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The scattering-operator theory developed in a previous publication (I) by one of us (F. R.) is applied
here to "@""models. The fundamental equation for the scattering operator is solved in perturbation expan-
sion. A suitable graphic representation provides diagrams for easier computation. The p model is solved
to second and third order as an example, and o6'-mass-shell unitarity is checked explicitly. General argu-
ments are presented to all orders to show in perturbation expansion, and for the preliminary formulation
(I), that (a) for the models which are nonrenorrnalizable in the conventional theory (n)4) there is no
solution of the S-operator equation, and (b) for the renormalizable models (n=3 and 4) the solution of
the S-operator equation is identical to the renormalized conventional theory if the interaction is suitably
chosen. The theory is finite throughout and involves no renormalizations. There are no cutoffs except a
technical one for the space-time volume which is removed at the end of the calculation.

I. INTRODUCTION
' 'N a previous paper' by one of us, a theory of the
~ - scattering operator (TSO) was developed. It differs
in several respects from a quantum field theory. Most
notably, it does not assume the existence of an in-
terpolating field from which the scattering matrix can
be derived. Only free in- and out-fields enter in the
assumptions. While the theory postulates Poincare in-
variance, and therefore implies the existence of a
Hamiltonian defined as the infinitesimal generator of
time translations, this operator is not used explicitly,
and no pointwise time translation is carried out. The
dynamics of the theory is characterized by an inter-
action operator (more precisely an operator-valued
distribution of point support) and the observable on-
mass-shell scattering matrix elements are obtained as
the mass-shell limits of more general (off-mass-shell)
quantities, &o„(xi,. . .,x„).

The &o„(xi,. . . ,x„)will be referred to as the coeiTicients
of the strortg scattering operator. (The meaning of
"strong" was carefully deiined in I.) They are complex-
valued generalized functions defined over a suitable test
function space 4. Because of translation invariance
they depend only on n —1 independent four-vectors.
x,—x„(i= 1, . . . , n 1). Restricting ourselv—es first to a
single self-interacting field characterized by the free
field a(x) of mass rrt) 0, we have as our Hilbert space R
the Fock space generated by this field. Details can be
found in I.

The mass-shell restriction of the &o„yields the (usual)
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scattering operator

" (—i)"
S=1+P

tZ.
co (xi, . . .,x ):a(xi) a(x ):

d'xi, . . . ,d'x . (1.1)

With every operator in 3C, e.g., S, one can associate
an operator-valued generalized function symbolically
written like a derivative, e.g., 8S/ba(x), and called
the operator derivative. For example, (bSjba, y) is an
operator in X for all p&C. It must be emphasized that
the operator derivative calmof, be obtained from the
knowledge of the operator, since the off-mass-shell be-
havior of the co„cannot be inferred from the on-mass-
shell behavior. It is convenient, however, to express
the or„ in general by operator derivatives. In particular,

-s-S
con(xi) ~ ~ ~ pXn) =

~ ~8a(xi) 8a(x„)
(1.2)

Here all arguments are off the mass shell. A mathe-
matical definition of the operator derivative was given
in Appendix 2 of I, and references were given there.

In I the concept of strong equations was introduced.
These are equations between operators in 3C or between
operator-valued distributions which are identities in the
Wick products. They are therefore equivalent to in-
finite sets of c-number equations between the coefficient
functions of the Wick products of the free fields M,tid
also og the mass shell. In these equations some or all of
the arguments of these functions may be off the mass
shell.

The basic postulates of the theory include unitarity
and causality as strong, i.e., off-mass-shell statements
giving restrictions on the co„off the mass shell. These
restrictions can be expressed as one strong equation for
the (strong) S operator. This and the equivalent in-
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THEORY OF THE SCATTERING OPERATOR. II

finite set of simultaneous c-number equations were
derived in I.

These equations will now be recalled since they shall
be needed later, but we shall cast them in a slightly dif-
ferent form which is more convenient for the use of
perturbation expansions.

It will be convenient to use subscripts for the operator
derivatives with respect to the in-fields; e.g.,

bS
=—S,

ba;.(x)

O'S
=—S,„, etc. (1.3)

ba;„(x)ba;.„(y)

The fundamental equation I (4.12) then reads'

StS,„=—iP(x,y)+B.„ReS,tS„+P,„SJS„

+P„.S„tS,. (1.4)

The convolutions P „, P„„and B,„ involve known
tempered distributions and are given in I. The operator-
valued distribution P(x,y) is real and belongs to the
null space Pz(x,y) of 1 8,„. It —is related to S by I
(4.11):

P(x,y)—= J3 „ImStS „—. (1.5)

Equation (1.4) is therefore linear-homogeneous in S
and in St. If we destroy the homogeneity in S~, we shall
be able to reduce (1.4) in perturbation expansion to a
recursion relation. %ith the notation

D,„=S,tS„, E,„=(St—1)S,—„, (1.6)

part of Eq. (1.7). This is also the part which contains
the operator b(x,y). In case the last two terms do not
have a covariant sum, b(x,y) would also have to contain
noncovariant terms, since the left side is covariant.
This case, however, does not arise, as will be shown ex-
plicitly in the following sections. The reason for this
can be seen in the derivation of Eq. (4.10) of I, where the
P „enter only acting on an operator-valued generalized
function (StS„) which has no support for spacelike
x—y. This support property is by I(2.5) a require-
ment of the causality assumption.

