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Chiral-Symmetry Model*f
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We have constructed a chiral-symmetry model in which the vector mesons (which are not introduced
by means of the Yang-Mills technique) are described in terms of an antisymmetric second-rank tensor T„„.
As a result, the interaction Hamiltonian in the interaction representation contains additional contact-type
terms. Besides the pseudoscalar and vector-meson nonets, the model contains two nonets with 7~~=0
and 1 +. Their 6elds appear in even numbers in all terms in the expansion of our Lagrangians. A mass
Lagrangian is introduced such that the mesons get their physical masses. This gives generalized partially
conserved axial-vector current if higher-order contributions are neglected. A U(3)&,fgU(3) 'gh& invariant
Lagrangian is found which gives the well-known EPV coupling and also a I'V V coupling. A nonet of baryons
is introduced, with the Fp (1405) as ninth baryon. Several chiral-invariant meson-baryon Lagrangians
are considered, such that the nonderivative and derivative couplings of the pseudoscalar mesons to baryons,
and the vector and tensor couplings of the vector mesons to baryons, are obtained. Also, two symmetry-
breaking meson-baryon Lagrangians are needed to give the baryons their physical masses. The coupling
constant of the tensor coupling of the p mesons to nucleons is correctly predicted. The width of the Fv*(1405)
and the ratio ( Grrrcr

~
/[Gs~r

~
are predicted to be 62 MeV and 2, respectively, which are close to the experi-

mental values. The decay widths I'Lrt'(958) —& rt+2v-g, I'(E'e ~ err), and P (y ~ E+Ir ) are in reasonable
agreement with experiment.

I. INTRODUCTION

HE success of the combination of current algebra'
and partially conserved axial-vector current

(PCAC)" has indicated an underlying U(3)SU(3)
chiral symmetry. %'einberg' has suggested that an
equivalent approach would be to use an eRective
Lagrangian which satisfies PCAC and proper current
commutation relations. The method of phenomeno-
logical Lagrangians, which is less rigorous than the
algebra of currents (or the algebra of 6eldss) and whose
main advantage is that it requires much less elaborate
techniques, has been used extensively in the last few
years. 6 '5

To construct a phenomenological Lagrangian model,
we consider a 12)&12-dimensional meson matrix 4.
This dimensionality is expected, if the mesons are made
out of a quark triplet and an antiquark triplet, and each
quark and antiquark is a four-dimensional Dirac spinor.
The mesons enter only through the matrix 3II(4),
which is a nonlinear function of 4. The quark-meson

* Supported in part by the U. S. Atomic Energy Commission.
t Submitted to the Department of Physics, The University of

Chicago, Chicago, Ill. , in partial fulfillment of the requirements
for the Ph. D. degree.' M. Gell-Mann, (a) Phys. Rev. 125, 1067 (1962); (b) Physics
1, 63 (1964).' Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
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Lagrangian, and one term of the kinetic-energy meson
Lagrangian, is invariant under the group GL(6,c)~,tt
SGL(6,c)„,qv, while the other Lagrangians are invariant
under subgroups of GL(6,c)z,SGL(6,c)rt. Also, all our
Lagrangians are invariant under parity and charge con-
jugation, if the four meson nonets of our model have
J =0 +, 1 +) and under time reversal.

In Sec. III the meson Lagrangian is constructed in
such a way that to lowest order a free-meson Lagran-
gian is obtained, which leads to a positive-definite
Hamiltonian. The mesons have their physical masses,
and octet-singlet mixing is allowed in all nonets. A
Lagrangian invariant under the group U(3)L,SU(3)tt
is given which allows a I'I'U coupling, and also a I'UU
coupling.

In Sec. IV the vector and axial-vector currents com-
ing from the meson Lagrangian are constructed, and it
is shown that the axial-vector current satis6es gen-
eralized PCAC, if three-meson coupling terms are
neglected.

In Sec. V we consider a nonet of baryons, where the
resonance F'o*(1405) is the ninth baryon, which trans-
forms according to the representation (3,3*) and (3*,3)
of U(3) r,S U(3) tt. From the baryon kinetic-energy
Lagrangian, two U(3) r,SU(3) tt-invariant meson-
baryon Lagrangians, and two symmetry-breaking
meson-baryon Lagrangians, we obtain to lowest order
the free Lagrangian of a nonet of baryons. All baryons
have their physical masses. To next order, we get the
nonderivative coupling of the pseudoscalar mesons to
baryons and the tensor coupling of the vector mesons to
baryons. Two more U(3)r, SU(3)tt-invariant Lagran-
gians are introduced, which give the vector coupling of
the vector mesons to baryons. This coupling is pure P
type.

The physical vector mesons are described in terms of
an antisymmetric second-rank tensor. This description
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leads to an effective interaction Hamiltonian of the form
—Zr„4+(additional contact-type terms). " We have
calculated in Ref. 16 the interaction Hamiltonian com-
ing from a simple vector-meson —baryon interaction
Lagrangian, and we have shown that the S matrix is
covariant to any order in perturbation theory. In Sec.
UI we start from a general interaction Lagrangian, cal-
culate the interaction Hamiltonian, and prove that the
S matrix we obtain is covariant to second order in per-
turbation theory. The value of the GRR~'j44r which is
calculated from the Kr 4(BBP) is in reasonable agree-
ment with experiment, while the value of G~xq'j47r is
larger than the experimental value. The calculated
values of the decay width F(Vp* —+ Zn-) and the ratio
~GRxr~ j)Gs r~ are close to the exPerimental values.

In Sec. VII the s-wave ~m, vrE, and EE scattering
lengths are calculated. In these calculations the mass
parameters and the mixing angle of the S' fields enter.
Finally, in Sec. VIII the decay rates of the strong decays
g'(958) ~ g(495)+24r, E*~ E~, and pp ~ E+E are
calculated. The results are in reasonable agreement with
experiment.

II. MESON MATRIX

the operators with the minus sign are generators of the
group GL(6,c)R. The operators Z„can be divided into
a Herrnitian set {ZR}which contains

Zj 4 ~jg)0 A'$) J—1) 2) 3
gII 1

and an anti-Herrnitian set {Z"}which contains

(2.5)

Zj =4', )OI, Iy5=~zcr4j) y=1) 2) 3,A

Z4 =zy5.A —'
(2.6)

The operators

GL (6,c) L,

ga - (It)

5'={ERR "} j=1, 2, 3

are generators of an SL(2,e) group which will be iden-
tified with the Lorentz group.

The spinors gL and gg are taken to transform as
follows:

GL (6,c)L,

& eie4xpGceII, +qL eieet~G4x pqL

Consider a triplet of quarks

(2.1)

GL (6,c)g
gL

GL(6, c)g
nip Going

—
g~

—e~t eepGoilji
)

(2 8)

each one of which is a four-dimensional Dirac spinor.
Let 31 be a 12&12 matrix representing the mesons. As
in the Nishijima-Gursey-type model, ' "6 we write the
following interaction Lagrangian:

where e „and t „are real constants. Equations (2.8)
imply that the Lagrangian of Eq. (2.2) is invariant under
the group GL(6,e)r, SGL(6,e)R if the meson matrix
transforms as follows:

GL(6, c) L
HEI —+ 3I' = e'"~G ~35 )

ZP = g$qi, (/4M)qR+qR"(M P4)ql j &
(2.2)

GI (6,c)I
/4M t/4 — - /4M'ty4 ——/4'"(y4e " ~G ~,

(2 9)
where"

2(1~vp)vi'

gL, R 2 (1~75)g2 ~

.2(1+»)vp.

GL(6,c)~
- lV =HA )(2 3)

GL(6, c)g~ ~4M'~~4 ——e'&-~G-~y4M ty4.

M'y4M'ty4 e""~"M7——4Mty4e '"o",
y4M'ty4M' =y4Mty4M,G.,„g———,').SZ„-',(1&yp)=—G., „-,'(1ay, ), (2.4) (2.10)

where Q'=0, . . .
& 8, @=1, . . . , 4, and the operators with and under GJ(6,c)R transformations

the plus sign are generators of the group GI.(6,c)r, , while

So the fields qi, and 4tR have the left-handed (upper sign) y4Vty4

and right-handed (lower sign) components, respectively.
From Eqs. (2.9) we get under GL(6,c)I. transformations

Consider the group GL j6,cjoy fg{3GI-(6)c) 'gh& whose gen-
erators are

"E.Kyriakopoulos, Phys. Rev. 183) 1318 (1969).
~7 K. Nishijima, Nuovo Cimento 11, 698 (1959).' F. Gursey, Nuovo Cimento 16, 230 (1960);Ann. Phys. (N. Y.)

12, 91 (1961)."Y. Nambu (unpublished)."We shall use Hermitian p matrices in the Weyl representation
in which

M'y4M'ty4 My4Mty4, ——
y4M'ty4M'=e'r"o"y4Mty4Me 'r ~G" (2.11)

A choice of M which sa, tisfies Eqs. (2.10) and (2.11) is

y4Mty =M '

0 ' 1 0
—1 0 1

0 t ""=.- C'"'"'
2$

We shall make this choice.
Let C be a 12)&12 meson matrix which is a direct

product of a 4&4 Dirac space and a 3)&3 unitary space.
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Such a matrix can be written as follows:

y4C'~y4= —C'- (2.14)

Using the above equation, we find that the following
forms of M satisfy Eq. (2.12):

4='rg(1S+y„S U„'+,'o„,g—T.„.
+y„F53 A„+iygg P), (2.13)

where S, V„', T„„A„,and P represent 3X3 matrices of
meson fields. If we take these fields to be anti-Hermitian
only for p, =4, and otherwise Hermitian, we find that the
matrix 4 satis6es the relation

B. Parity

Under the parity operation (P, we get

(Pqr. (x,t)O '=qpy4qg( x,—t),
(Pqii(x, t)P '=rtpy4qz( x, t—),

(2.21)

where qp is a phase factor. So the Lagrangian Zo is in-
variant under parity if

O'M(z)5'-'=M'( —x, t) . (2.22)

Then Eq. (2.14) with (2.15) or (2.16) tells us that the
above equation is satisfied if

(PC(x,t)6' '=4'"(—x, t) = —y4C( —x, t). (2.23)
M =e~~

)

M =(1+fC')/(1 —fC'),

(2.15)

(2.16)

Equation (2.23) implies that the fields S, V„', T„„,3„,
and P behave under parity as scalar, vector, tensor,
pseudovector, and pseudoscalar, respectively.

where f is a real constant. Another form of M is given
by Eq. (4.13) below.

