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for s =1 and zeroth order; conditions ls

d 2)
— —1+—~l/ri'= —Erg o'

dx' xi
(5.24)

(
d' 2 2q—1+———~Pi' ———s exl/ p'

dx' x x'f (5.25)

are /=0 and /= 1 projections on Eq. (5.5), and finally
the /=0 projection on Eq. (5.6) is

fi'= se(x+sx')i" t'IV(a) W„,its(2x), v = 1 (5.27)

Thus Es is computed from (5.12), and one gets the usual
result that E&———(9/4) e'.

In the preceding we have demonstrated that the
amplitude-phase technique offers a direct and a practical
method for evaluating the second-order energy shift.
To solve the higher-order perturbation equations, we
would like to refer to the rapidly convergent variation-
iteration approach of Hirschfelder and collaborators. "

(d2 2
1+ lps = —ex/1 E2$0 ~

&dx' x
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We 6nd that neutral and SU{2) Pand consequently SU{2)XSU(2)g Sugawara current theories are
comp/etely e{tlivalent to canonical Lagrangian held theories of massless scalar fields. A Sugawara current
theory is obtained by eliminating all the massive fields in a theory of spontaneous symmetry brea&down
and retaining the Goldstone bosons only. The reverse is also true in that all Abelian or SU(2) Sugawara
theories are necessarily equivalent to these canonical representations, so that for these groups "Sugawara
physics" reduces simply to "Goldstone boson physics. "

NUMBER of recent papers' have dealt with the

~

~

suggestion first put forward by Sugawara' that
a dynamical theory could be formulated entirely in

terms of currents. In this approach, the currents are re-
garded as the fundamental dynamical variables and the
theory is de6ned by stipulating the equal-time commu-
tation algebra together with the explicit expression of
the stress-energy tensor in terms of the currents. The
Hilbert space must then be constructed as a representa-
tion of the commutation algebra, whereas the time
development of the system is determined by the Heisen-

berg equations of motion. It was hoped that this theory
would constitute an alternative to old-fashioned canoni-
cal Lagrangian field theories. However, in this paper we

show that the SU(2) Land consequently the SU(2))&
* Present address: Department of Theoretical Physics, Hebrew

University, Jerusalem, Israel.
' R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968);

D. H. Sharp, ibid. 165, 1867 (1968); C. G. Callen, R. F. Dashen,
and D. H. Sharp, ibid. 165, 1883 (1968).' H. Sugawara, Phys. Rev. 1'70, 1659 (1968).

SU(2)$ Sugawara current theory is corrtp/ete/y et/ttiva/en/
to a canonical Lagrangian theory of massless scalar
particles obtained by eliminating the massive fields in
a model of spontaneous symmetry breakdown while
retaining the Goldstone' bosons only. In other words,
"Sugawara physics" for SU(2) &&SU(2) is simply
"Goldstone boson physics. "
5,.We begin by illustrating our procedure for the case of
a single neutral Sugawara current where the mathe-
matics is simpler. We then proceed to extend our treat-
rnent to the SU(2) Sugawara current theory. Consider
a model of spontaneous symmetry breakdown in which
the symmetry-breaking scalar fields are elementary dy-
namical variables. A model of this type, previously con-
sidered by Higgs, 4 is defined by the Lagrangian

2 = —r)„St8„S+V(StS), (1)
3 J. Goldstone, Nuovo Cimento IQ, 154 (1961); J. Goldstone,

A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).
4 P. W. Higgs, Phys. Rev. Letters 13, 508 (1964); Phys. Rev.

145, 1156 (1966).
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which is invariant under the transformation

S~ei S,
together with the polar decomposition

S= (1/V2) pe"

(2)

(3)

and the broken-symmetry condition (p)o= rt. Rewriting
the Lagrangian (1) in terms of the polar variables (3)
and the physical field p'= p+rt, we have

s[Bsp Bup+2V(p+rt) ]
s[—n'B,BB,B (2W—

' p"—)B.BB.B) (4)

Clearly p' represents the field operator of a massive par-
ticle and 8 the field operator of a massless scalar particle,
i.e., the Goldstone boson.