%e shall now specify the interaction by a strong
operator. That operator must determine the strong
operator b(x,y) uniquely. But b(x,y) contains also
other terms. The reason for this lies in the fact that its
off-mass-shell operator derivatives contribute to the or„
which are completely symmetric functions of their

arguments. Thus b(x,y) will also contain terms necessary
for this symmetrization. We also note that the P,„
terms can never produce a function f(x,y)QS+(x,y). If
5 „ is to contain such terms, they must come from
b(x,y). Thus, we write

b(x,y) =e(x,y)+s(x,y),

where v(x, y) is the interaction and s(x,y) are terms that
are uniquely determined from the symmetrization.
Both are in P&(x,y) and are real.

In order to solve (1.7), the following Wick expansions
will be used:

and the identity P „+P„,+B,„—= 1 noted in I, Eqs.
(1.4) and (1.5) can be combined into

S~=ib(x,y)—+B y Re(D ~
—P. y)+P „(D y

—P. „)

n=o
D...(*,y, r, .",~.): (~)"'(~-):

n

wry ~«;,

Again,
+Ps.(Du. —~") (1 7)

b(x,y) =— 8,„ImS,„—(1 8)

~.,= Z ~-+.(x,y, ~., ",~-):a(~.) '(~-):
n=o

is a real operator-valued distribution in Fs(x,y).
Equation (1.7) is inhomogeneous in St.

The operators P „, etc., just like the better-known
function 8(xo—y'), are not Lorentz covariant, although
their products with other functions can be so if these
functions have suitable properties. The individual
terms of (1.7) are therefore in general not covariant.
However, separation of (1.7) into real and imaginary
parts,

—ReS,„=Re(D,„—E „), (1.7')

ImS, y
=b(x,y—)+P,„Im(D,„E,y)—

+P„,Im(D.„—E„,), (1.7")

shows that the P „actually enter only in the imaginary

' The strong equality = was defined in I. ReS means —,
' (S+5~),

etc.

xi' A;,
00

b(x,y) = P—
n=o ~I

b.+g(x,y, gg, . . ., & )

:a(h) "a(4):(d«) (1»)
We want to emphasize that these expansions hold on
account of the completeness of the in-fields. They are
not perturbation expansions.

The strong equation (1.7) now reduces to the
(equivalent) infinite set of simultaneous c-number
equations for the co of (1.1):

2(—~)"/~a~-+2(xy ")=(~/~')b-+2(*3" )
+&"ReED-+2(xy ")—&-+2(xy ")3
+P*.LD-+ (*y" )—&-+ (xy )3
+P"t D-+~(yx ) —&-+~(yx )3 (~~& o) (112)

The quantities D and E are bilinear functions of the co
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as was given explicitly in I(5.4)—(5.7). Since the o& are
symmetric functions of their arguments, the right-hand
side of (1.12) must be symmetrized. This operation is
not explicitly indicated in (1.12). Equation (1.12) is
equivalent to I(5.2) and can easily be reduced to it by
use of the identity I(4.8) and a combination of the
8,„ImE,„and r)(x,y) terms into P(x,y).

In order to solve equation (1.7) or equivalently
(1.12);for a given interaction, we shall have to take
recourse to perturbation expansions, i.e., to the as-
sumption that the solution has an expansion in a param-
eter (the coupling constant, say) which is at least an
asymptotic expansion. In that case, (1.12) reduces to a
recursion relation for or & ' of order m in terms of lower-
order o&„( ') (m'(m). The resulting perturbation solu-
tions will be found to be identical to the corresponding
results of reeormati2'ed conventional theory. We shall
therefore be able to answer the following questions of
long standing: Given the finite predictions of the con-
ventional theory, i.e., of the Tomonaga-Schwinger-
Feynman-Dyson quantum 6eld theory of the late
forties, which (at least for electrodynamics) agrees so
well with experiment, of what equation are these pre-
dictions the solutions? The theory of the late forties
has no answer to this question because of the diverg-
ences which exist in its equations until after re-
normalization. The present theory can point to Eq.
(1.7) as the fundamental (divergence-free) equation
which yields these results.

In the next section we shall develop a graphical
representation for D and K Just as the Feynman
diagrams, these graphs will be very convenient com-
putational aids. But these are at first rot perturbation
approximations.

In Secs. 3 and 4 the graphical representation of Sec. 2

will be used to lowest orders in perturbation expansion
for a specific model (the P' theory). In Sec. 5 we verify
that strong unitarity is indeed satisfied for the preceding
results. Finally, in Sec. 6 the "P"model" is considered
to all orders of perturbation expansion and it is proven
that the present theory yields exactly the same results
as the reeormalised conventional theory when the inter-
action is suitably chosen. The last section summarizes
the situation.

2. GRAPHIC REPRESENTATION AND
PERTURBATION EXPANSION

Fro. 1. Representation of the integral (2.1). The intermediate k
lines represent 6+ functions and are integrated over.

~m& (m) D Q gmD (m)

gmg (m)

(2.2)

have a meaning at least in an asymptotic sense.
If D„„ I, or E „ I, are constructed from co*&"& and

co&'& we shall write D„„.~&")') or 8 ~ I ~"&(' Then

with P &~ k, (7)k. Since the o& are symmetric in their argu-
ments, we can say that they enter with k "contracted"
arguments each. We represent each ~ by a circle and the
gD+ by k lines connecting the two circles (internal
lines). The remaining arguments of each o& are drawn
as lines emanating from the respective circles (external
lines). The whole integral (2.1) then looks like in Fig. 1,
the circle for co„ to the left of the one for co, as in the
integral.