The Lagrangian of Eq. (2.2) must be Lorentz-
invariant. In addition, we want it to be invariant under
parity, charge conjugation, and time reversal. Such
a requirement will specify the P, C, and T of the mesons
involved, while their spin will be determined from the
free Lagrangians of each specific field, which are given
in Sec. III.

C. Charge Conjugation

The Lagrangian go is invariant under the charge con-
jugation operation e if

(2.24)

where M~ mean the transpose matrix of 3f and C=yg 4.

Equation (2.24) is satisfied if

A. Lorentz Transformations which implies
el e-'= CC'C-', (2.25)

S(h.)e"i ~'" (2.18)

Under the Lorentz transformation 'tt(A ') the spinors
transform in the well-known fashion,

qz(z) —+ W(A.
—') qI.(x)e(i1—')—'

= $S(A) Ia i]qr, (h. 'x), (2.17)

q~(z) ~&(~ ')q~(z)&(A ') '
= LS(a)g 1]q,(t -'z),

where the Lorentz-transformation matrix S(h.) is given
by

The Lagrangian Zo is invariant under time reversal
V lf

vM(x, t)v' '=8M(x, —t)B ' (2.27)

where 8=yjy3. The above equation is satisfied if

q'C(x, t) q' '=yiysC(x, —t)y,yi, (2.28)

Cs =Cv' =Cp = 1, Cz'= Cg = —1 . (2.26)

The field V„' cannot be identified with the physical
vector-meson held because it has the wrong charge
conjugation.

D. Time Reversal

The operators 2;" of the above equation are given by
Eqs. (2.6), and the parameters e; are real constants.
Also, if C (x) is given by Eq. (2.13), and the meson fields
have the usual Lorentz-transformation properties, we
find, since Lyq, S(h.)]= Ly5, S(A) ']=0, that under
Lorentz transformations

which implies

Tg —Tp' —Tg —1) TQ —Tp — 1 (2.29)

III. MESON LAGRANGIAN

In the following we shall write in the meson Lagran-

C(z) ~ W(A-')C(x)W(A-')-' gian M ' instead of y4Mty4 according to Eq. (2.12).

p(t1)31](pp —iz)LS(tl) —
is 1 ] (2 19) We consider the meson Lagrangian

1 2 m

(3.2)

We easily see from Eqs. (2.17) and (2.20) that the
Lagrangian of Eq. (2.2) is invariant under Lorentz
transformations.

&~ +&~ +&~ (3 1)Equation (2.19) implies that where

M(z) ~ W(A
—')M(z)W(S—')-' sir'= —(1/8f') Tr/(B„M)(B„M—')],
=LS(&)1]MP-'z)L (&)-'1] ( ) ~~2=-(1/32@) TrL(aber)&„(a,M-i)&,]

-(1/ f') I:v.(~.M)v. (~.M ')]
+(1/32f') Tr/(B„M)y„y„(B„M ')]

+(1/32f') Trfy„(B„M)(B„M ')7.], (3.3)
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and Z~ is the meson mass Lagrangian. For degenerate
meson masses we may take

Zsr~= (m'/8f') Tr(M+M ') . (3.4)

The above Lagrangian leads to a positive-deGnite
Hamiltonian. From its free-meson part, we obtain the
conditions

S=0, B„V„'=0, c)„A,—r).A„=0, (3 6)

while from the antisymmetry of the T„, tensor we get
(details for the T„„field are given in Ref. 16)

~y~7,TPv —0 ~ (3.7)

So from Eqs. (3.5)—(3.7), together with the results of
Sec. II on parity and charge conjugation of the mesons
fields, we Gnd that the model contains a nonet with
J =1 + described by the Geld V„', a nonet with
J~~=1 described by the Geld B„T„„,a nonet with

The Lagrangian Z~' is invariant under the transforma-
tions of Eqs. (2.9), the Lagrangian Zsr is invariant
under the group SL(2,c) [U(3)z3U(3) itj, where
SI.(2,c) is the Lorentz group, while the Lagrangian Zsr
is invariant under the group SL,(2,c)CI U(3). In addi-

tion, the Lagrangians Z~', Z~', and Z~ are invariant
under parity, charge conjugation, and time reversal.
We constructed the meson Lagrangian in such a way
that to zero order in f, we obtain the sum of the free
Lagrangians of the mesons of our model.

From Eqs. (3.1)—(3.4), we get

2'=-,'Tr{ (B„V„')—(B„V„')+(B„V„')(B,V,')
+(~F' ~)(~ 7'")+(~.A )(~ A.) (~.~)(~—.~))

+3m'/fs+0(f')+ . . (3.5)

J"~=0 described by the field B„A» and Gnally a
nonet with J~~=O + described by the field I'. So
we get two nonets of vector mesons of opposite charge
conjugation, and two nonets of pseudoscalar mesons
which also have opposite charge conjugation. The nonets
B„T„„andI' will be identiGed with the physical vector-
meson and pseudoscalar-meson nonets, respectively.

If in a term in the expansion of the total Lagrangian,
consisting of the sum of the meson Lagrangian of Eq.
(3.27) and the baryon Lagrangian of Eq. (5.11), given
later, the Geld V' appears nz times and the Geld A e
times, we find that the sum m+e is always an even num-
ber. This means that in the framework of our Lagrangian
the particles V' and A have strong interactions among
themselves and with the other hadrons, are always pro-
duced in even number, and cannot decay to pseudo-
scalar mesons, vector mesons, and baryons via strong
interactions. We shall assume that they decay by elec-
tromagnetic and weak interactions, which implies that
their decay width is narrow. ' Nonets with J ~=0
and 1 + are also predicted by the "new" quark model of
Gell-Mann and Zweig "

To introduce phenomenologically the physical masses
of the mesons into the scheme, we consider in addition
to 2sr~ of Eq. (3.4) several other mass Lagrangian
terms. In doing that we try to achieve the following
things: (a) to separate the (common) mass of a nonet
from the (common) mass of the other nonets; (b) to
assign to the I= 1 and I=—,

' members of the nonets their
physical masses (apart from electromagnetic mass split-
ting, which we shall ignore); and (c) to allow within each
nonet a mixing of the SU(3) singlet with the J =0 mem-
ber of the SU(3) octet with adjustable masses and
mixing angles.

Generalizing Eq. (3.4) according to the requirements
just stated, we consider the following mass Lagrangian:

~ -=(I/P) T L(M+M ')(+e).)j+-(~/f') T [(~.M~.)b.M 'v,)3-
+(3/f') Tr[(y„My„){y„M 'y„,Xs}~)+(/f') Tr[( „,M „,)( „M ' „)j
+(f'/f')»[(~„M~„) {~,.M '~...) s)+&+(&/f') Tr[(v,Mv, )M '$+(X/f') Tr[(v,Mv, ){M ', ) s)+j

+(I/f')Q {rig Tr[I'o(M —M ')jTr[I'o(M —M ')]+Ho Tr[I'o(M —M ')g Tr[1'ops(M —M ')j
+«Tr[r, )~,(M —M-') jTr[r,),(M —M-')$), (3.8)

where, in the summation, Q takes the values S, V', T, A, and I' and we have

I 8=&5 I v =v5vI, I r=v5&I, I a=&~, I I = j ~ (3 9)

Symmetry breaking has been introduced by means of the matrix Xs. The terms with the coefficients p, e, and $ are
introduced to satisfy requirement (a), while the terms with the coefficients P 3 {,and X are introduced to satisfy

"It is well known that the strange particles behave in an analogous fashion. The intermediate bosons also have similar properties, if
we assume that they belong to a unitary triplet (C. Ryan, S. Okubo, and R. E. Marshak, Nuovo Cimento 34, 753 (1964); S. V. Pepper,
C. Ryan, S. Okubo, and R. E. Marshak, Phys. Rev. 13'7, B1259 (1965)].Triality conservation implies that such particles have quadratic
strong interactions with the nucleons. Such a theory explains the large mass {&1.5 BeV) of the conjectured intermediate bosons and
also a 2% difference between the vector coupling constants Gp and G„characterizing P decay and p decay, respectively."H. Harari, in Proceedings of the Fourteenth International Conference on High-Energy Physics, Vienna, 1968 {CERN, Geneva, 1968),
p. 195. The "new" quark model predicts a 0 nonet around the 8-meson mass. It also predicts a 1 + nonet, the daughter of the A2
nonet. Finally, a second 1 nonet is predicted, which is the parity doublet of the A& nonet.
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requirement (b). The terms in the summation gq allow for the mixing of requirement (c). The Zsr of Eq. (3.8) is
invariant under parity, charge conjugation, and time reversal, and under the group Sl.(2,c) U(2).

From Eqs. (3.8) and (3.9) we get" (oInitting an unimportant constant term)

Zsr = ——,
' Tr/SS(ns+ps"s)] ——', Tr)V„'V,'(nv +pv4s)]+41 TrPT .Tp (a'r+pr) . s)]

+s Trt /4/&/4 /&(&A+PA)& s)] ', Tr[PP(nI&+PI&)&s)]++ ( riq QQQo+Oq QoQS+&q QOQS I+ ' ' ' (3 10)

m "'=m '—-'(m '+m ')

mIr» = mX&* —s(mX& +mX ) .

where Qo means the SU(3) singlet part of the U(3) which are given by
nonet Q, while Qs means the I= 0IneInber of the SU(3)
octet. Let us introduce the following notation for the
members of the nonets:

P= (7r,E,&l, ri'),

T= (P,E*,q,OO),

S= (7r',E',t', $'),
V'= (p', E'*,/p', oo'),

(
// It// g// (//)

(3.11)

To satisfy requirements (a) and (b), we choose the co-
eKcients nq and Pq of Eq. (3.10) as follows:

To satisfy requirement (c) we choose the coeflIcients

g@, Hq, and A:@ as follows:

gq =Cqg —s (mqs+2mq, ')
+mq» Sln )&q+mq» ~ COS )&,q],

Hq = DqL —s4&2(mq' —mq. ')
+2(mq. '—mq .') coshq sinhq), (3.15)

/4q
——Fq(s (mq' —4mq')

+mq» COS Xq+mq&» Sln )&.q] &

where

nq = —,
' (mq'+ 2mq. '),

pq = (2/v3) (mq' —mq'),

mq= (m„mp&m&&&mp&&m&») &

mq =(m , xm*,Icm, xm//x, mx ).
(3.13)

Cq= (1/384)(1, —,', 1, —1, 1),
Dq ——(1/12%/6)(1, ——,', 1, —1, 1),
Fq (1/256)(1, —',, 1——, —1, 1).