We now show how the Sugawara current theory arises
within the context of this model. The stress-energy
tensor may be expressed in terms of the massive field
operator and the current associated with the symmetry.
From the Lagrangian (1), we obtain the stress-energy
tensor

obtained from (4) by retaining the Goldstone boson
only. Moreover, the Sugawara current (8) is associated
with the symmetry transformation B~ B+n.

An SU(2) Sugawara current theory can be derived
from a theory of spontaneous symmetry breakdown in
an analogous manner. Starting with a complex Lorentz
scalar and isospinor theory described by the Lagrangian

u —+exp(sir y )u,

we make the polar decomposition

(15)

Q= (1/~2) pe""x= ( /~2) p
"'x

where g is a constant complex unit isospinor, and impose
the broken-symmetry condition (p)s

——rt. The Lagran-
gian then takes the form

a[Bop Bpp+(rt+p )'B. B.)+V(p') (17)

B—„utB„Q+V(utu),

which is invariant under the U(2) gauge transformation'

0„„=[B„StB„S+B,StB„S+B„„Z]

and the current

(5)

g .~ M
—i8 r() pic v (18)

j„= i (StB„—S B„StS—)

associated with the transformation (2). In terms of the
polar variables (3), these become

and p= p'+it. The B fields correspond to the Goldstone
bosons. The SU(2) currents associated with the trans-
formation (15) are

B„„= {B„PB„P+—B„pB„p—B„„[B,PB,P —2 V(p )])
+(1/2p )(j.j.+jj. Bsj j -) (—7)

Furthermore, the canonical commutation relations
imply the current-current commutation rules

j„=,'i(B„utr'u-Qtr'B„u)—,

which in terms of the polar variables becomes

7 2~p2gi8 rgb
—i8.r

The stress-energy tensor

(19a)

(19b)

[j,(x,t),j,(x', t))= [j,(x,t),j,(x', t)]= 0,

[js(X,t),j,(X',t)]= iB,(Ps(—X)8lsi(x X')). —
(9) Hpy= Bsu Byu+ Byu Byu+ BsyZ

(10) may then be written as

(20a)

At the present stage our model is a "mixed" Sugawara
theory in the sense that the field operator p' appears in
place of the usual Sugawara constant and the O„„con-
tains additional terms relating to the massive field p. To
reduce our model to a "pure" Sugawara theory it suKces
to eliminate the massive Geld via the constraint p'= g'
=C, where C is the Sugawara constant. The stress-
energy tensor (7) thus goes over into

Bs.=(1/2C)List +jis Byj.j )—[js'(x, t), jss(x', t)) = ie,s,jp'(s) B l'i(x —x'), (21a)

[js (x,t),j,'(x', t))= ie, &,j,'(x) 8 "&(x—x')
——,'iB;(p'(x) 6 &'&(x—x')), (21b)

s {BsPByp+ ByPBsp Bsy[BypByp 2V(P )))
+ (2/p )[j„j„+j„j„—h„j„,j .], (20b)

while the canonical commutation relations imply the
current-current commutation rules

and the relevant coinmutation relation (10) becomes

[js(x,t),j;(x,'t)) = iCB,B&'&(—x x') . —(12)
[j (x,t),ji'(x', t))=0. (21c)

We eliminate the massive field via the constraint 4p'
= 4 rt'= rC. Equations (20) and (21) are then the defining
equations of the Sugawara current theory. To sum up,
our canonical representation of the SU(2) Sugawara

These are the de&ning equations of the Sugawara cur-
rent theory for a single neutral current. We have arrived
at a canonical representation of the neutral Sugawara
theory based on the Lagrangian