In (1.12) the arguments x and y of D and E are singled
out. We shall draw the external lines labeled by x and y
downward, the other external lines upward. The ex-
ternal line y always belongs to the circle on the right.
The external line x belongs either to the left circle
(case D) or to the right circle (case L'). The numerical
factor in front of the integral is obtained as follows: For
m external lines upward on the left (right) circle, there
is a factor i /m! (( i) /m—!), and for the k internal
lines a factor ( i)"/k!.—With these instructions the
diagrams (a) and (b) of Fig. 2 uniquely determine the
expressions D„.„),and E„„&,respectively, of I(5.5)
and I(5.7). In these cases p=n'+1, q=n"+1 for (a),
and P=n', (7=n"+2 for (b). The quantities D„+s and
A'„+s of (1.12) are obtained by summing D„„.), and
E„„"I„respectively, over all e', e", and k so that
n'+n" —2k=n and by symmetrizing over the upward
external lines.

When we want to solve Eq. (1.12) by perturba, tion
expansion, we assume that there exists a parameter g
such that the sums

The quantities D and E of (1.7) contain integrals
of the form'

n'-k n"-k n'-k n"-k

(a) (b)
X

' See I(5.4)-(5.7).

Fro. 2. Representation of (a) D .„.s and (b) E„.„.s. The incom-
ing n' k lines carr—y a factor i&"' "&/(n' k)! the inte—rmediate k
lines ( i)s/k!, and—xfmal n"—k lines ( i)("" "&/(n" —k)!. No-
factor is attached to the x and y lines.
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(ignoring the symmetrization), we have

D q&r) P P D, „~&e)&r e)—
e=l n'n" I&;

It follows from (2.5) that

&a &'&(x,y, .. .)=0, m~3
"'(,y, t) = —b(*-y)b(y-k) (k),

(3.3)

('+ +'+ 2~ =~) (2 3) and consequently

and an analogous equation for E +&.
The perturbation ansatz (2.2) solves (1.12) in the

sense that this equation becomes a recursion relation
for the co( ' in terms of co&"~ with r&m. Thus, given
b„+2 of (1.11) in perturbation expansion,

b = Q g"b &"& b & )=~ &")+s„&")
m=1

(2.4)

3. P' MODEL TO FIRST AND SECOND ORDERS

In the present model, we identify the interaction
by the lowest-order term of &&(x,y) in perturbation ex-
pansion. This term corresponds to the vertex part of
the usual theory. For the so-called P' model, we take'

~")(x,y) = b(x —y) ~(y) ~(y),

or, equivalently,

'(x,y, k) = b(x y)b(y —k)~(C),—
e„&')=0 for e/3.

(3 1)

(3 2)

The factor o.(x) is a real c-number function with
support in R4 which vanishes sufficiently fast for large
argument so that the first-order S operator S") given
in (3.4) is an operator on K. The function 0(x) has no
physical significance and the limit 0 —& 1 is taken at the
end of the calculation. It is forced upon us by mathe-
matical requirements and is not entirely unexpected.
The perturbation expression 5") is heuristically related
to the interaction Hamiltonian and Haag's theorem
prohibits the existence in Fock space of a relativistic
total Hamiltonian in a nontrivial theory. The need for
0.(x) has the unattractive consequence that the theory
is not Poincare invariant until after the limit 0 —+ 1 is
taken.

with v„(:"&0,one has

( i)"c—o„+,&'&(xy ) =i&)„+,")(xy ), (2.5)

since D and E do not contribute to first order. For
higher orders, r& 1, D and E may both contribute, and
(1.12) holds in each order r.

The diagrams in perturbation expansion are the same
as in the nonperturbative case, except that each circle
that refers to an ~ with a fixed number of variables
now also refers to a fixed order of perturbation
approximation.

(3.4)

XAp'(( —», m') d4]d4)&

1
p3(m', e&') d)&' 0 (&)A+(& g, )&')—

X~(n)d4$d4n

If a. were identically 1, this integral would not exist.
But if 0. is as indicated, the integral does exist. In the
limit 0 —+ 1, i.e., with Fourier transform 0(p) ~ b4(p),
the integral vanishes because p3 has no support at ~'=0.
Thus

hmlls& & lo)ll =o.
&r ~1

(3.5)

This is in fact necessary if we are to have S&') =1 and
Slo)= lo). The global translation invariance which 0

destroys is therefore recovered in this limit.
We now turn to the evaluation of cu2&')(x, y), the self-

energy diagram. Using the graphs of Sec. 2, we see that
E&&')(x,y)=0 because no such diagram can be con-
structed with I&&"& insertions alone. For D2&"(x,y),
we find

(—i)'
D "'(x y) = — (x)~+'(x—y) (y)

2I

1.= ——z2
4m'

p2(m', )&')d)&'0 (x)

XAp(x —y, )&')&r(y), (3.6)
so that

00

ReD~ "(x,y) = — p2(m', &&') d~'o (x)
4

XA)(x—y, «')0(y) . (3.7)

For an internal consistency check, we can derive (3.1)
from this operator. We then check easily that (1.8) is
satisfied in first order.

The form (3.4) of S&" is the reason for relating the
theory of the S operator based on the interaction (3.1)
to the p' model of the conventional theory.