(3.16)

where for Q= (P,2',S,V',A) we have, respectively,

We get Eqs. (3.12) if we make the following choice for The masses mq and mq are given by exPressions (3.13),
the coeflIcients n, P, $, X, y, 8, e, and/: while mq" and m@ " are given by

rs= (1/24)(m '+2m'')
P= (1/4v3)(m '—mx'),
g= —(1/192)(m '+2m&'+m '+2m&')

&

x= (1/64v3)( —m„'+ma' —m s+mrcs),

y = (1/1152)$9(m '+2m'*') —8(m, '+2m' os)

+as(m '+2mxs)+as(m '+2m'')], (3.14)

8= (1/38443) $9(mp' mx*') 8—(m —mIr +s)—
+-,'(m '—mxs)+Os (m '—mx')],

e —(1/4608)L4(m '+2m& )—43(m '+2m&4')
—s(m '+2m'') ——,'(m„'+2m'')],

f'= (1/153643) t 4(m p. ' —mrc. ~') —3(m, '—mx+')

,'(m ' m—x—') ', (—m ' m—x-')]—
If the Z~ is chosen as above, all the masses are arbi-
trary parameters except the masses m ~ and mz,
"From the erst of Eqs. (3.6), we see that the fields S vanish as

free fields. However, they do not vanish in the presence of inter-
actions, i.e., if we consider higher-order terms in the expansion of
the Lagrangian 2, as we see from the equations of motion. Some-
thing similar happens in the U(6,6) theory. In fact, A. Salam,
R. Delbourgo, M. A. Rashid, and J. Strathdee LProc. Roy. Soc.
(London) 2SSA, 312 (1965)g argue that such zelda can be treated
as spurions and provide a mechanism for breaking the symmetry.

mq, &
——(m„m„&mr &m„& &mi & &)»

mq" = ( „m&&m»&ms &m/» &pm") ~

(3.17)

In the present case the masses and the mixing angles
for all nonets can be fixed independently. The mixing
angles P @ are dined by

Q"=cosxq Qs+sinxq Qo,

Q = sin)1q Qs+cosXq Qo.

(3.18)

The Lagrangian 2'(kf) of Eq. (3.1) gives no coupling
involving three meson fields. It does, however, contain
in its expansion terms involving four mesons. We shall
be interested only in terms which contain four pseudo-
scalar meson fields since we shall consider processes of
the type PP —+ PP. Such terms come from the Lagran-
gians Z~' and Z~ only. %e find

Zsrt —+ —(f'/24) Tr((P 8„P)(PB„P)),
~ If' TrP'4(n+Phs)]+ZSro' (3.19)

= I fs Tr(P4P(m s+2m~s)

+ (1/~g) (m. '—mx') Xs])+Zsro, s

where at least one of the four fields appearing in the
J.agrangian Z/Iro ' is the SU(3) singlet or the I=0 IneIn-
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ber of the SU(3) octet. The Lagrangian Zippo 8 is given

by

air' '=
(32 f'/3) [2rlp Tr(P) Tr(P')
+8 Tr(P) Tr(PV, ,)+e Tr(PX ) Tr(P')

+2gp Tr(PX8) Tr(P9.8)]. (3.20)

To complete the meson Lagrangian, we must intro-
duce another one which will give three-meson coupling,
and particularly which will couple the physical vector-
meson nonet to two physical pseudoscalar-meson nonets.
We want this Lagrangian to be invariant under the
group U(3)r, SU(3)~ and of course invariant under
parity, charge conjugation, time reversal, and Lorentz
transformations. The three-meson coupling can be in-
troduced by the following Lagrangian, which has the
required symmetry properties:

Using Eq. (3.23), we see that the first term on the right-
hand side of the above equation is the well-known VI'I'
coupling, apart from mass factors.

Our complete meson Lagrangian 2 is given by

~M +~31 +~M +~M p (3.27)

where 2ia is given by Eq. (3.8).

IV. VECTOR AND AXIAL-VECTOR CURRENTS

From the complete meson Lagrangian 2 of Eq. (3.27),
we shall calculate the vector and axial-vector currents
by applying the method of Gell-Mann and Levy. ' Con-
sider the Lagrangian Z(q, ) and the transformation

g, -+ q, +e(x)F,(x), (4.1)

where e(x) is an infinitesimal space-time function. Using
the Euler-Lagrange equation, we obtain the Gell-Mann—
Levy equation

32&2f'm,

+Tr[(B„M)y„(B„M ')y, (MypM 'yp —4)yg

(B„M—')y„—(B„M)y„(M 'y, My, 4)y-

+y5(ypM 'ypM —4)y„(B„M ')y„(B„M)

y5(Y,M—Y,M ' 4)y„(B,—M)y„(B„M ')] (3—.21).

Bp
B[BI~(&)]

In our case we consider the transformation

~~ gie~hrz/2~g —it rrhrr/2

A. Vector Current

(4.2)

(4 3)

mp
Tr{T„„(B„P)(B,P)}

p

~ ~- Trl {B.»BF'"}+&.e]+ (3 22)
v2m,

where only the terms which couple a vector meson to
two pseudoscalar mesons and a pseudoscalar meson to
two vector mesons are shown.

We have proved" that the field V„de6ned by

The presence of the coefficient f, /32%—2f'm, is
justified in Sec. VI. The above Lagrangian gives no
coupling of two mesons and also no coupling of four
mesons. We get

From the above transformation with { =e applied
to the Lagrangian 2', we obtain the following vector
current:

8Z'

B(2BIpEpp)

Tr{(B„M)[M ',X ]+[M,), ](B„M—') }
16 '

Tr{[B„M,v„][[M—',&, ],7„]
64f2

+[[M,X.],y„][B„M—',y„]}
',i Tr(B„4[4-,X„])+—,', i Tr([B„C,y„]

V„=BpTp„/m (3.23)

T„„=B„(V„/m) —B„(V„/m) . (3.25)

Equations (3.23) and (3.25) will be used frequently. We
get

Tr[T~pBuPBpP]= —i~Tr[B„T„p(PB„P)]
+-', B„Tr[T„„(PB„P)]. (3.26)

represents a vector-meson field. From the free Lagran-
gian of the T„„field given in Eq. (3.5), we obtain the
following equation of motion:

BgBp rpp —BpBpTpip mTpp = 0
p

(3.24)—

from which we get, using Eq. (3.23),

To the above current, we must add the current coming
from the Lagrangian 2~'. We have omitted this current
because its exact expression is complicated, while when
it is expanded it gives no contribution to zero order in

f Also, since .Zir' is invariant under the group U(3)r,
ta U(3) ii, it does not contribute to the divergence of the
vector (as well as the axial-vector) current. To zero
order in f, we get from Eq. (4.4) (now J„ is the current
coming from the Lagrangian 2)
J„~=', i Tr[X {(P—B„P)——',([B„(V./m)

—B.(V„/m)] B „[B„(V./m) —B.(V„/m)])
+(V„'B„V„') (A. B„A,)—}]+ . (4.5)
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To obtain the above expression, we have used the relation

Tr(B„T„,[T,„,X ])
= -,' Tr(X {[a„(U,/m) —a.(V /m)] 8„[8.(V./m)

—cj.(U„/m)])), (4.6)

which is true if we write T„„=B„(V„/m)—8„(V„/m),
i.e., if we omit higher-order terms which appear in the
expression for T„„according to the equations of motion.
Also, the second and the third of Eqs. (3.6) have been
used. The J„~of Eq (4..5) has been normalized in such
a way that its pseudoscalar-meson part is the isospin
current of the pseudoscalar mesons.

The mass Lagrangian does not contribute to the vec-

tor current. It contributes, however, to its divergence.
If we choose the mass Lagrangian as in Eq. (3.8), we

find that the components a= I, 2, 3, 8 of the vector
current are conserved, while with the choice of Eq. (3.4)
all components are conserved.

B. Axial-Vector Current

From the transformation of Eq. (4.3) with t = —e

applied to the Lagrangian 2 of Eq. (3.27), we obtain the
axial-vector current J5„.

Tr[(B„M){M ',X )+—{3I,'A )+(B„M ')]—(i/128f') Tr{[y„B,M](y„,{3f ',X )~]
32f'

+[{M,X } +y„][y„,8„3f '])+(terms coming from Z~')

= (1/~~f) ~.~ +'6~f Tr {—~-[~(~.C') ~ 2c~.~'—])+(~f/ 128)»(iv.,~.c"][v., {C'~l -)+]

+[{4',X }+,y„][y„,cl„C])+ +(terms coming from Z~') . (4.7)

In the above expression we have not explicitly indicated
the terms which come from the Lagrangian 2~1' be-
cause they are complicated. Also, we have expressed the
pseudoscalar-meson octet matrix I" as follows:

P'= (1/v2)X q (4.8)

and we have assumed that the meson matrix 3E has the
following expansion:

3I= 1+fc+ ,'f'C'+cf'C"+-. . (4.9)

From Eq. (4.7), we find

J „=(1/v2f)8„
+,'f Tr{X [P(B„P)P—2-crt„P'7)+.
+(~~f.-/f~. )f-uv~ v'

X[&,(U„"/ )—~,(V.'/ )]+ . . (4.10)

The first two terms of Eq. (4.10) are obtained from the
Lagrangian 2'. From the terms which couple three
mesons we have kept only those which contain three
pseudoscalar-meson 6elds. The lowest-order contribu-
tion to the current J5„coming from the Lagrangian
Z~' involves two meson fields, but both cannot be
pseudoscalar-meson 6elds. If we keep the terms con-
taining one pseudoscalar- and one vector-meson field,
we get the last term of Eq. (4.10). The next-order con-
tribution involves four mesons.

If the mass Lagrangian is given by Eq. (3.8), we find
the following expression for the divergence of the axial-
vector current:

B„J5„=m '[(1/v2f) cp sicf Tr(49. )+0(f—')+ ' ]
+[contribution of Po terms of Eq. (3.8)], (4.11)

(4.13)=1+fc'+ 'f'@'+s f'@'+-

where
f'= fl(2ci+1) n= —,'(4'i' —2'"—2) . (4.14)

The M of Eq. (4.13) satisfies Eq. (2.12).
In our model we have x-meson PCAC which is ac-

curate to roughly 10%;E-meson PCAC which appears
uncertain, and it is not clear what sort of accuracy can
be expected from it even though there is no definite
evidence against it; but not g-meson PCAC. It is
argued" that, as in the m- and E-meson cases, g-meson

PCAC is to be expected at least as long as g-g' mixing
is neglected. In our approach we shall not neglect g-g'

mixing.

