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Poincare-Like Group Associated with Neutrino Physics, and Some Applications
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An inhomogeneous Lorentz group (different from the Poincare group) is studied in relation with the
relativistic covariance of the Dirac-Weyl equation. A mathematical study of the group structure and of its
unitary irreducible representations is presented, and physical consequences concerning neutrino physics
(and electromagnetic field) are drawn by the introduction of the Stokes parameters.

I. INTRODUCTION

'HE classical way to construct field theories that
are compatible with the principles of special

relativity is via the relativistic covariance of the wave
equation. This is also the unique global covariance
postulate that we have in the special case of a I.agrae-
giae held theory. What do we understand by the term
"relativistic covariance?" I.et A(8) be a differential
operator acting on the field P(x) so that the equation
A(f))P(x)=0 is our classical (=first-quantized) field

equation. Then relativistic covariance means that while
the point x&M (M is the Minkowski space) transforms
under the Poincare group x ~ x'= Ax+a, the field it (x)
cotransforms according to P(x) ~P'(x') =Ss(X)f(x),
where APSL(2, C) goes to AQL+t with the homo-
rnorphism SL(2,C) ~ L+t, and Ss is a finite dimensional
representation of SL(2,C), so that the wave equation
A(8)p(x) =0 takes the form A(8')lt'(x') =0 in the new
coordinates.

Of course, one can go the other way around. ' One can
ask oneself the question: What are the most general
transformations on the fields P(x) which induce on the
x's the Poincare transformations such that the equation
A (B)P(x)=0 transforins into A(8')lt'(x') =OP In some
cases, this approach will give us a supplementary
symmetry on the fields which is of physical interest.
Moreover, in held theory, because of the dynamical role
being played by the fields (the coordinates are used like
indices), it seems that the second approach would be the
more natural approach to the covariance problem.
Indeed, in what follows we shall adopt the second point
of view, handling it with a particular example, though
this way of looking at things deserves a more general
treatment.

Let A(el)=y&8„+m be the Dirac operator. (One
knows that for m=0 one can pass to the two-component
Weyl equation of the neutrino by adding subsidiary
conditions. ) In classical theory, the fields P belong to a
certain Hilbert space of functions on M with values in a
four-dimensional vector space, and transform under
S(A) which is equivalent to D(s,0)(f)D(0,sr). One can

' M. Plato, P. Hillion, and D. Sternheimer, Compt. Rend. 264,
82 (1967).

I

choose S(A) to be a real representation, a choice usually
referred to as the Majorana representation, ' and then
S(A) will be irreducible under real transformations. To
realize this, one can either double the dimension of the
two-dimensional complex representation or utilize a
symplectic representation of SL(2,C) in Sp(2,R). (See
Refs. 3 and 4.)

The transformations P(x) ~S(Ag (x) are compatible
with relativistic covariance because when x'=Ax+a
and f'(x') =S(A)P(x), the equation (y"8„+m)P(x) =0
becomes (S(A)y&'d„S(A) '+ns)P'(Ax+a) =0, namely,
simply (y"8„'+m)P'(x') =0. Moreover, in the particular
case of m=0, the Dirac equation is invariant under
"field translations" it (x) —+P(x)+0, where 8 is a real
constant spinor. Therefore (for m=0), one obtains the
covariance of the Dirac-Weyl equation under a real Lie
group G=SL(2,C) T4, which is a semidirect product of

SL(2,C) by the Abelian vector group T4, defined by a
real-irreducible representation of SL(2,C) which is
unitarily equivalent to D(—'„0)Q)D(0, ts). This group is
different from the universal covering of the Poincare
group [which is also a semidirect product of SL(2,C) by
T4, the latter being defined by the D(-,',—,')=D(-,',0)
QD(0, st) representationj. One can, of course, consider
directly the two-component complex Weyl equation and
obtain as a covariance group the complex SL(2) C' Lie
group. Our real group is just a scalar restriction of the
latter. We shall see later that our "inhomogeneous-

spinor Lorentz group" will play a role in connection
with the neutrino equation.