Now S(') must be an operator in K. Thus, since
lo) is an eigenvector of S and the perturbation ex-
pansion is assumed to exist term by term, lls&" lo)ll
must exist. But'

1
lls&» lo)ll'= (ol s&»ts&» lo) =—

31

' The powers of b,+ are well known. See, e.g., J. Gomatam and
In the following we shall work exclusively with the in-fields F. Rohrlich, J. Math. Phys. 10, 614 (1969), and references given

and shall therefore drop all subscripts "in." there.
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Here we have used

&+'(x—y, l&l') =i ps(r/s', a')da'&~(x —y, K'), (3.8)
4m'

with

ps (/rls as) (1 6&rs)
—lL 1—(2r&s/K) 2]1/ 20(&2 4r&&2) (3 9)

Because ReD2&'~ involves a homogeneous 6 function,
which restricts the momentum to a mass shell K&m,
the action of B» on ReDs&'& vanishes. Equation (1.12)
therefore yields

~r "'(x,y) =if s"'(xa)+P"Ds"'(x,X)+P"Dl"'(X,x),

or

o», "(x,y) =ibs&" (x,y)
ls $P»/3+'—(x y, m')+P—„,A~'(y x, m'—)]. (3.10)

In the last equality the limit (7 —+ 1 has been taken.
Now blas&(x, y) is a tempered distribution with point

support at x'=y'. In p space it is therefore a poly-
nomial in p . The restriction to 5 on which P,„and P„,
are de6ned (see Appendix 5 of I) limits this polynomial
to powers not exceeding the third. The spectral condi-
tions (assumption I of Paper I), in particular the
stability of the one-particle state of mass m, require
that tost' & (p) vanish on the mass shell like (p'+nl')'. As

we shall see below, the square bracket in (3.10) has
this property Lsee (3.12) below]. It follows that blas&

would have to be a multiple of (p'+m')', i.e. , involve

(Ps)'. Since this is not possible, bl as& must vanish. ' This
means that to second order the interaction cannot con-
tain a Wick monomial of second degree.

If we set the mass in P,„equal to m, the mass of the
asymptotic free field (a choice which will be seen neces-

sary below), we find

Equation (3.9) is exactly the Umezawa-Kamefuchi-
Kallen-Lehmann spectral representation for the re-
zormuBMd self-energy graph to second order in g.

That (3.12) is exactly the renormalized result of the
conventional theory can easily be demonstrated by the
technique of renormalization of the Feynman-Dyson
theory in spectral form. ~

We emphasize the fact that the present theory
yielded directly the physical (i.e., in the language of the
conventional theory, the "renormalized") result. No
renormalization process is involved here. Nor could
there have been such a process, since the spectral as-
sumptions ensure that the only mass which enters the
theory is the physical mass. No bare particles or bare
fields occur in the present theory.

Now we return to the point made earlier that the
mass in P,„cannot be arbitrary but must be the same
physical mass m which characterizes the asymptotic
free Geld. Had we taken a mass p, /m in P „,we would
have obtained a factor (p'+p, ')' in the Fourier trans-
form of the last line of (3.10) instead of (p'+m')' and
there is no b2&2) that would correct this behavior.

The graphical representation of Eq. (1.12) shows that
to second order in g we have besides co2&" also non-

vanishing terms +4~') and ~6& ~. For +4&') we find the
equation

s(—i)'~4"&(x y, b,h) =i~4"&(xa' tt 6)
+8» Re(D4t'& —E4t")(x y, $»$s)

PP (D4&'& —E4t'&)(x,yi(»]s)
+P (D4&'& E4t'&) (y,x, f—» $s) . (3.13)

Substitution of (3.3) for o&st'& into (2.3) and using
8»—= h4(x —y) gives (cf. Fig. 3)

D "'(x,3,&&, $ ) = —si~(x)~(3)~+(x—3)
X(5&As„+5s.~t,), (3.1&)

~s "&(x—y) = —si ps(m', a') d/i'K, K„ E4&'&(x,y, b, ps) = ', io($t)/r-(x)/&&+($i x)t&»t&—,s. (3.15)

8(x' —y') h~(x —y, ~')
X +(x=y)

K2 m2 2

ps(r&l', ~')d/r'K, K„

/&„(x —y, /t')

X—,(3.11)
K2 m2 2

Since 0- is real, ReD4") and ReE4' ) diBer from D4"'
and E4&'& simply by a replacement of i+ by —ls/), i. Be-
cause of the factor 6,„ the null space of P,„and P„,
contains E4/s&(x, y, b, fs). Thus (3.13) becomes

o&4 (xiyikl&$2) s(~la(x $)(5lxf&sy+bsz51&&)

+~.(k —x)b"& ]—l Lf "&(,y, f,b)
—P*r~.(x—y)(~l &sw+~s*&lw)+(x=3)] (3 16)

~s"'(P) =— P +rll
ps(m', //')

2(2 &' '—m')

where 6, is the causal (invariant) function. In p space
this becomes

X& Xz Xz X&

2
X

(a)

(2) ~',
4

X —.(3.»)
p +K —Ze

' J. G. Wray LJ. Math. Phys. 9, 552 (1969)g shows that the

Fro. 3. The graphs for (a) D4&'& and (b) E4& & The in-fields are.
labeled x1, x2, which corresponds to $&, (2 in Eq. (3.14).

stability of the vacuum and of the one-particle states imply that
8 „co(x,y) =0. Applying 8, to our equation also yields v2&'& =0.

