth pole in the amplitude is proportional
to the coefhcient of N1567" ' »67 ' in the integrand, and
we reach the conclusion that the nth resonance on the
leading trajectory is n-fold degenerate. Our spectrum
of resonances on the leading trajectory is thus identical

to that of a system of three scalar quarks bound by
simple harmonic forces. In fact, we may relate the tensor
(2P1—P5 —PV)5(—Pl+2P5 —PV)'( —Pl —P5+2PV) to
the state where the three quarks are in the kth, /th, and
mth level, respectively. The spurious states are elimi-
nated by the fact that the sum of the expressions in the
three brackets is zero.

The last term in the curly brackets of (4.19) compli-
cates the spectrum, and the degeneracy of the nth level
is now equal to 2173(n+1). It is possible to remove this
extra degeneracy by/adding nonleading terms to our
amplitude. As we explained in the Introduction, we
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shall therefore rede6ne the single-term amplitude so
that the spectrum of resonances does not possess the
unnecessarily large degeneracy.

Modification of Formula

r and s in the left half
of the diagram: s„,=s„'; (4.23a)

and s". When the variable u from the intermediate
channel becomes unity, we obtain the result

The modification consists in multiplying the inte-
grand by the function

r and s in the right half
of the diagram: s„=s„,"; (4.23b)

r)s n=1r)s
g (1—s„,)—» =exp(g Q e 'p„p,s„—, ). (4.20) r in the left half, s in

the right half: s„,=0. (4.23c)

The product is to be taken over all pairs of particles
from different groups 1 ~i —1, i+1 ~i+j—1, and
i+j +1~i+j +k —1 in Fig. 4; r or s is never equal to
i or j.The variable s„, is equal to the product of the u's
for all channels which include one and only one of the
particles r, s, and one and only one of the particles i, j.
The u's in this product are never simultaneously equal
to 1 within our range of integration, so that the quantity
i —s„, never vanishes. By expanding the exponential in

(4.20) as a power series, we can write the amplitude as
the sum of a leading term and nonleading terms.

Before proceeding further, we must verify that the
extra factor (4.20) does not destroy the property (iii),
namely, the factorization of the Veneziano integrand
when one of the u's vanishes. We first examine a
division of the Feynman diagram which is such that
the points i and j are on the same side (Fig. 5). The
upper half of the diagram becomes a planar amplitude
with no factor (4.20), but the lower half is again a
nonplanar diagram which requires such a factor. We
denote the s's for this new diagram by z', and we denote
the new particle which results from the factorization by
the symbol f. By making use of the fact that the u's for
all channels which overlap the division are unity in the
limit under consideration, we obtain the result

r in the upper half of the diagram,

s in the lower half:

r and s in the lower half:

Hence, in this limit

s„,=s„', (4.21a)

s„,=s„'. (4.21b)

& p p&-"=p~& p«™+2p p&-'"r (422)

where Ps represents the summation over the lower
half of the diagram. We thus observe that the exponent
in (4.20) becomes equal to the exponent for the lower

half of the diagram, as is required.
Now let us examine a division of the Feynman dia-

gram which separates the points i and j (Fig. 6). Both
halves of the diagram are nonplanar and require a factor
(4.20). We denote the s's from the left and right halves
of the diagram, considered as separate diagrams, by s'

Equation (4.23c) follows from the fact that the variable
s„,contains a factor of u for the intermediate channel in
this case. From (4.23) we may immediately write down
the equation

2 prpasrs P prpa&rs +Q prps&ra ~ (4 24)
L B

where Pz, and g~ represent summations over the left
and right halves of the diagram. The exponential
factorizes correctly, and we have verified the require-
ment (iii) for all cases.