Though we restrict ourselves to a very particular case,
one should remark that, if one takes a linear wave
equation and makes the most general translation in
solution space, one obtains an infinite-dimensional
covariance group. This group is closely connected to the
problem of gauge invariance of Lagrangian held theories
of a certain type. Such general questions win not be
considered here.

In quantum field theory the field 4 belongs to the

'R. Jost, The General Theory of Quantized Field (American
Mathematical Society, New York, 1965).

' S. Helgason, Di fferenti al Geometry and Symmetri c Spaces
(Academic Press Inc. , New York, 1962).

4 M. Flato and D. Sternheimer, J. Math. Phys. '7, 1932 (1966) .
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space S'(Op(H)E) of operator-valued tempered dis-
tributions generated by the weakly continuous applica-
tions of a Schwartz space (C" functions with rapid
decrease) to the tensor product of a finite-dimensional
real linear space E (in our case, four-dimensional) with
the topological vector space generated by the operators
defined on a common dense domain in the Fock space of
the physical states H. If u is a test function upS, one
has 4(n)EOp(H) E. This suggests realizing the Fock
space of states H = 8 o"Hi, with, e.g. , Hi L'(E——),
where E is the homogeneous space E=G/SL(2, C).

This realization is legitimate and even satisfactory:
legitimate because in the general axioms of the field
theory, the Fock space is an abstract Hilbert space and
no special realization as a space generated by L2(M) is
postulated; satisfactory because the elements of our
"spinor space" E have in our case a more direct physical
significance than space-tiine points x@3E, and in any
case other advantages are also gained by eliminating
space-time dependence of physical states. The only
space-time dependence will be postulated in S. We shall
postulate that S=S(iV) in order to be able to demand
microcausality (anticommutation relations) for the field
components.

We are now in a position to extend our covariance
principle from first- to second-quantized theories. For
the second-quantized Dirac equation with m=O, we
have y"8„4=0 (equality in the distribution sense).
Now, the group G acts on the field operators like
4(n) ~ 4'(u) = (S(A)4+0~) (n), where O~ =8F, with F a
suitable fixed operator on H, i.e., O~(n) =FJ' 8u(x)d4x,
and u(x) =u(A 'x). In what follows, we shall need in
addition the notation. u'(x) =n(Ax). Now the prime on
4'(n) means transformation under the 10-parameter
group G. It is possible to extend it to transforma-
tion under a 14-parameter Lie group isomorphic to
SL(2,C) (R4X T') by including translation invariance
in Minkowski space. However, this 14-dimensional
spinor-vector inhomogeneous Lorentz group will not be
considered here because of the following reasons: (a) We
are interested in this paper in constructing our "in-
ternal" group acting on fields and on internal space.
Therefore, we consider only the group G and not the
14-parameter unification group. (b) The covarianee con-
dition which will be immediately treated has a meaning
only under G.

Now, if X is a spinor variable, XPE, then X trans-
forms under G as X'=S(A)X+8, and this in turn in-
duces unitary representation of G on the space of
physical states yPL2(E); cp q', where we define

'(X) = (X') = (U '(A, 8)) (X).
The covariance condition implies that (4'(n) p)

=4'(n) p', where the prime has a meaning only under
G. This means that U '(A, 8) (0'(n)p)= (S(A)1I'+8)
X(n') U '(A,8)q for every &QL2(E). We have thus
obtained U '(A, 8) .@(n) .U(A, O) = (S(A)@+0~)(n'), or,

as it can be written for the element (A,8) ',

U(A, 8) +(n) U—'(A, 8)=S(A—')(+—O)(u). (1)

Now this is in exact analogy with the second axiom of
Wightman, ' where the Poincare group is replaced by the
group G. Moreover, from comparison between the
second axiom of Wightman and the last equation, we
learn that (by putting 8=0 in the last equation and the
space-time translations in the second axiom to 0) the
compatibility condition between them is that the reduc-
tion of U(A, 8) as a unitary representation of G on
SL(2,C) must coincide with the reduction of U(A, a) of
the second Wightman axiom as a unitary representation
of the Poincare group on SI-(2,C).