V. MESON-BARYON LAGRANGIAN

We want to introduce the baryons into the model,
i.e., to construct a Lagrangian which ~l contain the
baryons and which will be to zero order in f the free

As indicated in Eq. (4.11), the mass Lagrangian terms
in the summation Po contribute to B„J~„.Their con-
tribution is at least third-order" in the meson fields,
and in the third-order case at least one of the meson
fields is a Qo or Qs field. So if we neglect the terms which

are third- or higher-order in the meson fields, the J5„"
satisfies generalized PCAC. Also, we see from Eq. (4.11)
that if we neglect the contribution coming from the
Lagranian terms in the summation Po and choose cV

such that c=-0, the terms which will violate PCAC are
fifth-order in the meson fields. The following choice of
3I has the expansion of Eq. (4.9) with c=0:

1+f 4
3f=ef'~

where
m =m for n=|, 2, 3

=m~ for +=4, 5, 6, 7. (4.12)

24 Their next-order contribution is fifth-order in the meson fields.
» M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Re@, j,75,

2195 (1968).
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((Br).~)
(5.1)

Lagrangian of the baryons. We assign the baryons to the
representation (3*&3) and (3,3*) of U(3) r.SU(3)z
which was originally suggested by Gell-Mann" ~ be-
cause it gives a D-type axial-vector current, while the
representation (8,1) and (1,8) gives pure F-type vector
and axial-vector currents. The pure F-type axial-vector
current seem to be ruled out experimentally. " The
second important question is whether we shall use
2-component Weyl fields or 4-component Dirac fields.
We choose the first possibility. "' So if 8 ~ is the baryon
field, we write

and we take
Br.= s (1+74)8-(3r,*,3z),
Bz= s(1 v—o)B-(3r,3.z*)

(5.2)

From Eqs. (2.9) we find that the matrix M transforms
as follows under the group U(3) r, U(3) ii'.

ill —(3„3,*). (5.3)

We shall consider several meson-baryon Lagrangians.
All of them will be invariant under parity, charge con-
jugation, time reversal, and Lorentz transformations.
The following Lagrangians are in addition invariant
under the group U(3)r, U(3)io.

&~a'= s(B—i')-'747. ~.(Bi)S s(8—~')-'747» ~ »(E~)4

s«(87—» ~ »8),

&MB'=o 74oe""(BIt)r'74(~)p (EB)o'+4 74o ""(B&t)r (il'f t)P 74(8&)p

(5.4)

= —(P 8'8 28oBo) —fTr[(B(—BP')+)+~a(Bo'» (8 T'» )+)

+i(874(B,P)+)) %3if'[3Bov—oEoPp Tr(8748)Po Tr(874P)—Bp Bpvo Tr(B—P)$+
——fo[Tr(8{BP') )+38,8o Tr(P') Tr(88) Tr(—PP) —V3 Tr(BP')Bp %38 Tr(B—P')$+ . (5 5)

,[(E,t).s„~,—ur„-(E.)„+(B.t).p(~t), r PV t),.7 (8.)&

+(B.t),-7 ~,&~. (8.),r+(E.t)s.(~t)r'(~t)-"7 (8 ),"j

= —P BB; fT [(8(~,8)+—)+l(B "(T"8)+)
i=0

+ '(Bv {P8)+)j+f' Tr(BPEP)+ 'f' Tr(8(P'»-)+)+

&MB' l [(BBt)-——'74(d. ii-'I) p"7.7 (~')r"7 (E~). (B~')-'7—43'f p"7.7 (~.~')r"7 (B~)

+(Ei')-'(~»IoI') s"747»Il'-Ir" (8~): (Bi')-'(—Ii'-I') u"74v. (d»I»I)r" (B~)o"3

=if Tr[87„(mV„)B+Bv7„(B„P)Ej f Tr[87„(P—B„—P)E]+

s [(Err')s 74(d.~)r'7»74(~'). "74(Bio)-" (Bio')o 74—~r'7»74(~.~)."74(Er4)

+(B~')p (d»~')r'747»~. "(B~)." (E~') p (—Il'I')r'747»(d»Ji'-I). "(8~)-")

=if Tr[87„8(mV„)+87,7„88„Pj+ f Tr[87„8(PB„—P)j+

(5.7)

(5 8)

The Lagrangian Z~&' is the kinetic-energy baryon Lagrangian. The Z~&' is the only meson-baryon Lagrangian of
first order in M. It implies that the mass of the 80 is negative and its absolute value is twice as large as the masses
of the other baryons. A negative-mass baryon can be interpreted as a baryon with positive mass and opposite
parity. "The ninth baryon will be identi6ed with the Yp*(1405).Since its mass is far from twice the average baryon
mass, the Lagrangian J~& is considered. However, the Lagrangians Z~z' and ~z' give, when they are expanded,
only the tensor coupling of the vector mesons to baryons and not the vector coupling. We get this coupling from the
Lagrangians Z~g' and Z~g'.

The above Lagrangians give a degenerate baryon octet. To introduce mass splitting within this octet and at
the same time allow a mixing of the SU(3) singlet with the I=0 member of the octet, we consider the following

MN. Csbibbo )Phys. Rev. Letters 10, 331 (1963lj found an admixture oi the f type in the axial-vector pattern of the order
of 30 jo.

2 R. Marshal, N. Mukunda, and S. Okubo, Phys. Rev. 13'7, 8698 (1965)."P.G. O. Freund and Y. Nambu, Phys. Rev. Letters 12, 714 (1964).
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(5.9)

Lagrangians:

&~~'= s [(Ba')-Pv4M prM:(8~»)r +(B~')-P(M') p"(M'), v4(B~~s)»"
+(XsBp")p y4MrPM &(Bi)„r+(hart)p (Mt)rP(Mt) &y4(Bii)„r)

=Tr(884)+s fTrL(B{~»~~}+)+(~~8{~»}+)+'(B~-"{T"Bl's}+)
+s(~sB&s {Tp»}+)+'(B»{»8»}+)+'PsB&s{P8}+))

,'f' —T—r [(BPB{»,P}q)+(BP"BXs)+s (BB{Xs,P'}+))+ '

Zsrii' ,'[(Bp——t)—.py4MprM„(XgBr)rs+(Br, ') p(M') pr(M'), y4(XgBp)rs

+(8 X,) y M„M "(8 )„+(8 X) (M ) (M ) "y (8 ),")
Tr(B~sB)+-'f Trl (8{5,l~sB}+)+(»sP'»}+)+s (8& .{T~ »sB}+)

+i (BXso„„{T„„,B}+)+i(Bys{P,XsB}~)+i(BXsys{P,B}+))
+isf' Tr[(B{P)»}+BP)+i(B{XsP'} 8)+B&sBP')+ (5.10)

The Lagrangians 2&' and Z~& are invariant only
under the group U(2)r, U(2)is. So the meson-baryon
Lagrangian destroys kaon PCAC, while it does not affect
pion PCAC.

The complete meson-baryon Lagrangian Z~& will
be formed as a linear combination of the above
Lagrangians:

7

g &i@srB (5.11)

Gy= 1. (5.12)

(P) The coupling of the vector mesons to baryons is
pure P-type and the coupling of the p mesons to nucleons
is f,~~. This is a consequence of the assumption that the

p mesons and the E*mesons are coupled to the baryonic
part of the isospin current and the strangeness-changing
current, respectively. In the spirit of our phenomeno-
logical approach, we shall not assume that f„= f,N~-
but we shall consider the experimental value for f,~~

(y) The coupling constant G is~ of the s- mesons to
baryons has the well-known value

GUNN /4& 15
y (5.13)

which is given by the dispersion-relation approach to
pion-nucleon scattering. "In our Z~~ we have both the
nonderivative and the derivative coupling of the pions
to nucleons. The G~~& of Eq. (5.13) will be the total
pion-nucleon coupling constant obtained after trans-
forming the derivative coupling to the usual pseudo-
scalar coupling using the Dirac equation. '0

~9 J. Hamilton and W. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

"This transformation will be done simply to 6x the G„~~ and
not to eliminate the derivative coupling in our interaction
Lagrangian.

VVe determine the coefficients o.; from the following
assumptions:

(n) To zero order in f, the Lagrangian Zsrit represents
the free Lagrangian of a nonet of baryons, all of which
have their physical masses, apart from electromagnetic
mass splitting (which we ignore). An obvious conse-
quence of this assumption is that

+iis Tr(BB&,)+n7 Tr(BXs8) . (5.14)

The above expression has off-diagonal terms of the type
BsBs+Bs8,. To diagonalize it, we shall assume BsBs-
Inixing with a mixing angle X~ according to

A= coshii Bs+sinXii Bs,
F = —slnXii Bs+coskii Bp.

(5.15)

As we argued before, the physical —,'isosinglet I's*(1405)
will be represented by the field y5I". Then from Eqs.
(5.14), (5.15), and assumption (n), we find the following
expressions for the parameters n2, n3, o,6, and n7..

ns (m~+ m——-.+mr —mg)/3,

ns= (my, —mryms)/3,

ns = (m„—mz)/v3,

n7 ——(m„-. —mz)/V3.

(5.16)

As expected, the parameters o.6 and n ~ are at the order of
Am. The mixing angle X& is given by

tan) g =— 4(as+ np)

(V'27)~s+~s+av
=0.067. (5.17)

So we get X~= 1' 55', a quite small mixing angle.
From Eqs. (5.7) and (5.8), we easily see that assump-

tion (P) requires
0!5=—A4. (5.18)

Then from Eqs. (5.5)—(5.11) and (5.18) we find the fol-
lowing interaction Lagrangian if we keep only some
terms which are first-order in f and which will be of
interest in the present case:

(&s+&s)f Tr[2(B&—s {Tp»}+)+i(B»{P8}+))
+in4f Tr{(By„[(mV„),8))+(Byg „[B„P»))}
+isiosf Tr[(Bps{PB»}y)+(»B&s{P,B}y))
+—in7f Tr[(BYs{P,XsB}~)+(Bksps{P 8}+))~ (5 19)

From Eqs. (5.5), (5.6), and (5.9)—(5.11), we find the
following baryon mass Lagrangian:

8 8

ns(—P B,B,—2BsBs)—ns(Q 8,8;+8pBs)
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~&(f,trav ming G.trnr—m, )

mpm+

From Eqs. (5.20) and (5.23), we get

(5.23)

pNNmN

2(f trNm~ —G NNm )
(5.24)

Thus all parameters o.; are determined.
From the analysis of s-wave pion-nucleon scattering,

the value of f, f,trtr can be calculated. Hamilton"
finds

fo fr tetr/4m=2. 85+0..3. (5.25)

From expression (5.19), we find that assumption (P)
implies

n4 f——,trtr/v2m, f. (5.20)

Then, using the Dirac equation, we get from expression

(5.19) and Eq. (5.20)

—if l ns+ns+ (2/v3) (ne ,n—r) —jf/v2 f,—trtr ming/m, }
Xor (Nys~N), (5.21)

where only the ~Ã2V coupling is shown. It is interesting
to observe that, using Eqs. (5.16), we get

ns+nt+ (2/V3) (ns ——,'nr) = mar, (5.22)

so only one baryon mass enters into expression (5.21).
According to assumption (y), we get from (5.21)

As we shall see in Sec.VI, the interaction Hamiltonian
coming from the above Lagrangian is —Z p~~~ to lowest
order. So we obtain from Eqs. (5.31) and (5.33)

fl = Ig,zzlm, /v2mz'.