7 F. Rohrlich, Nuovo Cimento Letters 2, 199 (1969).



THEORY OF THE SCATTERING OPERATOR. II

The symbol Ar, (x—y) is delned to be hr (x—y) o (x)o (y).
At this point we must decide whether or not we want an
interaction which contributes a term e4"). If we assume
a pure $3-model in which the interaction is restricted
to the first-order term (3.1) and (3.2), then 2&4&2& =0 and
only s4~') contributes:

$4 (x)yq(lp$2) (P4,'26rr(x $2)+I 2gdr($2 x)]&&ey812 ~

The four-point function in second order then becomes

(xyyy fly $2) 2S~ le(x y) fIlz~23

+2i6SI' „A.(x y)8»—82„, (3.17)

where S is the symmetrization operator for all varibles.
However, the pure $3 interaction is not the one which

yields the results of the conventional theory. To re-
produce these, we separate the convolution operator
E,„as follows:

X, XqX3 X~

Fzo. 4. Diagrammatic representation of typical
D and 8 terms in co6(~).

In the following, we shall aim to obtain the results of
the renormalized conventional theory. We shall choose
the interaction accordingly, ignore the possibility of the
pure $3 model, and adopt (3.21) rather than (3.17).

The strong four-point 5 operator in second order
follows uniquely from (3.21):

S4"'——3i d, (x—y)o (x)o (y): &32(x)&32(y):d'xd'y, (3.23)

I'*3=ii*w+X*u, ~ 2=~(x' —y'), (3.18)

where X,„f(x,y)QF»(x, y). Of course, this separation is
not de6ned on all the space on which I' „acts, but only
on a subspace Q& F. However, D4&"Qg, so that (3.18)
is permitted in our case. We now choose the interaction
so that its contribution to n4(') exactly cancels all the
X terms. The only b4") terms left will then be those
needed for symmetrization, s4&". Equation (3.17)
then becomes

~4"'(x y, b, b) 2=S~—l.(x y)&»—&2,

—',iS(s4&"(x,y, pl, $2) —6&3.(x—y)

X (84 82„+82,&&l„)+(x y)]. (3.19)

Using A&4(x y)+&&3(y x)—=25p(x y—), we see —that
we must take for the unsymmetrized term,

s4&'&(x,y, g„&2)

fh&3.(x &2)+—All. (&2 x—)]o,„f&l2, (3.—20)

as can easily be checked by computing

«'&(,y, ~,~.) =(&*..."&)'

(3.24)

and start with the basic equations I(5.4) to I(5.7). In
obvious notation

D3&'& =S-,'&&,22&&„34o(x)o (y)

= —Z ~-;~,. ().(y)
24 ('~) (»)

(3.25)

The six-point function to second order is not a con-
nected graph and is a trivial product of two erst-order
three-point functions —except for symmetrization and
a suitable numerical factor (see Fig. 4). Since we shall
use co6(" later to exhibit unitarity, the computation is
given explicitly below.

We use the abbreviation

analogous to the case of the pure $3 model. We then
have The sum extends over all six ways of separating the

four $; into pairs. Similarly,
&'&(*y 4,~) = —-'SP .(*—y)s *s„

22dp, (x y) t'&—l,t'&2„]—
=3iSa..(x—y) 83.82„

=i[A.,(x y) 8»82„+—A„(y b) b,„bl2—

+h, ~($2 )l)8l„82~] —(3.21).
In the limit 0- —+ 1 this expression is identical with the
second-order four-point function of the conventional
theory. In order to achieve this result, the interaction
contribution of b4(') must be chosen to be

So4"'(x,y, (l, $2) =Sx,„d,(x—y) 8»8». (3.22)

1
E4"' = —S—&&3238.„4o(tl)o (x)

53t
4=-—Z ~,.~. '.(J).(*), (326)

24 '=r

where j, k, l take on the three values different from z.

Since D6"' and E6(') are real, e4") cannot contribute to
the symmetrization, and since there are therefore also
no noncovariant terms, 2&4&'& =0. Thus, from (1.12)

(g6(2) —D6(2) g6(2)
4f
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If we use $& ——x, $6 ——y, &06&" takes on the symmetric form This expression vanishes because of the factor

"'(k, ",$)=-'Z ~' ~ (5) (5) (327)

The summation extends over all (',) combinations of
taking groups of three out of the six P;.

The strong six-point 5 operator in second order
based on (3.27) is uniquely

g

S&"'= —— 0 (x)0 (y):a'(x) a'(y): d'xd'y. (3.28)
2

4. P' MODEL TO THIRD ORDER

(p2+m2) 2 )(p2+m2)

The k=2 terms are shown in Fig. 6 after insertion of
co3&'& and ~4('&. They lead to triangle diagrams and to
diagrams with a self-energy insertion in an external line
which we will call 6sh diagrams. The last Gsh diagram
in Fig. 6 contains a factor b(x —y) and is therefore in the
null space of both P,„and P„,. We split the complete
third-order vertex into two parts, the 6sh terms and the
triangle terms:

For eo3"& we 6nd the equation
&0&'3'(x,y,s) = iF3&'&+iT3&3'. (4.3)

ianna&'—&(x,y,s) =ib3&'&(x,y,s)+B,„Re(D&&"—E3&'&)

&& (x,y,s)+P,„(D3&'&—Ea&3&) (xys)

+&w.(D3"'—~3"')(y») (4 1)

The nonvanishing Gsh diagrams only contribute to D
terms. Collecting both the P,„and the P„, terms, we
Gnd' /introducing b,„=b(x—y) againj

+b.. d'~~, *(x—~)~,'(~—y) +(x-y).