To be complete, one should be a little more explicit
about the operator F in connection with relation (1).
From the latter, one gets that Ii must annihilate the
vacuum-space IIO, and commute with U. The unitary
implementability of field translations O~ is readily seen
when %(n) is multiplied by X, with, e.g. , F=XX&Ei„
Xp=O, Eq being the projector on III„and thus for
general fields by the spectral theorem. This shows that.
the covariance condition is nonvoid and relevant in
second-quantized theories.

All that has been said above is also the raison d' etre
of the group G, which by what follows will play a certain
role in neutrino physics as well as in other physical
problems.

IL MATHEMATICAL STUDY OP G A1VD L{G)
A. Definition of G and of Its Lie Algebra L{G)

The group G was just constructed as the sernidirect
product of SL(2,C) by T4, defined by a real-irreducible
representation of SL(2,C) equivalent to D(—',,0)QD(0, 12).
It may be worth while to remark that (contrary to
Poincare) G and its Lie algebra L(G) have a nontrivial
three-dimensional complex representation, and that
L(G) can be considered' as a unification of two 5j(2,C)
algebras with a two-dimensional intersection.

An element g&G ean be written as (A.,a), where
AQSL(2, C) and a+T4, with the usual semidirect
multiplication law

glg2 (Algal) ' (A2)a2) (A1A2) ai+S(A1)a2) y

where S(A1) is the image of Ai in the D(-', ,0)SD(0,—2,)
real representation.

Evidently, G is the real restriction of the complex
five-parameter inhornogeneous SL(2) C' group. In this
connection, one should notice another fundamental
difference between the Poincare group I' and G. While G
is the real restriction of the complex SL(2) C', there
does not exist any complex group so that P is its real
restriction. Finally, as mentioned before, we can also
write every element g&SL(2) C' as a 3X3 matrix:
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We now consider the Lie algebra Lc(G), 6rst by defining number. If one considers La (G), one has
it on C; it is a five-dimensional vector space with basis
E,E,H, Tl, and T2, and cooimutation relations

with

[E,E ]=II,
[E,T1]= T2,

[E,T2] =0,

[H,E ]=2E,
[E,T1)=0,
[E .,T2)=T1,

[T„T2)=o.

[H E .]=—2E .,

[H,T,)= Tl,—
[II,T2) = T2,

0 1 0' 0 0 0 1 0 0
E= 0 0 0, E = 1 0 0, H= 0 —1 0.0 0 0. '.0 0 0. .0 0 0.

0 0 0 0 0 —1
Tl= 0 0 —1, T2——0 0 0

.0 0 0. .0 0 0.

By real restriction, one gets finally L&(G)—the 10-
dimensional Lie algebra of G on the real field R—
generated by M;, IiT;, p„(i= 1, 2, 3; p= 1, 2, 3, 4), with
the commutation relations

[M;,M,]= 8;;3M3, [M;,X;)= 8;;IiN8,

[Ã;,1V,)= —2,13M3

[Ml pl) p 2 pl) p 1 p8) [M3 p2]
= —

I &3 P4]=L—M2 P3) = P4—
[+8&pl) = [M3)P81=LM2tP2] = [+1&P2)

[M4P4) [ I2)P4) Pl i

[cv„p,)= —[M,,p,]=—[M„p8)= —pv„p,]
[cV3,p2] = [M„—p4) = —p„

LM8 Pl) =[&3P8]=[M1 P2]= —P2 P2]

=[M2 P4) =P'1 P4]= P8—
Next we calculate the center of the universal en-

veloping algebra U(G) of L(G) by the usual technique.
The center we get is a polynomial ring in one variable,
generated by

W=HT1T2+E ~T2' —E T12

As one sees, W' is a third-order polynomial in the gener-
ators of Lc(G). Notice that, for the Poincare Lie
algebra L(P), the center of the enveloping algebra on R
consists of polynomials in the two generators, of the
second and the fourth order.