From Eqs. (5.27), (5.32), and the above equation, we
obtain

l fl =1.08/m. , (5.34)

in remarkable agreement with the value of
l f l

given by
Eq. (5.28).

As we see from expression (5.19), a feature of the
model is that the nonderivative Yukawa coupling of the
pseudoscalar mesons to baryons goes together with the
tensor coupling of the vector mesons to baryons. Both
are pure D-type in the Lagrangians Z~&' and Z~&',
while in the Lagrangians Z~~' and Z~~ the pure
D-type U(3) symmetry is broken by means of

(Remember that ns, ns mb, »,„, ns, n7 6mb„„,„.)
Experimentally the tensor coupling of the vector mesons
to baryons is predominantly D-type" with a D/F ratio

In our case the tensor coupling of the p mesons to nu-
cleons, which we obtain from the Lagrangian Z~q of
Eq. (5.11) if we use Eqs. (5.5), (5.6), (5.9), (5.10), and
(5.16), is given by

Z,~~'= —Pm~f/(v'8)m, j(Na„„~N)
)& (B„y,—B,g„) . (5.33)

Thus we get, for
f...'/4~= 2.1, (5.26)

D/F 1.5—2.3. (5.35)

if we omit the +0.3 in Eq. (5.25),

fotrtr'/4rr= 3.9.
From Eqs. (5.13), (5.23), and (5.27), we find

(5.27)

l fl =1.06/m. (5.28)

=4.6/m . (5.29)

g,e'er = 185f,rrz . —(5.32)

"J.Hamilton, in High Energy Physics, edited by E. H. S.
Burhop (Academic Press Inc., New York, 1967), Vol. 1.

The upper value corresponds to f,NNG tetr) 0 and the
lower value corresponds to f,trtrG trtr(0.

The value of
l f l

given by Eq. (5.28) is identical with
the value of

l fl which is obtained from the leptonic
decays or+ —+ tt++t „and E+~ tt++t „ if the axial-
vector current is given by Eq. (4.10). We find'

l fl = (1.03&0.05)m '. (5.30)

Another independent way to determine
l fl is the

following. Consider the tensor coupling of the p mesons
to nucleons and write the interaction Hamiltonian

Xorrtr (gotrtr/4mtr)No ——„„~N (ct„tt„ct„tt„). (5—.31)

Using dispersion relations, Hamilton" has found

VI. INTERACTION HAMILTONIAN

Some of the usual applications of phenomenological
chiral Lagrangians refer to processes of the type
PP —+PP and PB —+PB. The amplitudes for such

processes are calculated to first and second order in the
coupling constants. To proceed in such calculations by
perturbation theory, we need the interaction Hamil-
tonian in the interaction representation. We have shown

previously'6 how to obtain the interaction Hamiltonian
when our interaction Lagrangian involves the fields

T„„and 8„T„„.This procedure was applied to obtain the
interaction Hamiltonian for a specific interaction
Lagrangian. It was also shown that the Smatrix ob-
tained froIn this X&„t is covariant to any order in per-
turbation theory. In the present case, we shall start
from a general interaction Lagrangian and we shall cal-
culate the BCz„& to second order in the coupling con-
stants which appear in the Lagrangian. Then we shall
show that the second-order 5 matrix coming from this

BCz„& is covariant.
It is shown in Appendix A that from the interaction

Lagrangian Zr„i(P,ct„P,T„„,it„T„„B),we obtain to sec-
ond order in the coupling constants the following inter-

e2 P. Carruthers, Imtrodttctiort to UNitary Symmetry (Wiley-
Interscience, Inc., New York, 1966), p. 122.
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(6.4)
Xz.,[x,n)

.2 Ts Ts= —Zz.)(x)+g ((1/4)n;2) [J„),r*(x)J„), (x)

+2J ),r'(x)J r'(x)n)n. )
-'[J r'(x)J r'{ x) + J), r'( x)J.&'(x)n),n.

+-,'J),p'(x) J."'(x)n),n.), ( . )

J T' and J„&' are defined bywhere the currents J„„T', „,an

(6.2)

8(B„P')

to all meson fields, an the fieldsth ummation refers
I" an „„'are

Obviously e r
is covariant. Wein from the term —Zr„t, ismatrix, coming
ain covariant tohat the 5 matrix is againwant to show tha

nts. Such second-second or er in the coupling constan s.
order processes come from

~mt

B(BpT)p )
(6.3)

and from

d'xgd4x..T[Zr.)(x&)Zr. (,(xm)) (6.5)

r'rx ')+2J r*(x )J„.r'(x )n n.)
6 6)

d' &VI P [J„),"(x))J„), ',x~ „),
* „." n.

+—'J),&'(xg)J.p'(x))n)n.

(-i d x) „x)
x) p x)+.[ ~ (

roduct an od E f r normal product. We Andd for Dyson time-ordered pwhere T stan s or

8
~~( —y) &(J"'(x)J "*'(y)),»'(*) p'()) )Ã(&"(*)1"()))=—,))~ —)

P'b) &(J."'(x)J "'b))=—

(6.7)

(, )-l9xp By)

-'(T[T"'(*),T. '(y)))o&(J" .*' x J,. '(y))=

(6.8)

(6 9)

( , )' '()) ) ))'(J. '(*)J.'()))=)~Tpp x ) Tpp

&'( —y))&(J"(*)J"(y))&(J,"(x)J."{y))=i[~,'G&,.(*—y —n,n.»—yT '(x) Tp.'(y) & ~

'

x ~
' — ' ~ x — —n,n. () x y

(6.10)G p,.(x—y) X(Jp„r'(x)J.~'(y)),
-8$p

(6.11)

where
(6.12)

(6.13)

8', Bpp p

a a
= —-'iI a.p

— I~a(x —y

a ears in Eq.p
'

he left-hand side of Eq. (6.8) appears in q.The ex ression on t e e — aFe nman propagator. eand 6p(x —y) is the usual Feyn

&P' x BP'(x)(6.5) since we have"

Z) )(x) =J„p x
8gp

2(—')'

E . 6.8),

~$1p,

P'( ) .V(J„"'(xx)J„&'(xu))+ ~T P'( &) xP' x2
~

~ ~

~

+1p 2v

(6.14) x, , ' 'x iV J„'(x))J, '(x,))n„n„+) 1V(J &'(xg)J,"'(x2))+i d x)App) xj xg p xg )d4X1d4X2

ran ian i t. If there are more

-2 ~xyp ~x2v

is only one
'd f Eq (6 13) But

p y " y
ht-hand si e ohe coefficient n should multip yf tor say, e factors, t e coethan one such ac or, , e coe c

then in Eq. (6 14) we have to consi e
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The above expression holds if P'WP'. If P'=P', there is only one term on the right-hand side of Eq. (6.13), and so
both terms on the right-hand side of Eq. (6.14) are multiplied by the coeflzcient —,. Remembering that in expression
(6.6) we sum over all mesons and so for P'WP' we get the term i J—'d'xi 1V[J„"'(xz)J,p'(xz)]n„n„, while for P' =P'
we get the term si J—'d'xi N[J„«"(xz)J„"'(xi)]n„n„,we find that the normal-dependent term of Eq. (6.14) exactly
cancels out with a normal-dependent term of expression (6.6). In a similar fashion we find that the normal-depend-
ent terms appearing in the S matrix according to Eqs. (6.9) and (6.11) cancel out, with corresponding terms appear-
ing in expression (6.6). So we have found that the S matrix is covariant to second order in the coupling constants
and can be calculated by using the eQective interaction Hamiltonian

Pez.«(x)].zz =—Zz.«(x)+P [(1/4m, ')J„i '(x)J„), '(x)+-',J„'(x)J„*(x)], (6.15)

assuming that for the propagators we shall use the expressions on the right-hand sides of Eqs. (6.8)—(6.11) but with-
out the normal-dependent terms.

We shall apply Eq. (6.15) to calculate the interaction Hamiltonians we shall use."The Xz,«coming from the
Lagrangians of Eq. (3.19) is given by the Lagrangians themselves with an opposite sign. Their explicit expressions
are given in Appendix B. From Eqs. (3.22) and (3.26) we get, if we drop the 4-divergence,

Trl ~pTI ~(Pzl~P)] e~~~~ Tr[P«p{zl~P~zlI 2 s~}+]+' ' '

&2m, v2m,
(6.16)

The above Lagrangian gives the following interaction Hamiltonian:

&2m„
Tr[ei„T„„(Pc7P)]+

42m,
e p .Tr(T„„{zl„P,zl„t'„~}+)+Q(1/4m, ')J„„'J„„'+sQ J„*J'„'. (6.17)

Using Eq. (3.23), we obtain from the first term of the above expression

&z «(VPP) = — — Tr[(mV„)(Pc7+)]=fp y, (p«Xei.pp)+
&2m,

(6.18)

So, apart from mass factors, we obtain the usual coupling of the vector mesons to pseudoscalar mesons. The coeK-
cient which multiplies the Tr[ ] in Eq. (3.21) is taken in such a way that the pirzr coupling constant is f, The.
explicit expressions of Xz «(VPP) and zsg; J„~'J„~*are given in Appendix B. The second term appearing in ex-
pression (6.17) becomes, if we use Eqs. (3.23), (3.25), and the antisymmetry of e.„„„

&2if...
Kz„«(VVP) = — e„„„.Tr[zl„(V„/m){B„P,mV. }p]. (6.19)

The physical pseudoscalar mesons zi(549) and «i'(958) are mixtures of the fields zis and «lp. In Refs. 6 and 35 the
mixing angle ), is estimated to be

),=&10.8'. (6.20)
The quark model predicts'5 X,=10.8'.