We next verify that the inclusion of the extra factor
(4.20) does reduce the degeneracy of the spectrum

implied by (4.19). We again examine the behavior of
the exponent in (4.20) when the variable u~~6q corre-
sponding to the division of Fig. 6 approaches zero. Now,
however, we are interested in the higher particles on the
trajectory, and we have to keep terms proportional to
u1567 if they contain a factor of the angular momentum.
We therefore improve (4.23c) by including terms
in the variable u»67 the equation then adopts the form

r in the left half of the diagram, s in the right
half of the diagram: s„=yrygQ$567. (4.25)

The variables y in (4.25) are the same as those intro-
duced in (4.18c), namely, the products of the u's for all
channels including the parties r and j if r is in the left
half of the diagram, or the products of the u's for all

channels including the particles s and i if s is in the
right half of the diagram. The improved version of

(4.24) is thus

Z p p s-=Z p p s-'+Z p p s-'

+(E p.y.)(Z p.y.). (426)

We notice that the last term of (4.26) is equal to one-
half the sum of the last six terms in (4.18a), together
with the factor u1567 from outside the bracket. All

remaining terms in the exponent of (4.20) contain
higher powers of u»67, and they will not contribute in
the approximation to which we are working. The ex-
pressions (4.18a) and (4.19), when multiplied by the
factor (4.20), will therefore be equal to
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P (73!) '(2PiP2+2P5P3+2P?Ps P—iP6 P—iPs P—sP2 P—5Ps P—?P2 —PZPs} "uiss?"
n=0

= Q (78!) '(8(2Pi —Ps —PZ)(2P2 —P4 —Ps)+8(—Pi+2P, —Pz)( —Ps+2 Ps—P,)
n=o

+8(—Pi —Ps+2P?)( —Ps —P4+2P8)}"ul567"—~»67—' (4.27)

No term corresponding to the last term in the curly bracket of (4.19) is present, and the amplitude has the desired
factorization properties.

It is also necessary to show that the inclusion of the extra factor (4.20) does not affect the spectrum of resonances
in the two-particle channels, where we are interested in leading and nonleading trajectories. We shall again restrict
ourselves to the seven-point amplitude (Fig. 5), though the result can generally be proved true. For the alnplitude
under consideration, the first term in the exponent of (4.20) will be

psp?u4?u34?u284?ussusssu2345+ psplussu45?usssu845?u2845u2345?u1234u12347+ psp2ussu45?u845u345?u284u234?u1235u12347

+pspsussu45?ussu84?u284u284?u1284u12847+ p?plus?u45?uss?u845?u284?u2885?u1284u12845

+p?p2u4?u45?u345?u284u2845u1284u12845+ p?psu4?u45?ussusssu234u2845u1234u12845 ~

From (4.3) and the further definitions

N45N457 p ~14 +1284N12347 y ~47 N47+457 y ~14 +1234+12845 y 24 N28412345 y

(4.28)

(4.29)

we may rewrite (4.28) as

p 5p 7 us?u 84?u 2 84?ussu 845u2345+ p 5045s 14 (p 17 857 25+p 22 3ss24+ p 8s84? 24)+p 776 4776 14(p 1?6 8 576 25+p 276 3576 24+ p 8?6 34~24) ~ (4.30)

By using the relations between the v's or zv's, which are Veneziano variables for planar diagrams, we can further
modify (430) to read

1—813
psp?u4?u84?u284?u45u345u2845+pssss(1 656) pi+p2 +P3

(1—&12~18'056) (1—~13&56)

~ —&1&13
+ps?076(1 76 76) pl+ p2 +p3 ~ (4 31)

(1 &127 187676) (1 &13?6?6)

The first term of (4.31) involves variables from the
lower half of the diagram only, since we have already
shown that the product u347Q2347 is a function of such
variables, and we can prove a similar theorem regarding
the product N345N2345 The remaining terms may be
expanded in powers of e18, and all variables from the
upper half of the diagram occur in the combinations

(Pi~n0+P2712 +P3)&13 ~ (4.32)

These are precisely the combinations which occur in the
factors for the channel in question when it is analyzed
according to Ref. 7. The remaining terms in the ex-
ponent of (4.20) will be similar in appearance to (4.31),
except that the coeKcients of the scalar products p„p,
will be raised to a higher power. Again all variables from
the upper half of the diagram will occur in the com-
binations (4.32). The factor (4.20) will therefore leave
the factorization properties in the channel in question
unaltered.