For all the preceding representations of Lc(G), W has
the value zero. We shall see further that, for unitary
irreducible representations, 8'= p, where p is a complex

We now give one differential and one three-dimensional
representation of Lc(G):

E =xa/ay, E =yB/Bx, H=x8/Bx y&/&y- ,

Tl =8/Bx ~ T2 = 8/~y )
B. Unitary Continuous Irreducible Representations

Here we only treat some of the representations of the
principal series which we believe have a physical sense,
and do not pretend to give a complete study of unitary
continuous irreducible representations of G, though such
a study is quite simple by the aid of Matey's theory of
induced representations.

From the center of U(G), one already knows that the
unitary continuous irreducible representations are more
or less characterized by a complex number ip, the
eigenvalue of the Casimir operator 8'. I.et us consider
the following algebraic decomposition of SL(2,C):

SL(2,C) =A'DIP. (3)

Here D is a Cartan subgroup and E, E' are the nilpotent
subgroups built, respectively, on positive and negative
roots. In the following, D is diagonal and X, E' are
upper and lower triangular matrix groups.

Let g= (h.,a) = (88'd88, a); one can also write g=kh,
where

P, al 'A, 0 0
k= 0 1 a2 ) h= ) 'v 3' 0

.0 0 1. . 0 0 1.

X, p, 8 +C are the parameters of 83, n', d; ai, a2 are those
of a. Let us associate to every matrix h the point
s= (sl,s2) QC2 with coordinates

1 g—lp z2 g—l

Under SL(2) C', one gets hg3 ——k'h', where

u P al
go= .0 0

.From this equality we obtain the relations

&1 &&1++82 y 22 ti&2+P&1 y

~'=~"-'(~"+~")-',
+2 i8121+i3222 F431 +122 1 ~ (3b)

Of course, the Abelian subgroup C2 acts trivially on z.
We now introduce the characters

x8(N') = exp[i(pN+ pp))

gW1 Ml(plp3 p2p4) jM2(pl +p2 p3 p4 )
2M8(PlP4+P2P3)++1(P2 +P3 P4 Pl )

+2+2(PlP3+P2P4)+2&3(Plp2 P8P4) y

SW2 —Mi(P2 +P3 P4 Pl')+2M2(P1P3+P2P4)

+2M8(P1P2 P8P4) »Vl(—plp3 P2P4)—

++2(P8 +p4 pl p2 )+2+3(plp4+P2P3) ~
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It is then trivial to prove that the representation

g ~ U, I
s g is given by (Sa)), defined by

U.f(s) =a(s g)f(sg) (7)

is unitary in the space of square-integrable functions for
the Lebesgue measure ds=dsids2, which from (Sa) is
invariant under SL(2) C', the inner product being

(fi f2) = fi(S)f2(S)dS

Moreover, these representations are irreducible. To
prove this, it is sufficient to show that n(s0, 22') g 1 for all
22'gE', where so ——(0,1) is the point stabilized by g',
since n(s2, 22') is an irreducible representation of 1V' and
every operator that commutes with U, also commutes
with n(s, ,22'). This last fact, namely, that at least for
pAO, n(so, n') g1, is trivial.

On the Girding domain, we can therefore work out
the Lie-algebra representation. corresponding to (7):

Ea slB/BZ2+Zps2 ) P nz2B/Bsl q—

+=SlB/BS1—S2B/BS2 q T2 = 2S1| T1=2S2
q (8)

with
I
from (2))

W=ip.

We can note the following points.

(1) The unitary irreducible representations obtained

by interchanging the roles of X and X' are unitarily
equivalent to the preceding ones.

(2) There exist three particular unitarily equivalent
nilpotent subgroups 1V, and the same for cV'

I
corre-

sponding to the different ways of considering SL(2,C)
as the complexification of SL(2,R), SU(1,1), and

Sp(1,R)). They also supply unitary irreducible repre-
sentations unitarily equivalent to (7).

(3) We also could have considered the usual Iwasawa
decomposition of SL(2,C):

SL(2,C) =SU(2) &&A X1V.
Let X be

X=SL(2,C)/1V SU(2)&&A.