The diagrams for D3&" and E3&'~ are conveniently, 4

written down by exhausting the number of possible ' '" "' ~ +

internal lines 4=1, 2, 3 in Eqs. I(5.4)-(5.7). These
diagrams are shown in Fig. 5.

The terms with one internal 6+-line (&=1) vanish.
We show this on the 6rst one which reads

8(x—s)0 (x) d'P 4+(x—P)(vg&'&(P —y).

This can be read off from the second line of Fig. 6. We
egroup this e p essio with refe e ce to b„a d b„,

to read'

This integral is a convolution of two tempered distribu-
tions. Its Fourier transform exists and can be written, kb» I'~w d k ~~ (x k)~+'($ y)
with (3.8)' and dp2(1&') =—pm(m', g')di&'

+&" d'& ~+'(y —e)~.(&—*) +(*=y).
d'p e'~&*-»0(p') b(p'+m') dp2 (a')

=0
p'+ m'l'

&»' —m'I p'y~' ie—
Each term is a convolution. Using the spectral represen-

k=t: [

x

C+G

x g

k=2:

X

k=3:

z

:2 =~-
X y

ZJ

x y

FIG. 5. Representation of the perturbation diagrams of both
D and E which can contribute to the third-order vertex function.
The diagrams are grouped according to the number k of internal
lines. In the k=3 diagram, co3('& and ~6('& have been substituted.
The numbers inside the circles indicate their order.

X

FgG. 6. Representation of the k=2 diagrams after substitution
of co3('& and A&4('). The top line produces the triangle part of the
vertex, the bottom line the Gsh diagrams.

It is easily seen that for the 6sh diagrams the limit 0 ~ 1 can
be taken at this stage already, so that these factors will not occur
until Kq. (4.9).

The factor b„was pulled out in order to simplify the transition
from (4.5) to (4.6) below. This is justified by replacing the
convolutions P „and P„, by a sequence of smooth convolutions
P,„and P„, as in {A4) of Appendix A.
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dP2

()42 —m )
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dP2
2(22r)4
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The presence of ()(x—y) permits us to choose an inter-
action with a ~3~(" term which cancels this difference,
producing (4.11) instead of (4.8):

v&F(k'(x, y,s) = —CS6(s—x)E,()(x—y) (4.12)
with

B,„Re(D—E) in Eq. (4.1). The imaginary part must
be canceled by the interaction terms i~»&". A general
discussion of these cancellations is given in Sec. 6.

From (4.8) and (4.18) we find for the "vertex part"
of the third-order S operator

3
C=—

2

dp2

(((2 m2) k

1
(4 13) 5&"' ———— Izk i)(x,y):a'(x)a(y): d'xd'y,

2
(4.19)

6+(x) =A, (x) —Ag(x) . (4.16)

Equation (4.16) substituted in (4.15) gives

n,*(x)= —a,(x)+a~(x)+a~( —x) . (4.17)

We now substitute (4.16) and (4.17) into (4.14), carry
out the cancellations, and 6nd

P,„(D—E)z(x,y,s) =P „o(x)o(y)o(s)LD.(x—s)h. (s—y)
—6 (x—s)A (s—y)$d (x—y).

To compute the triangle part T3&" of the third-order
vertex, we look at the top line of Fig. 6 and read off the
triangle part of (D E). E—ach diagram occurs twice
but the factor 2 is canceled by the presence of two
internal lines. Consider

P,„(D P) z (x,y,—s) =P.„o(x)o (y) o (s)A+(x —y)
Xt & (x—s)A.(s—y)+D.*(x—s)& (s—y)

+a,(s—y)~, (s—x)]. (4.14)

In writing (4.14) we have used

P,„f(x,y)h, (x—y) =P.„f(x,y)A+(x, y) .

Since we wish to compare this with the result of the
conventional theory which is given in terms of 6, alone,
we eliminate from (4.14) 5,* and 5+ using the relations

a,*(x)=S,(x) —S,(x) -S (x), (4.15)

1
Sr("= —— T(x,y,s):a(x)a(y) a(s): d'xd'yd's. (4.20)

3t

Other third-order S-operator terms such as those in-
volving the Ave-point function are left as an exercise
for the reader. The above examples, which are carried
out in such detail, suffice to acquaint one with the
technical details of these calculations.

S. STRONG UNITARITY

Previous papers (in asymptotic quantum field theory)
had to make use of various extraneous assumptions to
ensure unitarity or had to postulate unitarity in addi-
tion to the equations satisfied by the (o Lanalogous to
our set (1.12)].Equations (1.12) of the present theory
already ensure the unitarity of the solution. However,
since these are nonlinear integral equations, we do not
have an existence proof for solutions. In fact, the
perturbation expansion which we have employed most
likely does not converge but is at best asymptotic.
Therefore it is of some interest to verify this claim of
unitarity explicitly for the perturbation approximations
which have just been computed for the p' model.
Speci6cally, we shall verify strong unitarity, i.e.,
"oft-mass-shell" unitarity.

We start with the strong relations

The time ordering in the product A~A~ contradicts the
one imposed by I',„.This term therefore drops out and
we are left with

StS=1=SS~. (5 1)

P.„(D—E)z (x,y,s) =P.„o(x)o (y) o (s)
X~,(x—y) ~.(y—.)~,(s—x).