There remains one important property which must be
verified before we can claim that the factor (4.20) does
not destroy any of the required characteristics of oui
amplitude. We must demonstrate that the amplitude
still has Regge asymptotic behavior, or at least that we
have introduced neither exponentially increasing func-

tions in the physical region, nor fixed power. Since we
have not studied the asymptotic behavior of our ampli-
tudes, we shall not carry out a general investigation of
this question. One property which is easily verified,
however, is that any four-point amplitude which is
factored out of our general amplitude possesses Regge
asymptotic behavior. We feel that a Q.xed-power
behavior or an exponentially increasing function, which
might be introduced by the factor (4.20), would also
affect the four-point amplitude. We thus have a
plausibility argument that the factor has no adverse
effects of this type.

The verihcation for the four-point amplitude is
simple. We may represent the factored amplitude dia-
grammatically as in Fig. 7, and the factor (4.20) will be

(1—ulsu i3) ~?s4 (4.33)

The four-point Veneziano variables u» and I» satisfy
the relation uls= —,—uls. Thus, if we write (Pi+Ps)'= s,
(pl+ps)'= t, the amplitude will be equal to

1

du12uis (1 ul2)

&&i 1—uis(1 —uls)jul'+' ' '7 (434)

where S=n, (s), T=n, (t). The method used to verify
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We Grst quote the formula without the extra factor
(4.20). Before writing the integrand in its most general
form, we make the restriction that y;+, = 0, y;= ~. The
formula then becomes

f= 2

dy& ' ' ' L~y~+idy~dy~3 ' ' dy~+'i+@ 6'~—

x II (y —y~) "'"'+"' II' (y +y~) '"'"'
8)t; s, t'ai a)t; a, t+i

(4.36)

FIG. l, A four-point diagram factored out from a general
minimal nonplanar diagram.

~Qyig 0 ~ 0 Qy)( 0 ~ 0 (y o (4.35a)

y;+;( (y « . (y;, (4.35b)

y'+ &y'+t+~&" &y-&" &y' (435c)

that the usual four-point Veneziano formula has Regge
asymptotic behavior can be applied to (4.34), and leads
to identical results.

Our general amplitude, with the extra factor (4.20),
thus has all the desirable properties of the original
amplitude. If a channel appears as a two-particle
channel in Fig. 4, its factorization properties are
identical to those of planar amplitudes. The three-
particle channels of Fig. 4 have more complicated
factorization properties, and the spectrum of particles
on the leading trajectories is identical to that of a
system of three neutral scalar quarks bound by simple
harmonic forces.

We may remark that the factor (4.20) can also be
applied to planar diagrams. Without this factor, reso-
nances on the leading trajectory would be nondegener-
ate; they mill now have a degeneracy corresponding to a
three-quark spectrum. In a model with only planar
diagrams one would not introduce such a factor, as it
would merely complicate the spectrum. If we have
planar and nonplanar diagrams, however, the eBect of
such a factor mould be to eliminate all nonsymmetrical
quark states. Ke hope to discuss the details in a
subsequent paper.

cVote added in manuscript. The prescription described
in the foregoing sections can be expressed fairly suc-
cinctly in the Koba-Nielsen formalism. " YVith each
point of Fig. 4 vre associate a variable y, the y s satisfy-
ing the inequality

e,t= b —1 if s and t are adjacent points
=0 otherwise,

and b is the intercept. The diGerentials within the square
bracket are to be omitted. The product II is over all
pairs where r and s are in. the same group of particles in
Fig. 4, the product II' over all pairs where r and s are
in different groups. The plus sign in the last factors of
(4.36) is analogous to the plus sign in the expression-of
Galli, Gallardo, and Susskind. '4

To rewrite (4.36) when we do not restrict the variables

yi» and y;, we must first find a projectively invariant
manner of expressing the factor y,+y, . We can do so b3
introducing the variable y„ the harmonic conjugate of
y, with respect to yi+, and y;. This harmonic conjugate
is defined as the value which makes the cross-ratio
(3 —y'+t)(y —y~)/f(y —3')(3 —3* )) equal to —~.
One can then write the projectively invariant equivalent
of (4.36) as follows:

(dy&dy&

+Ldy'~dy~dy~'dy~'dyr"dyt" j ' 'dy~+jyj —x4yiy~+s —i

II ((y —y ~)(y~ —y )}-'""'+"'+"'
s&t

&&II ((y 3' )( — )) ""'+'*')"', (4 37)

where

~,t= b —1 if s and t are adjacent points
= —0+1 if s=i+j, t=i
=0 otherwise,

y, t= 1 if both s and t are equal to r, r', or r"
=0 otherwise.