&f l, ~, and ~ (I ~ I'+
I
z I'=1) are the parameters of 2

and (SU2), let us put

si——X 'v, s2=X 'N.

of E', where the bar denotes complex conjugation, p is
a complex number, and p is the parameter of E', Xq (C')
of the subgroup C' is defined by X& (C') = expl i (a2+ a2));
and the multiplier

n(s g) =Xi, (X')Xi, (C') .

Using (Sb) one gets, with the X's worked out for k',

n(s g) = exp[i(pPZ2 (8s2+Psi) +c c ).].
&(expl i(aisi+a2Z2+c. c.)) . (6)

One should remark that the representations of G are
very different from those of the Poincare group.

At the end one notices that it is quite simple and of
interest to construct the most general physically ac-
ceptable wave equations covariant under G. This point
of viev will, however, not be considered in the following.

III. APPLICATION TO NEUTRINO PHYSICS

A. Photon Polarization and Stokes Parameters

We now consider the physical implications of the
covariance of the Dirac equation y&B„@(x)=0 under the
group G. We intend to show that it supplies an internal
space closely connected with the Stokes parameters used
in photon physics and in which it is possible to charac-
terize two kinds of diferent neutrinos, v~ and v2. We
shall also prove that v~ and v2 can be identified with the
experimentally known i, and v„, but before this we must
recall basic facts of photon polarization.

In this paper, we consider only fully polarized beams
and there are two convenient ways to describe polarized
light: either in terms of two perpendicular plane
polarizations, or in terms of two circular polarizations.
Whichever description is used, the pure state of
polarization can be described by a function X v hich is a
linear superposition of the two states of polarization:

x=Cixi+C2x2, with

such that the density matrix p= 2 (1+P$;o,) takes here.
the form

(Cici) (Cic2))
(C2C2) (C2C2) I

where P is the coefficient of partial polarization (P= 1

here), o; (i= 1, 2, 3) stand for the Pauli matrices, and $;
are the three components of a vector in what is some-
times called Poincare space. For a convenient choice of
the axes in this space, we have

f2 1(or —1) fo——r fully vertical (or horizontal) plane
polarization,

$2
——1 (or —1) for fully plane polarization at 45' to

right (or left) of the vertical,
pi ——1 (or —1) for fully right (or left) circular

polarization.

(Other components in each case vanish. ) The Stokes
parameters P„(+=0, 1, 2, 3) are defined by the
relations

Po= ICil'+ IC2I',

P2 C1C2+C2C1, ——
P,= lc, l' —IC2I2~

(9a)
P2 = i(C2ci —Cic2),

Then one can obtain unitary irreducible representations
as before, the first line in relation (5b) becoming now

9—L(PZ2 8sl) (Bz2+Pzl) +(as2 Qs1) (0'zl+QS2)]

x(lsil'+ ls2l')-'(lsi'I'+ I" I')-'
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or by looking upon Cl and C2 as components of a spinor (10), C t1' satisfies the condition (without any summa-
on C', tion on i)

left invariant by the "polarization little group" E&

whose elements are upper triangular matrices. This
important connection between the nilpotent subgroups
of SL(2,C) and the Stokes parameters geometrizes the
action of SL(2,C) on the internal space of the Stokes
parameters.

Until now, this formalism is an abstract one and we

need to show how the electromagnetic field works with
it. Let us first recall that with the electromagnetic field

F„„one can associate a complex vector Q,) (i= 1, 2, 3):

g, =F,4+ (V'—1)F,2,

where i, j, k is a circular permutation of 1, 2, 3. For
plane waves (the only case which will be considered in
what follows) this vector is isotropic:

1 1'+122+|22= o. (10)

Now, it is well known that a complex vector (= (f,)
defines a class of bispinors C p' (n, P = 1, 2;i = 1, 2, 3) by
the relations

C'»'= |4+ (& —1)~2, 4'»'= ls —(Q —1)f 2',

(»)
where 0.0 is the 2)(2 identity matrix. The evident con-
nection between g; and P; (i= 1, 2, 3) supplies an in-

terpretation of the P„(for instance, Po is the circular
polarization, and so on).