Since the Lagrangian of Eq. (3.21) is invariant under the group U(3)z, U(3) zz, we have obtained a V VP inter-
action in a chiral-invariant way. The V VP interaction, and particularly the xpco vertex, has been discussed recently
in connection with current algebra and chiral symmetries. It is argued" that if one insists upon the validity of
the algebra of fields and strict PCAC, no V VP vertex is possible. By relaxing these requirements, a V VP vertex
can be found. In our case, strict PCAC does not hold.

According to Eq. (6.15), the BBP interaction Hamiltonian is simply given by Zz„«(BBP). Using E—qs. (5.5)-
(5.11), (5.16), (5.18), the Dirac equation, and assuming zip 'gs and Bp—Bs mixing according to Eqs. (3.18) and

'4 From now on, when we say interaction Hamiltonian we mean effective interaction Hamiltonian."R. H. Dalitz, in High ENergy I'hysics, Jes Ho@ches, 1&5, edited by C. DeWitt and M. Jacob (Gordon and Breach, Science
Publishers, Inc. , New York, 1965)."R.Perrin, Phys. Rev. 170, 1367 (1968)."S. G. Brown and G. B.West, Phys. Rev. 174, 1777 (1968)."R.Arnowitt, M. H. Friedman, and R. Nath, Phys. Letters 278, 657 (1968).

'9 L. M. Brown and H. Munczek, in Proceedings of the Coral Gables Conference on Fundamental Interactions, 1969
(unpublishedl.
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(5.15), respectively, we 6nd the following expression for 3'.r~z(BBP):

Kr z(BBP)
m- (1.+2+4) (me+ mz) (1+2~4)= —zG zy~(¹N m) zf— ( ~ zz)+f (iNgE X+H c ). .

(mq+m-. ) (1—2n4)
f — (iZ~E'X+H. c.) —if(+8)n4mg(X X& zz) —iGzz, (&&g) —zGzz, (&&q')

—iGgg„(NN)) i G gy—„(NNg') zG-. -.—(gZ)) iG—--(.Z.Zg') —Gg~g(iZzrA+H. c.)—Gz~y(zZzr Y+H.c.)

G~zrq—(zNEA+H. c.) G~zr
—y(zNEY+H. c.) GzIrz—(zgE'A+H. c.)—G„-.zry(zZE'Y+H. c.)

zGy—y„(YYq) zGy—yqi(YYq') iGgg„—(AAq) zGgg—q~(Aha') Gz—yq(zAYq+H c ) —.G.AYg (zAYn'+H. c.), (6.21)

vrhere

the pion-nucleon coupling constant is given by Eq. (5.13), and the rest of the coupling constants are given by the
following expressions:

m~+m +my mg 2—mg — 2my
sin'A„—

v3 g6
cosh, (6.22)

mx+m-. +my mx 2mz- —
Gzz~ = 2m/

cos) „+
g6

sin'A„ (6.23)

m-. —m~+my —mg m~(1+6n4)
&sr, =f sink„+ cos) „ (6.24)

'&N'g' f
mg mN+—my mz—

cos) „—
m~(1+6n4)

sin) „ (6.25)

-mg —m=+my —mg m-. (1—6n4)
G-.=„=f —sinX„+ cosh„

v3 g6
(6.26)

G=g ~ =f
m:(1—6n4)

cos) „—
g6

sinX„ (6.27)

m~+mg+my —mq —2m'
sin) ~—

2m/
COSA~ (6.28)

mN +ma+ m y mg —2m—s
coshg+

2m/
SlIlhg (6.29)

m-. —m~+2my —2m'
GNxx= f

12
slnA~+

-3m~+2m-„. —3my 3+4(m~+mg)
COSAg ) (6.30)

GNay=f'm m++2my 2mlL

12
COSXg—

-3m„+2m„- 3m' .3—n4(m~ mr)—
sink~ (6.31)

m~ —my+ 2my —2m'

12
sink~+

2m~+3mg —3my 3n4(m=+m~)+— COSX~ (6.32)

m+ mg+2my 2mb
Gauzy= f +12

COSXg—
2m~+3m- 3m' 3. a—4(m mr)-„- —

sin'A~

+24
(6.33)
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2(mN+m-. +m"-) (mN+m -. —2m')
Gyy„= f sink p

—(g8) cosh„
+27 +27

2(mN+m-. +ms) (mN+m-. —2m')
Gyy, f —— cos),„+(+8) sin) „

+27

(6.34)

(6.35)

mN m+3my 3ms+2mx

+27

v2(4mN+4m- .5—m.)
sinhp+—

+27
cos) „ (6.36)

mN——m. +3my 3ms+—2m'
cos) „—

27

&2(4mN+4m„-. —5m')
sin) „

+27
(6.37)

GA Yz—
—mN —m=+3m y —3ms+ 2m' (+8)(mN+m-„. —2m')

coshp+
+27

sink„ (6.38)

mN+m- 3.m—y+3m4 2m—s (y' 8)(mN+m- 2.m—s)
G4yp'= f— sink„+ cosh „

+27 +27
(6.39)

G~xz p'/4m =0.3+0.5,

G„NP'/4' = 16.0~2.5.
(6.41)

(6.42)

For simplicity, Eqs. (6.34)—(6.39) give the coupling
constants for 3~=0."The exact value of X~ is 1'55'.

Several of the above coupling constants strongly de-

pend on the sign of n4. The choice of
I fI of Eq. (5.28)

implies that fG NN(0, as we see from Eq. (5.23) and
the experiinental values of IG NNI and

I f»NI. So we
have ff,NN&0, which implies, according to Eq. (5.20),
that

n4&0. (6.40)

The experimental values of G~~~ and Gq~~ have been
estimated recently. 4' 44 In Ref. 41, E+p and E p
forward dispersion relations were used and the following
values were obtained4':

The value of the FEZ coupling constant that we ob-
tained is reasonable, while the value of the TEA
coupling constant is larger than the experimental value.
However, we should keep in mind that determination of
the coupling constants requires an accurate value of

fpNN
Using the coupling constant Gq y we have found,

we calculate the decay width of the Fpa(1405) reso-
nance. We find

I'(Yp* —+ Zm)

G'yg. 3L(my+mg)' —m. ')
4x 4m''

X(Lmy' —(ms+m )'jLmy' —(m —m )'])'"
=62 MeV, (6.45)In our case, an estimate of the above coupling constants

can be inade by using Eqs. (5.20), (5.27), (5.28), (6.21), where Fqs. (5.28) and (6.29) were used. The experi-
(6.30), and (6.40). We find

GNxg /4~= 1.2,

GNN4/4m = 29.2.

(6.43)

(6.44)

"The exact expressions for the coupling constants of Eqs.
(6.34)—(6.39) can be easily found from the Hamiltonian

if/2(mN+m .+ms)/+27]Bp-B„pqp
+f[(mN+m . 3my+3mz 2-mz)—/+27][iBpB—pg p

+(iBpBpgp+H. c.)j—f[(+8)(mN+nza 2ms)/g275-
XgiBpBpqp+i(BpBpqp+H c)j..

i fpv2(4mN+4m-. S—mz)/+27]BpBpqp—
4' J. K. Kim, Phys. Rev. Letters 19, 1079 (1967).

M. Lusignoli, M. Restigonli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966); Nuovo Cimento 4SA, 792 (1966).
The values G„xs'/4. =4.8~1.0 and G „pxs4p/~&3. 2 were found.

4' N. Zovko, Phys. Letters 23, 143 (1966). He found G„~z'/4z.
=6.8~2.9 and G„~q02/4 =2.1&0.9.

44A. D. Martin and I'. Poole, Nucl. Phys. B4, 467 (1968).
They obtained GNN4p/4~=6. 0~2.5 and GNas»/4~(3. 0.

4' The values for the coupling constants given by Eqs, (6.41)
and (6.42) are also obtained from SU(3) symmetry with D/F
and 6~~~2/42r~15.

F(Fp*~Z~) =40&10 MeV, (6.46)

which is close to the calculated value.
Also, using Eqs. (5.28) and (6.31) we can calculate

the coupling constant IGNxyI and compare with
IGx yI. We find

I GNxyI/IGs-yI =2.0. (6.47)

Since SU(3) symmetry implies that the above ratio is
equal to 1, this ratio is a measure of synunetry break-
ing. The value of IGNzyI/IGz yI given by Gell-Mann,
Oakes, and Renner" is also 2, while experimentally this
ratio is estimated" to be about 3.

"The values of f, ' and f»& of Eqs. (5.26) and (5.27) are
inconsistent with the universality principle, which requires
fp = fp&& So the real value of fp~zP may be smaller than the
one given by Eq. (5.27).

4 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
48 C. Weil, Phys. Rev. 161, 1682 (1967).
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We calculated the BCz„~ starting from an interaction
Lagrangian which does not contain the 5' fields. These
fields vanish as free 6elds. In the presence of interac-
tions they do not vanish and the Euler-Lagrange equa-
tions may be used to dehne them. If Zz„&"' is the total
interaction Lagrangian, we get

~&znc"' ~z„t, '"
ms'25'=

z/(8') B(0/„S')
(6.48)

By iteration of the above equations, we can express the
S' 6elds in terms of the other fields. Then we can use
these expressions to eliminate the 5' fields from our

In that way7 we And that the interaction
Lagrangian from which the Xz„~ should be calculated is
not simply the one we obtain from 2»„&"' by dropping
the terms which contain S' fields, but it has some more
terms which contribute to 3Cz„~. The interesting addi-
tional terms of the 3'z„& are given by"

teresting to note that the Hamiltonian (B7) coming
from the Lagrangian Z~ depends only on the masses of
the pseudoscalar mesons, since the masses of the nonets
0 and i + which appear in the Lagrangian Z~ are
eliminated.