Note that differentials such (dyqdy~)'t' are really a
single differential, since y~ is a function of y~.

In order to obtain the amplitude with the minimum
number of degenerate trajectories, one must also include
factors analogous to (4.20) in (4.36) or (4.37). The
extra factors in (4.36) are

These inequalities are interpreted in the usual projective
manner if the point ~ separates y;+,. and y;.

y y
Ps'J1 t

(4.38)

"Z. Koba and H. B.Nielsen, Nucl. Phys. 812, 517 {1969). "J.C. Gallardo, E. Galli, and L. Susskind (unpublished).
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while the extra factors in (4.37) are

(y —y'+ ) (y.—y')(y —y'+ ) (y —y')1—

could take the square root of the product of the factors
with and without this replacement.
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The model previously proposed is extended to include multiquark trajectories. Once any trajectories
with more than a single quark and antiquark are included, it is necessary to include trajectories where
the number of quarks plus the number of antiquarks, which we call the total quark number, is arbitrarily
large. The necessary factorization properties of the multiparticle Veneziano amplitudes will hold provided
the intercept of the leading trajectory is a polynomial function of the total quark number, and the de-
generacy of the levels on all but the leading trajectory will increase with the order of the polynomial. It
is possible to construct two different models depending on whether one allows nonplanar duality diagrams.
The model with nonplanar diagrams resembles more closely the nonrelativistic harmonic-oscillator quark
model, and the nonplanar duality diagrams must be associated with the nonplanar Veneziano amplitudes
discussed in a previous paper. One can introduce SU(3) symmetry-breaking by making the intercept
depend on the number of strange and nonstrange quarks separately, and one then obtains a modified Gell-
Mann —Okubo mass formula.

I. INTRODUCTION

RELATIVISTIC quark model has been proposed
and applied to meson trajectories by Mandelstam'

and by Bardakci and Halpern. ' In the present paper we
wish to extend the model to other trajectories. We shall
discuss the general properties of the multiquark
trajectories, as well as the symmetry properties of the
three-quark states. The spin and unitary-spin degrees
of freedom will only be mentioned insofar as they are
connected with the symmetry properties. We hope to
treat the more detailed spin properties of the baryon
trajectories in a subsequent paper.

Within the framework of the model presented in I,
it appeared that one need not introduce resonances
consisting of more than two quarks. Once one requires
the presence of three-quark states, however, it is
necessary to introduce trajectories where the number of
quarks and antiquarks is arbitrarily large. We shall
examine such trajectories in Sec. 2. For baryon-anti-
baryon scattering, it has already been pointed out by
Rosner' that exotic resonances with two quarks and two
antiquarks must occur in the intermediate states, and

*This work was supported by the U. S. Atomic Energy Com-
mission.

Mandelstam, Phys. Rev. 184, 1625 (1969); hereafter
referred to as I.' K. Bardakci and M. B. Halpern, Phys. Rev. 183, 1456 (1969).' J. Rosner, Phys. Rev. Letters 21, 950 (1968).

one can apply similar reasoning to more complicated
reactions. Following Delbourgo and Salam, ' we shall
refer to the number of quarks plus the number of anti-
quarks as the total quark number, and resonances with
an arbitrarily large total quark number must be present.
Our model in its present form does not appear to
require trajectories with a net quark number greater
than 3, though it can certainly accommodate such
trajectories. Until we know how to extend our model
beyond the narrow-response approximation, we cannot
answer the question whether trajectories of baryon
number greater than 1 occur in this approximation, or
only in higher orders.

If our model is to be at all acceptable on experimental
and theoretical grounds, it is necessary that the mass
of the lightest particle with a given total quark number
be an increasing function of the quark number. As long
as the resonances with a total quark number of 4 or
greater are sufFiciently heavy, they will decay rapidly
into resonances with smaller total quark numbers, and
they will not appear experimentally as narrow res-
onances. We therefore have to inquire whether the
model allows different trajectories to have different
intercepts. The question to be investigated concerns the
factorization properties of the multiparticle Veneziano

4 R. Delbourgo and A. Salam, Phys. Rev. 172, 1727 (1968).