It is more interesting to notice that Stokes parameters
are a mapping of the unit ball in C'=SL(2) C2/SL(2)
on the "Stokes cone" (P„P&=0) and this fact can be
formally related to the fact that we treat zero-mass
particles.

It is more usual to normalize the Stokes spinor 0' to
the energy-density value; which of the norm aliz ations
we utilize, will be clarified in every case separately. In
the case of partially polarized photon beams, the
Stokes formalism still works, but we have, of course,

I
&1

I

'+
I
~21' -'1.

We have the six fundamental polarization states

(P2=+Po, Pi=Pa=0), (Pi=+Po, P2=P2=0),
(Po ——&Po, Pl ——P2 ——0) .

It is easy to prove that each of the six particular
nilpotent subgroups X,, 1V,

' (i = 1, 2, 3), listed in the last
paragraph, leaves invariant one of these states. Thus, in
Wigner's terminology, we could call them "polarization
little groups" of G. For instance, to P~ ——Po, P2 ——P3 ——0
corresponds in C' the spinor

Besides, every
(C12 ) 4 11 C 12

g = QSL(2, C)

transform &p; thus, from (12b), 4 e', e.g. , transforms
according to the matrix

n' —2nP —P'
ny nB+—p r pB

2y5 P

Evidently relation (11) is invariant under the action of
SL(2,C) on y in virtue of (12a).

Recently, D e Young' claimed that the photon polar-
ization has to be described by a bispinor rather than by
a spinor; but relations (12a) and (12b) prove that this
claim is not necessary, at least as far as fully polarized
plane waves are concerned because the p and the 4 p'

supply the same Stokes parameters, which from (9a)
and (12a) and the definition of the C ' in terms of ( are
also given by

Po=
I
~»'I+1~22'I =—

I 2 1 I
2+

I v 2 I
',

(13)
(i=1,2,3).

(Now the meaning of the index i becomes clear )After.
giving the expression of the Stokes parameters in terms
of the electromagnetic field, we establish the connection
between photon polarization and our group G.

Let P„' be the four-vector energy-momentum density
of the electromagnetic field. In terms of the isotropic
complex vector P, , one can write'

where c is the light velocity, Eo is the 3&(3 identity
matrix, and E; are the generators of the 5o(3) algebra in
the self-representation. In the 5u(2) basis one has
cP„'=

2(halo„l

o) with q = -(cPo')"4u and (ulu)=1. One
immediately realizes that if we want to have energy
conservation with time, namely, B„P„'=0,a sufhcient

lgc2
(P2l

defines a complex isotropic vector ( by

Ahoy t 2 2(o 2 vl )1 t 2 22(F1+v 2'), (1»)

and thus bispinors satisfying (11), such as

@11 o 1 I 4 12 2'1 o'21 @22 2 2 (12b)

(and similar formulas for C' e2 and C' eo).
Let

the reason for the index i will be c ear ater (i, j, is aa late i P D. S. De Young, J. Math. Phys. 7, 1916 (1966).

CirCular PermutatiOn On 1, 2, 3). AS a COnSequenCe Of Co., San Francloco, ]962).
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B. Neutrinos and Stokes Parameters

In the Introduction, we proved that the neutrino
Dirac-Weyl equation is covariant under the group G.
Moreover, the Weyl equation, which is

o"8„%(x) =0 ) (15)

is covariant under SL(2) C', the real restriction of
which is G. In (15), %'(2:) is a two-component spinor on
C'. Formally, (15) is the same as (14), so that one can
extend to neutrinos the formalism of Stokes parameters,
and define them through (9b). Now, two important
differences between photons and neutrinos must be
noticed:

(1) For neutrinos, G is the covariance group of the
field equation, while for photons it is only the covariance
group of the potanzation equation.

(2) In terms of Stokes parameters, neutrinos are
always fully polarized, while this is not the case for
photons.

As we have seen before, the discrete symmetries K,
C, and EC, applied to the P„'s, supply new states of the
polarization of the photon. For neutrinos, since (15) is a
field equation and because %'(x)QSL(2) C'/SL(2), K
and C, which are extendible to some automorphisms of

(but not necessary) condition will be

0~8p(p =0.