We again use the separation (3.19) for P,„, whose
applicability is proven in Appendix A, and recall that
there is a similar term with I'„,. The part with the 8
function gives for the triangle part

T(x,y,s) =8,„6+(x—y)A, (y —s)d, (s—x)+(x y),
ol

e n—1
5'(n)+gt(n) Q g(k)st(n —k) (&) 1)

e
=0 ()k = 1), (5.2a)

5(

)+attn(n)

g gt (k)s (n k) (+)1—)

The perturbation expansion of S in powers of g gives

T(x,y,s) =A, (x—y) A, (y —s)A, (s—x), (4.18) =0 (e = 1) . (5.2b)
which is exactly the Feynman result. But how was this
result obtained? The X,„and X„, terms which come
from the separation (3.19) of P „have point support.
They can be split into real and imaginary parts. The
real part is covariant and, because of the identity
X,„+X„,= j3,„, it is exactly canceled—by the term

However, since these equations are equivalent, only
one of them needs to be checked. (See I for the condi-
tions of this equivalence. )

For m=1, (5.2) reduces to the statement Re5("=0,
which is obviously satisfied by (3.4).
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where the shorthand notation A*&=A(x —y) has been
introduced. We find for the left-hand side of (5.8).

ReSr "&= ——,
' ReT(x,y,s):a(x)a(y)a(s):

Xd'xd4yd4s. (5.11)

The only contraction on the right. -hand side of (5.8)
which leads to a triangle is

—R (S"'S'"') = —l ~.(y —)~+(y—)A ( —)

:a(x)a(y) a(s):d'xd'yd's,

where we have let cr ~ 1. Again, only the part of the
coefficient which is totally symmetric in x, y, s con-
tributes. We write

& g yzQ yes zx — Lg ~yQ yzQ zx

X (&"+»i").
This is symmetrized by adding to it two cyclic permuta-
tions. Carrying out some cancellations, we find, for the
coe%cient of:a(x)a(y) a(s): in —Re(S&'&S"&")r,

(1/24) (A"A "6 '+Up'~A~ A '+A'~A"Ap:

+A '&0, &'A "'+A "&A &'i1 "+6 '&A &'A *') (512)

The terms in the second line check with (5.11) and the
part of (5.10) which contains d, i. To show that the first
line of (5.12) equals i6dg *"Ap"*Ap'*, we use

A(x) =2..S,(x),

where e,—= «(x) =0(x ) —8(—x ), to write for that line

(1/24) X4L&zx&xp+ &zy&ys+ &y3&sxj
XAp*'& p"'&p'* (5.13)

Because the three four-vectors $=x—y, g=y —s, and

l =s—x= —$—q form a triangle, adding up to zero,
not all three of them can be simultaneously positive (or
negative) timelike. This shows that the entire e bracket
in (5.13) equals —1. Our demonstration of strong
unitarity is thus completed.

6. P" MODEL TO ALL ORDERS: RELATION
TO CONVENTIONAL THEORY

In the preceding three sections we have demonstrated
by detailed calculations that in the first three orders of
perturbation expansion the theory of the scattering
operator (TSO) can reproduce exactly the renormalized
results of the conventional theory which we shall
assume for definiteness to be in renormalized Feynman-
Dyson formulation (RFD). The only requirement which
must be satisfied for this purpose is that the interaction
o(x,y) must be suitably chosen. Unfortunately, s(x,y)

cannot be compared with the interaction of the con-
ventional theory, since in the latter this interaction is
not known in the Heisenberg picture. It is usually
given in first-order perturbation expansion, in the
interaction picture, and for the unrenormalized version
of the model. However, we shall see below how TSO
yields an operator which corresponds to the interaction
Hamiltonian in the Heisenberg picture and is, in fact,
related to it. (See Appendix B.)

In the present section we shall show for the g"
models that a suitable choice of P(x,y) in the funda-
mental TSO equation (1.4) or, equivalently, of s(x,y)
in (1.8) and (1.9), yields exactly the renormalized S
matrix of RFD theory. More specifically, this is so for
the renormalizable models (v=3 and 4), while the non-
renormalizable ones (n) 4) cannot be treated either by
RFD or by TSO in the present preliminary form, as
given in I.

The P' model was first studied to arbitrary orders by
Hurst" and by Thirring" in order to study the con-
vergence of the expansion. We could attempt to com-
pare TSO and RFD in an arbitrary order of perturba-
tion expansion. But this would entail a repetition of all
of renormalization theory, which is difficult and un-
necessary. The consistency of renormalization has by
now been demonstrated repreatedly and in a rigorous
manner. "We only need the results, which of course are
well known.

Thus, we shall use a general argument, concerning
ourselves primarily with the distributions of point
support which play such an important role in re-
normalization theory. We proceed in three steps and
prove the following assertions.

(1) The Dyson S operator is a formal solution of the
TSO equation (1.4), the interaction P(x,y) being suitably
chosen.

(2) The renormalized and the Dyson S operator
differ only by distributions in 5&. A suitable choice of
J3(x,y) therefore yields the RFD S-operator as solution
of (1.4).

(3) No solution can exist in perturbation expansion
for the P" model (e)4), but the cases m=3 and 4
yield finite results to each order of perturbation
expansion.