The invariant amplitude 5R for meson-meson scatter-
ing in the center-of-mass system is defined by

Q'(qz+q2 q—2 q—4)
Sz;= 8z;— mt(s, /, e), (7.1)

(22r) 2(168„Eq,A„Z„)"'
where for mj = ms and m2= m4 we have

~—
(~ +~ ) 2 —f(222 2+q2)1/2+ pg 2+q2) 1/2]2

/= —
(I71

—g2) = —2q (1—COSH),

and

2/= —(gz —
g&)

'= 2q—'(1+cose)

+L(2/2 2+q2)1/2 (2/2 2+q2) 1/2]2

—Q (1/222s")J"J" (6 49)
For the above definition of BR, the unitarity condition
gives in the elastic region

where the J" is given by
DRz' —— |2]—82r((+s)/

~ q ~

]e""sinter'. (7.2)

4fp z/J"= — —Tr(z/pP/7„I'S) .
%22/2, a8'

(6.50)

The factor 2 within the brackets is present for arm- —+ z~
and EK —+ EE because identical particles are involved.
So the 5-wave scattering length in the isospin state I
denoted by o.l is given by

The Kz„, of expression (6.49) is explicitly given in
Appendix B.

VII. MESON-MESON SCATTERING LENGTHS

g 0

o/z lim =——— lim 5Kz0. (7.3)
0

I ql p]82r(2/21+2/22) ~qf 0

A. ~~ Scattering Lengths
To calculate the meson-meson scattering amplitude,

we shall use the interaction Hamiltonians of Eqs. The interaction Hamiltonian which contributes to the
(B5)—(B7), (B10), and (B16) of Appendix B. It is in- isospin amplitudes DRz(2r2r) is the following:

fppr f 1 f 2/2 p'

~z t(qrqr) =fp fp„. (22X&pqq)+ — ——~(22X&pqq) (22X&pqq) — —(22 22)2
2m'' 12) 48

2
mg/

4f, 2(1+&2 sin2Xs+sin91's 1—v2 sin27 s+cos9, s—+ (0/p22 Bpqq)2. (7.4)
32/2, 2 &

From Eqs. (5.26), (5.28), (7.3), and (7.4), we get

0.04
0!p 7IX'

(1+%2 sin2P s+sin271s 1 —K2 sin2XB+cos2/1s
+0.47~— + mjr 7 (7.5)

a1(2rqr) =0,

0.01
/
'1+&2 sin271s+sin2Xs 1—V2 sin27 8+cos9,s

+0.19i— m~.
m$p

(7.6)

(7.7)

For 2/2r =2/2Z = 500 MeV, the above equations give n0(1r2r) =0.152/2
—' and z22(qr2r) =0.102/2.-1.

' I thank Dr. L, H. Chan for suggesting that such terms should be added, and for very interesting communications. In Eq. (6.49)
only the terms which contain four pseudoscalar-meson 6elds have been considered. These terms, which come from the Lagrangian
g~', contribute to the meson-meson scattering lengths.
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The m.x scattering lengths have been calculated in several ways6 5~53 and seem to be small. Assuming PCAC,
Weinberg" found ns(e.s.) =0.20m ' and ns(a.s) = —0.06m '. A pure dispersion-relation approach" &'& gives ns(ss)
=0.25m ' and os(sm)~0. Also, the successful calculation of the E~4 form factors by Weinberg, "who neglected
Anal-state interactions, indicates that the xw scattering lengths are small.

B. ~X Scattering Lengths

The interaction Hamiltonian contributing to x-E scattering is

5('.r t(a K) =f, ,p„(ss&(r)„ss)+i,'f, ,-9„(Kt~r)„K)

«me* p '7l' X +-+

(iE„*t~Er)„sr+H c )~. . ——(LEtc)„(ss ~)jL(~ ~)B„Kj
(4m'' 242m p

f'(m. '+m~')
+r)„KtH~ ~)B„(~ ~)]E Et[(~—~)7c)„(er ~)Jr)„E)— (ss es)(EtE)

iif, ' 4f '(2 —K2 sin21 s—io sin'i s
f) Kt(~ c) sr)(~ 8 sr)f) E+

mp'm~' 3mp m

Using Eqs. (5.26), (5.28), (7.3), and (7.8), we get

2+%2 sin2)i. 8—10 cos9.q
(c)„~ B„sr)(r)„Ktr)„K). (7.8)

mfa

mp'mar

0.09 5.4m 2 —K2 sin2)i, 8—10 sins)i, s 2+&2 sin2) 8—10 coss) 8)
u, i,(s.E)= —. + ———0.26 i—/m

2
X )

m7r m +'
(7.9)

nsis(sK) =
0.03 5.4m+—

mar

2 —K2 sin2)i. q —10 sin9, q—0.26~

~

2+%2 sin2)i, s—10 coss)i, q)

r
—fm . (7.10)

C. KX Scattering Lengths

The interaction Hamiltonian contributing to E-E scattering is

p 7r7rm

Kr.a(KK) =i,'f...9„(Kt~B-„K)+i
2mp

i q—„(Etr) K) ' f'f(Ktr) K—)(r) Kt)K+Kt(Kr') Kt) 8 Kj
V2mp

t r)„Kt(KB„K—t)K Et(K7c)„Kt)r)„K+—2Kt(B„K)(r)„Kt)K 2(K~K) (r)„KtB„K—)j
8mp'

4fpsssn f—' f' mr(rKtK) +s-
m, ' Im.'

1—2@2 sin2XB+7 sin9, 8 1+2%2sin2)i. q+7 c s9oq),
3m)'

2

X(B„Ktr)„K)' —(r)„Ktr)„K)(r)„Ktr)„K). (7.11)
m p m7r I2 2

"S.Weinberg, Phys. Rev. Letters 17, 616 (1966).
"N. N. Khuri, Phys. Rev. 153, 1477 (1967). In the calculation of the s-wave v7r scattering lengths, higher-order corrections are

taken into account. The difference between the scattering lengths obtained in this paper and those of Weinberg, Ref. 50, is of the
order of 10%.

~2 J. Sucher and C. H. Woo, Phys. Rev. Letters 17, 723 (1967}." (a) F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967); (b) F. T. Meiere, ibid 159, 1462 (196. 7)."S.Weinberg, Phys. Rev. Letters 1'7, 336 (1966).
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From Eqs. (5.26), (5.28), (7.3), and (7.11), we get

,(EE)=0, (7.12)

ni(EE) =—0.04
+6.i(

'
+

1 —2v2 sin2Xs+7 sin9

3m)i 3m)'

1+2v2 sin2X8+7 cos'XB)

r
im. . (7.13)

VIII. DECAYS q' ~ q+2m, K*—+ K~, rp
—+ K+K which gives the decay rate

In this section the decay rates of the strong decays
g'(958) —+ g(549)+2m, E*—+ Em, and p -+ E+E will

be calculated.

F(y ~E+E ) = (f ~~'/96sm ')(m ' 4m—lr')'~ (8 10)

Using Eq. (5.26), we obtain

A. Decay q' —+ q+2m

The interaction Hamiltonian which contributes to
this process comes from the (I'I'I'I') coupling terms of
the Lagrangian Z~, which are given in (3.19) .We find

F(q + E+E ) =2.32 MeV,

while the experimental value is4~

F(y —+ E+E )= 1.76&—0.35 MeV.

(8.11)

(8.12)

PF(E*—+ Es) =-
Smmp'

[(mlr~ —m.) ' — m]rr[(m +rrm)' —m ~'j
X

(8.6)
Using Eq. (5.26), we get

F(E*—+ Em) = 42 MeV, (8 7)

in reasonable agreement with the experimental value4'

F(E*—+ Es-) =49.'I&1.1 MeV.

C. Decay q ~ K+3

(8.8)

From Eq. (B5), we get

Kr t(yE+E )=(if' m„/v2mp)p„(EtB„E ), (8.9)

~r c(g'girs. )=,',~2f'(m„'+ m„' m. ')—
X [cos2Ã„+ (sin2X„)/2v2 j(m m) gg', (8.1)

which gives the decay rate

F(g' —+ g+2n-)
=0.72(m f)'[cos2X„+(sin2X,)/2K2g' MeV. (8.2)

If we take X„=+10.8', which is predicted by the quark
model, ~' and the value of f given by Eq. (5.28), we get

F(g' ~ g+ 2~) = 1.0 Me V. (8.3)

Experimentally we get'

F(rj' —& ri+27r) (2.8 MeV. (8.4)

B. Decay X*~Xm

According to Eq. (B5), the interaction Hamiltonian
which contributes to this process is

Ki„a(E*E~)
= (f'p .mar~/2m') [iE„*'~(EB„~)+H.c j (8.5). .

The decay rate is

IX. DISCUSSION

We have tried to introduce the vector mesons in the
phenomenological Lagrangians in the same way as the
pseudoscalar mesons and not as Yang-Mills gauge fields.
In this approach we had to introduce two more meson
nonets. In all terms in the expansion of our Lagrangians,
an even number of V' and A fields only can appear. So
the V' and A mesons do not couple to baryons to lowest
order. In fact, invariance under parity and charge con-

jugation does not allow a coupling of these mesons to
any of the Dirac bilinear covariants.

We should emphasize that the choice of the Lagran-
gians is not unique. A strong requirement imposed upon
the meson Lagrangian is that the free-meson Lagrangian
we get to lowest order leads to a positive-definite
Hamiltonian. Also the PCAC requirement crucially de-

pends upon the choice of the meson mass Lagrangian.
In the meson-baryon Lagrangian we have more freedom,
particularly in its symmetry-breaking part" ":We may
choose a sufBcient number of Lagrangians and adjust
their coefficients in such a way that the baryons get
their physical masses, and the D/P ratios their experi-
mental values. From our Lagrangian Z~~ we see that
the nonderivative coupling of the pseudoscalar mesons
to baryons is pure D-type. Since, however, a large
J -type derivative coupling comes from the Lagrangians
Sire' and Z~z' because of Eq. (5.18), no additional
Lagrangians giving rise to F-type nonderivative cou-

pling were introduced.
Weak. interactions have not been considered at pres-

ent. They can be introduced easily in the framework of
the model. For example, the form factors of %&4 decays
may be calculated using the axial-vector current of Eq.

"A. Kumar and R. Ramachandran, Tata Institute of Funda-
mental Research, Bombay, India, Report, 1968 (unpublished).
The symmetry-breaking Lagrangians chosen in this paper are
erst-order in M, while our Lagrangians Z~~' and Z~~' are
second-order in M. However, when the Lagrangians are expanded
in powers of f, more terms of erst order in f arise in their case.