Suppose now that we have a fully polarized plane wave
of the electromagnetic field. Then, by virtue of Maxwell
equations, one can prove with a long but straightforward
calculation that if d(/dt =0, the Stokes spinor q

necessarily satisfies the equation

(T~Bp,P =0 o

In other words, for fully polarized plane waves, and for
a time-independent electromagnetic field, the equation
immediately above is the photon polarization equation
in terms of its Stokes spinor q.

Thus, we obtain the result that the equation of photon
polarization for a fully polarized plane wave is covariant
under the group SL(2) C' for static electromagnetic
field. The photon polarization is described in an "in-
ternal" space, the Kahlerian manifold of the Stokes
parameters (P2——~zi ~'+ ~22(', si, z2EC) upon which the
SU(2) group acts. Let us now define the three opera-
tions E, C, and EC, all leaving Po invariant:

(sl s2) ~ (zl z2) C. (el+2) ~ ( s2 sl)

KC: (zi,s2) ~ (—z2, zi),

where the bars denote complex conjugation.
We have, then, a change in the polarization state

because K transforms q to its complex conjugate g and
C changes the orientation of the axis, right circular
polarization becoming left circular polarization and
vice versa.

the SL(2) C' group, give the possibility of having other
particles in our formalism. Explicitly, E and C are now
extended to the following automorphisms of SL(2) C':

K: (A, ai, a2) ~ (A, ai, a2), AQSL(2, C)

C: (A, ai, a2) ~ ((A
—'), —a2, ai), a=(ai, a2)EC'

M. Plato, Syrnetries de tyPe Lorentzien et interactions fortes
(Gauthier-Villars, Paris, 1967).

and in terms of the Stokes parameters we have the
following four neutrino states Lother automorphisms
give in addition only renormalization or relabeling of
the Stokes parameters, and therefore are not significant
physically):

P„, KP„, CP„, KCP„. (16)

One of us~ has shown that EC and C can be considered,
respectively, as parity and charge-conjugation operators
(not in Minkowski space, but induced from it in internal
space). This has two important consequences.

(1) Let us denote by vi, v2, vi, and v2 the four kinds
of neutrinos and by 4(vi), %(v2), 4'(vi), and 4'(v2) the
corresponding fields, where the tilde represents an
antiparticle. 4'(vi) and %(vi) are solutions of (15), while
fOr @(v2) and %(v2) We haVe the equatiOn

(15')

(o.& is the complex conjugate of o&).

(2) Since KC is the internal parity operator and does
not leave the Stokes parameters invariant, we cannot
have parity conservation even for free fields. This non-
conservation is strongly connected with the existence of
two kinds of neutrinos and depends only on the structure
of the group SL(2) C'. There is a difference from the
usual formalism where nonconservation of parity is
obtained by using either the two-dimensional Weyl
equation Lin which the nonconservation, is due to the
fact that parity transforms the D(-'„0) representation
into the D(0,—', ) one) or by using the four-dimensional
Dirac spinor complemented by subsidiary conditions
supplied by the factor (1&F2), which is responsible by
itself to the violation of parity. Instead, in our for-
malism of Stokes parameters, there is already non-
conservation of parity for free fields, whichever we use
to define Stokes parameters, a two-dimensional complex
spinor or a four-dimensional real one. LIn this last case,
it is sufficient to fit the definitions of K and C auto-
morphisms of the complex group SL(2) C' to its scalar
restriction which is the covariance group of the Dirac
equation with zero mass. )

Thus, we can sum up the results obtained now as
follows.

(1) The covariance of the Dirac-Weyl equation under
SL(2) C' implies the existence of an "internal space"
(because this group acts directly on fields, the rela-
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tivistic covariance being only induced) which is de-

scribed by the Stokes parameters.
(2) The automorphisms E, C, and ZC of. SL(2) C'

define in this space four kinds of neutrinos.