4——~CD„08„8
~a runs from 0 to 3, ~0 is the unit 2)&2 matrix, and ~ are the

(13) usual isotopic-spin matrices.
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g = -2CO„'0„' (22)

obtained from (17) by retaining the Goldstone bosons

only. The Sugawara currents (19) are associated with
the symmetry transformation

theory consists of interacting massless bosons and is
defined by the Lagrangian'

Bardakci and Halpern' have shown that this is the most
general solution to Eq. (27a). Moreover, Eq. (27b) is the
Lagrangian equation of motion for the massless scalar
fields. To establish complete equivalence it must still be
shown that the current algebra implies the canonical
commutation relations for the 0 fields when the j„are
given by Eq. (28). This is done as follows. 7 From Eqs.
(21) and (28) one derives the commutation relations

ei0 s ~ ei-,'f. reie. r

The Lagrangian equations of motion are

(23)
Lj 0(x t) &is(c', il ~ rj

ra&'e.

~its�&

(x

The crucial point is that any neutral or SU(2)
Sugawara current theory is necessarily equivalent to
a canonical representation obtained in this manner. To
see this for the single neutral-current theory, we apply
the Heisenberg equations of motion to derive the
equations

hei 8.r
=-,tD, sOb, ' 8"'(x—x'), (29)

where D, b and O, s are defined by

e—is ~ rraeis ~ r —D (g) b (3O)

p jv ~v jp, = Op

B„j„=o

(24a)
ie ig r gi—g r Q~ b

ab7
80

(31)

by stra ghtforward application of the commutation rela-
tions. From (24a) we infer that j„can be written in the
form

j„=CB„tII,

and from (24b) it follows that

0=0.

(25a)

(25b)

The identification (25a) reduces the first of the Sugawara
equations of motion to an identity, while the current
conservation law (24b) is equivalent to the Lagrangian
equation of motion (25b). Finally, the current-current
commutation relation (12) implies that

LC8(x, t),e(x', t) $= —i&"(x—x') . (26)

$n a similar manner we prove that any SU(2)
Sugawara current theory must necessarily be equivalent
to the canonical model previously obtained. Consider
first the equations of motion for the SU(2) theory:

t)„j, r B„j„r=(i/2C)—/j„r, j, rj, (27a)

(27b)

Equation (27a) is reduced to an identity by setting

j„=2CLe' B„e ' .
' This canonical representation of the Sugawara theory was also

found by 8ardakci and Halpern using completely di6'erent
methods: K. Bardakci and M. B. Halpern, Phys. Rev. 1/2, 1541
(&9C8).

Use of (30) and (31) allows us to write the fourth compo-
nents of the currents (28) as

js = —-'D se —'vr'

7r'= 4CO~. t)o'.

(32)

(33)

The m correspond to the canonically conjugate mo-
menta of the 0 as derived from the Lagrangian (22).
Substituting (32) into (29) yields

~ V. Freundlich, Phys. Rev. (to be published).'K. Bardakci, Y. Frishman, and M. B. Halpern, Phys.
'

Rev.
170, i353 (1968).

s R. Finkelstein and L. Staunton, Ann. Phys. (N. Y.) 54, 97
(1969).

L~'(x, t),0&(x',t)j= —ig.,g& i(» —x') (34)

The "seemingly" noncanonical representation of the
Sugawara theory obtained by Bardakci, Frishman, and
Halpern' would appear to contradict the above equiva-
lence theorems. - This representation is based on a par-
ticular zero-mass limit of the massive Yang-Mills
theory. However, it can be shown~ that in this limit the
Yang-Mills theory actually reduces to the canonical
theory of massless scalar fields which we have considered
in this paper. The reason for this reduction is that the
massive Yang-Mills fields can be decomposed into a set
of transverse vector fields and massless scalar fields. '
The limit considered by Bardakci et al. consists precisely
in retaining the longitudinal modes while discarding the
transverse ones.