' J. Schechter, V. Ueda, and G. Venturi, Phys. Rev. 1'7'7, 2311
(&969).
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89znt
P1

BP'

(4.10). The exchange particles are p, Ee, and E. Also, currents J&' and Jn' are given by
nonleptonic decays can be treated. The results of such
calculations will be reported elsewhere. (AS)
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(A6)

Qz t(P, 8„P,T...8„T)„,B), (A1)

which is a polynomial in the variables P, B„P, T„,
BqTq„and B. In this appendix boldface letters denote
fields in the Heisenberg representation. The fields in the
interaction representation will be denoted by common
letters. We shall calculate the interaction Hamiltonian
to second order in the coupling constants which appear
in QI t. The interaction Hamiltonian in the interaction
representation Kz„tLx,n7 is obtained as the solution of
the equations'~ "
p"(x)pez. tLx', n77

=S(o)J~'(X')S-I(o)LP'(X) P'(X') 7
+S( )J."(*')S '( )LP'(x) 8 'P'(x')7 (A2)

L8,T,„'(x),aez t(x',n77
= -S(tr) sJ F'(x') S '(o) (8pT,„'(x),T„),'(x') 7

-S(o)J„~'(x')S '(o)t 8,T,„'( )x, ,8' T,„'( x)7, (A3)

(&'(x)pcz tLx', n77
=S(o.)J~*(x')S '(o)$8*'(x) 8*'(x')7 (A4)

where the index i labels the members of each nonet and
is not sulnmed on the right-hand side of the above equa-
tions. The currents J„P', J„~', and J„&' are defined by
Eqs. (6.2), (6.3) and (6.4), respectively, " while the

APPENDIX A: INTERACTION HAMILTONIAN

We want to calculate the interaction Hamiltonian
corresponding to the interaction Lagrangian

8,T,),*(x)= (8,T,x'Lx, o 7),.—JP*(x)
—J "(x)np(x)n, (x), (A7)

T„x'(x)= (1/nt, '){(8„8,Tpz'Lx, o 7)...
—(8I8,T,„'Lx,o 7)...—J„P*(x)
+J,„~*(x)nx(x)n,(x)

—Jpg*(x)n (x)n, (x)), (A8)

B'(x)= (8*'fx o.7)„.=S I(o.)B'(x)S(o) . (A9)

Also, we find

P*(x)= (P'(x o7)„.=S '(o)P'(x)S(o), (A10)

8„P'(x)= (8„P'px,o7) /.+Jz *(x)nz(x)ny(x) . (A11)

So to first order in the coupling constants, denoted by
the symbol =, we get, using the free-field equations
(3.24),

8,T,I'=S '(o){8 T I' Jzr'- J,rnid—nz)S(o), (A12)

T„I'=S '(o) {T„z'+(1/nz;s) L
—J„Ir*+J,„"'n)n,

—J. ' .n.7)S( ) (A13)

8„P'=S-'(o)(8„P'+JII"n.zn„)S(o). . (A14)

To obtain a current to first order in the coupling con-
stants we must replace all the Heisenberg fields it con-
tains with free fields, while to obtain a current to second
order in the coupling constants we must replace one of
the fields BpTp&' Tp, p', or B„P' it contains by its part
which is first-order in the coupling constants, for ex-
ample, 8„P'-+S '(o)JII"nxn„S(o) according to Eq.
(A14), etc., and all the other fields by free fields. In that
way we get for the current J„"', by using Eqs. (A12)—
(A14),

89znt
J "'=- =S '(o)—

8(8„P&)' 8@znt 8 8@znt
~

J,"'nzn,
8(8„P&) ' 8(8IP&)8(8„P&)I'

/ 8@zat )
(—J Ir'+J ~' nxn —J Ir'n„n. )

8T„I'(8(8„P&)J 2nt;s

8 8@znt
i (—J ~' JP'n)n„—) S(o) ., (A15)

8(8„T„„') 8(8.P&')I

~~ H. Umezawa, QNaetgm Field Theory (North-Holland Publishing Co., Amsterdam, 1953).' In the notation oi this appendix all quantities appearing in Eqs. (6.2)—(6.4) should be written with boldface letters.
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The above expression can be written as follows if we interchange the order of the two differentiations, and use Kqs.
(6.2)—(6.4) and the antisyrnrnetry of the tensor T„&,'.

J &'=S '(a)
~~Int

+Q J,&—'nate, +
B(B„P') ' B(B.P')

8J„),~'

(J„),r'+2 J„,r'N), e,)
2m/ B(B.P')

+ (J„r'+Jp'~),m„) S(0)
B(B„P&)

=S—'(0)
B(B„P')

—Zr„,+g 2A"'J,"'e),e„+— (J P'J P'+2J„P'J„,~'nyn, )
4m'

+-', (J ~'J ~'+J„r'JP'e„eq) S(o). (A16)

For the currents J„p', J„r', J&', and J~', we 6nd an expression which is exactly like the above expression except that
the operator B/B(B„P&) is replaced by the operators B/BT„&,&, B/B(B„Z'„„&'),B/BP&, and B/BB', respectively. From
these expressions and Eqs. (A2)—(A4) and (A16), we obtain Kq. (6.1).

APPENDIX 3: EXPLICIT FORM OF INTERACTION HAMILTONIANS

In this appendix we shall give the explicit form of the interaction Hamiltonians we have used. %e 6nd.

where

K(PPV) =—

P =P'+(1/%3)gp,

—Tr[(m V„)(P'B™P')], (81)

x'/42+ps/+6

E
—7r'/42+ ps/Q6

K'

E+
E'

—2g8/Q6.
(83)

'(p'+s&')/v2 p+ E*+'
V = p (&u

—po)/K2 E*'
E* E*' rp

From Eq. (81) we get for Et = (E ,E')—
&(PPV) =f.-f,. (~&&B.~)+~kf.-e. (E'~B.E)+

25$p
fiE„*~~(E8„~)+Hc]..

V3f...mx* if' m„
+ fiK„*t(KB„gs)+Hc ]+ . . (o„(Kt™B„K)—

2mp
rp„(K~8™„K). (85)

V2m,

The above Hamiltonian comes from the interaction Lagrangian which gives the three-meson coupling.
From the kinetic-energy part of the meson Lagrangian, we get the following four-pseudoscalar-meson interaction

Hamiltonian:

(f'/24) Tr{(PB„P)(PB„P))=(f'/24) Tr{(P'B„P')(P'B„P'))
= (f'/24) {—2(m&&B„m) (m&&B„~) 2(KtB„K)(B„Kt)E—2Kt(EB„Et)B„E-
+[EtB„(m ~)][(~.~)B„E]+(B„Et)[(mc)B„(c~)]E—Et[(m ~)B„(m ~)]B„K

+v3[KtB„(m ~)](g8B„E)—v3(qsB„Et)[(~ ~)B„E]+3(gsB„Et)(EB„gs)). (86)

The mass Lagrangian gives the following pseudoscalar-meson interaction Hamiltonian:

,',f' Tr{P'[-'(m '+2m'')+(1/v3)(m '—mir')X8]) . (87)
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Ke And

Tr(84) =2[2(oo oo)+g(gg/&2+go)'] +2(oo oo)(EtE)+24(oo oo)(gg/V2+gp) +(12/+6)gpK (oo ~)E
+(E E)(E E)+[K~K+2( %2rlg+gp) ] +2[(rjg/K2+qp) +(—qg/K2+2go) ]E E~('88)

Tr(E'Xg) =(1/v3){2[2(22 oo)+g(ltg/&2+go)']2+2(22 22)(EtE)+g(gg/~2+go)'(oo oo)+~3rlgEt(oo'&)E

+(EtE)(EtE) 2[',—( &—2g—g+q p)'+EtE]'+ [', (rig/-V2+g 0)'—-'(—qg/V2+2q 0)2]KtE) . (89)

The interaction Hamiltonian of Eq. (6.17) contains also the term

which comes from the term

2 Q J' T'4J T'

(if, /42m, ) Tr[B„T„„(I'B„P)]

(810)

(811)

of the Lagrangian of Eq. (6.16). We find

—,'(J„"J„"+2J„"J„o)
= —(f, '/2m, '){—(oo)&8„20) (oo)&8„22)+22 (B„E')[(oo ~)8,(oo ~)]E——',E'[(oo ~) 8„(oo ~)]B„E

+,'[(B„Kt)(EB-„Kr)E Et(EB„Et—)B„E+2Et(B„E)(B„Et)E2(EtE)—(B„E"B„E)]), (812)

J K++J K~ +J KeoJ-ireo

(f, '/—4m, ') {[EtB„(oo~)][(oo.~)B„E]+%3[KtB„(ooc)](ggB„E)
—&3(rI,B„E)[( )B„E]+3( B„K )(EB„)}, (813)

—',J„"J„"= (f, 2/Sm—p2) (KtB„K)(KtB„K), (814)

',J„~J„&= —(f...'/4m—,') (E'8 K)(K'B„K). (815)

The interaction Hamiltonian given by expression (810) is obtained by summing the right-hand sides of Eqs.
(812)—(315).

Finally, we have the interaction Harniltonian of expression (6.49),

—Q (1/ms") J"'J"'.

Ke 6nd

(1/m, 2) (2Jw'+Jm' —+Jw'0 Jw'0)

(4f2 /m—~ m ){(g/3)(B„rig/V2+B„go)(B„qg/v2+B„lip)(8„22 B„oo)~

(816)

+(8/+6)(B„rig/u2+B„go)B„Et(g 8„20)B„K (B„KtB„K)(B„—K~B„K)+2(B„KtB„K)(B„KtB„K)),(317)

(2/m, 2) (JIG+JX +JKoJKo)

(16fo.~2/mK—'mug){ 28„Et(8„22 ~)(8,22 ~)B„E+(1/Q6)( B„gg/42+28„rio—)[B„Et(~ 8„22)B„E

+BqKt (s ' 8 oo) B~K]+2 (80rlg/v2 280go) (B~qg/—v2 28„qo) (B„K—tB„E)), (318)

Jt'Jf' Jt' Jt'
mf' m$'

4f, 2(cos9.s sin'XB) 8f, ' ( 1 1
+ ~(8„22 ~ B„oo B„Kt8„E B—„qgB„rig+2%—28„rlg8„2io)2

3m, ' 5 mr' mr' ] 3&2mo2 &mr ' mr. ')
&(sin2Xs(8„22 B„oo B„EtB„K B„—ggB„rig+2%2—8oggBl„gp)(Bazoo'8 op+28 EtBvE+Bv'ggBv'go+Be'gQBv'90)

8f...' sine. cos'l~s
+ —(8&22 8&op+28&EtB&K+8&7]08&go+8&ripB&'Qp) ~ (81'9)

3mp m)I m$'

~

~

The interaction Hamiltonian given by expression (816) is obtained by summing the right-hand sides of Eqs.
(817)—(819).