(S'P —X
i
P

i
)%'(P) =0 (17a)

With the help of Pauli matrices and in coordinate
representation, (17a) becomes

(17b)

where %i(x) stands for a two-component spinor. (For-
mally, one goes from (17) to the Weyl equation. by
putting X= 1, substituting m=0 in ~P

~

= (Po' —m')'~',

and then passing to coordinate representation. )
Now when the spin is collinear with momentum, every

4'(P) )or 0'i(x)j is a solution of (17a) Lor (17b)j.
Therefore, for such situations it will be natural to define

the Stokes parameters of the lepton with m&0 exactly
in the same manner that they were de6ned for neutrinos.
It should be remarked that for more general situations
the picture is more complicated and one has to define

the Stokes parameters, probably by utilizing those

%&(x) which are solutions of (17b).

C. t Grouy and Weak Interactions

Experimentally there exist four neutrinos, (v„v,) and

(i „,P„), which are, respectively, associated with electron
and muon. Naturally, the question arises: Can v& and v2

be identified with v, and v„P
Let us first consider the n.+~ p++v decay at rest.

The p, and v must be emitted in opposite directions so as
to conserve linear momentum. Besides, the decaying
particles will not carry away any orbital momentum and
since the initial x has no spin, the spins of the decaying
particles must also compensate each other. But since the
v has its spin along the momentum, p+ also has its spin
along the momentum. Thus, there exist particular
situations where the conservation laws imply the
collinearity of spin and momentum for leptons. This
situation arises again in every case where a zero-spin
boson decays into a pair of leptons, one of which is
necessarily a neutrino, and in similar situations.

In the P decay of the oriented Co" nucleus (Wu
experiment), we have a slightly different situation. In
the following we shall consider only the kind of situa-
tions for which the Stokes parameter formalism can be
generalized for leptons having m/0 (namely, in

collinear decays). Let (y„B„+m)%(x)=0'be the free-
field Dirac equation for a lepton with mass m. Let
S'P;/

~

P
~

be the helicity operator where i= 1, 2, 3, S' is
the spin, and

~

P
~

= (Pi'+P2'+P3')'in Now the eigen-

value equation of the helicity operator reads

In any case, the helicity eigenvalue equation (17b)
and the corresponding conjugate equation (from which

the mass of the lepton is eliminated) will give us the
massive lepton counterpart to the four neutrino states
that we had before. Moreover, as in the collinear

reactions, the neutrino helicity determines completely
the inuon (or electron) helicity, it will be natural to
identify the four massive lepton states with e+ and p+
and to justify the existence of couples (e,v,), (p, v„), etc.

IV. CONCLUSIONS

(a) From the field-theoretical point of view we have

given a very simple example of how, by symmetry
considerations on 6elds satisfying the Weyl equation,
we have in a natural way specified a new covariance
condition on 6eld operators in a way that is compatible
with Wightman's formulation of quantum 6eld theory.

By doing so, we have also constructed explicitly an
"internal space" for our example. This general idea of
looking at transformations on fields (hopefully, the
most general) that are compatible with the Poincare
action on space-time seems worthy of being applied to
more complicated examples.

(b) We certainly could have continued the game at
the end of Sec. III, and by assigning signs of Stokes
parameters (in accordance with the action of K, KC,
and C on the Stokes parameters) to all lepton states,
we could have obtained conservation of lepton and
muon numbers (modulo 2) in weak interactions by
supposing conservation of the sign of the Stokes parame-
ters. This aspect is quite obvious, and we do not discuss

it in detail.

(c) One should at last remark that the Weyl equa-

tion (or the zero-mass Dirac equation) are "covariant"
under the conformal group of space-time. Moreover,
the group 6 is not a subgroup of the 15-dimensional
conformal group. This (only apparent) contradiction is

very easily explained: The two notions of covariance

employed for the two groups in this case are not the
same. While for 6 the "covariance group" acts on the
fields and induces Poincare transformations on space-

time, for the conformal group the "covariance group"
acts on space-time and induces, in addition to its
Poincare subgroup action, space-time-dependent dila-

tations on fields.
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