We consider the interaction Hamiltonian density
in the interaction-picture form, but with the "re-
normalized free 6elds a(x)":

h(x) = (g/ri!): a"(x):o (x) . (6.1)

The factor o (x) is used here as a mathematical necessity
as explained in connection with (3.1), and the limit

"C. A. Hurst, Proc. Cambridge Phil. Soc. 48, 625 (1952);
W. Thirring, Helv. Phys. Acta 26, 33 (1953);@4 model: T. T. Wu,
Phys. Rev. 125, 1436 (1962).

'2N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 9'7, 227
(1957); K. Hepp, Commun. Math. Phys. 2, 301 {1966);E. R.
Speer, J. Math. Phys. 9, 1404 (1968).
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0- ~ 1 is eventually taken. %e deGne

H= h—(x)d4x, (6.2)

emerges here for the interaction operator P(x,y). From
(1.5), (6.5), and (6.7) we find

P(x,y) =ReSi(H, „S)++(1/2i)B,„s,„)J(x),J(y)j, (6.9)

so that H is rot the interaction Hamiltonian, but rather
the time integral over it. The Dyson S operator then
has the form

(e
—iH) (6.3)

5,= —i(H, e '~)+ i(HsS)——+—, (6.4)

5 „= i(H „—5)p (H,H—„S)~.

The first term on the right-hand side is &Pe, since

(6.5)

8 g
H,y

——

(n —2)!
:a" '(x):o(x)b(x—y). (6.6)

The second term on the right-hand side of (6.5) can
be rewritten by means of the identity"

(H,H„S)+ T+(S,SiS„——), — (6.7)

where T+ indicated positive time ordering with respect
to the explicitly occurring variables, i.e.,

T+F(x,y) =—8(x' —y')F(x,y)+8(y' —x')F(y, x) .
It follows, therefore, from (6.5) that

(1 B,s)siS,„=(1—B—,„)SiT~(S.SiS„)

=P.„SiS.SiS„+P„,SiS„SiS,.

In the last equation we used 1—B,„=P,„+P„,as well

as
P,„e,y =I',y, I',„0„,=0.

By means of the strong unitarity equation (5.1), we
obtain Gnally

(1 B,„)SiS„=—P,„S,iS„—P,„S„iS„(6.8)—
which is equivalent to (1.4) in view of (5.1), as was
shown in I. Thus (6.3) indeed is a formal solution of
(1.4).

This proof is not unrelated to one given by Pugh"
in the context of asymptotic quantum Geld theory,
where the starting point is the interpolating Geld.

It is of some interest to consider the expression that

"See, e.g., J. G. Wray, J. Math. Phys. 9, 537 (1968), especially
Appendix D."R.E. Pugh, J. Math. Phys. 6, 740 (19651.

The subscript + indicates positive-time ordering of the
free fields a(x). With the notation H, =&H/e—a(x), we
have formally

N

6,„=g 8&"&(x—y)G (x,y). (6.10)

The superscript e is symbolic for e partial derivatives.
Now if cV(4, then A,„+Pe(x,y) and the "subtraction
term" will not invalidate the above proof: The re-
normalized S will also satisfy (1.4), since the modifica-
tion of the first term on the right-hand side of (6.5) does
not move it out of Pii. Of course, P will now have
additional terms.

However, the condition g(4 is indeed satisfied in
the renormalizable case."Thus, one concludes that if

P(x,y) is suitably chosen, the solution to the S-operator
equation (1.4) will be exactly the renormalized Feyn-
man-Dyson 5 operator.

The finiteness of the renormalized 5 matrix is one of
the celebrated results of renormalization theory. But
there the P" model is renorrnalizable only for n&4.
Does our theory give finite results also for e)4P It is
not difficult to see that in the present, preliminary

"See especially Refs. 6 and 13 above.
"A cutoB is necessary since the Z involve divergent integrals.

¹ ¹ Sogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Wiley-Interscience, Inc., New York,
1959), especially $18 and $26.

where J(x)=isiS is the current operator well known

from asymptotic quantum Geld theory. " It is related
to the interpolating field A(x) by XA(x) =J(x). To
what extent the first term of (6.9) can be related to A(x)
is discussed in Appendix B.

Now renormalization theory proves that for those
Gelds and interactions which constitute a "renormaliz-
able theory, " the end result of renormalization is a
replacement of bare masses, coupling constants, and
Gelds by renormalized ones. Bare and renormalized
quantities differ by multiplicative constants (re-
norrnalization constants Z) which depend on the
(necessary) cutoff" and which can be computed as a
sum in perturbation expansion. In this expansion the
factors Z therefore appear in terms of subtraction con-
stants which are, of course, also cutoff-dependent. These
latter constants emerge by separating a low-order

polynomial (usually not higher than of second order)
in the external momentum variables off the unre-
normalized scattering matrix elements. It is therefore
not surprising that in x space these terms correspond to
sums of 5 functions and their derivatives.

More speciGcally, renormalization in perturbation
expansion preserves the Dyson form (6.3) of the S
operator, but adds terms 6 to the unrenormalized H.
These terms can be proved to be quasilocal operators. '
This means that the second operator derivative of these
terms 6 „isof the form
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formulation, as given in I, the P" model for e&4 does
not exist. There is no solution of the S-operator equa-
tion, at least not in perturbation expansion.

The proof of this statement is as follows. Consider the
second-order self-energy diagram. As a straightforward
generalization of (3.6), we have n 1—internal 6+ lines
in the g" model, so that

D2 &"(x,y) —a (x)o (y)A~"—'(x—y)

=o.(x)0 (y)i" '—p„,(«')&E«'6+(x —y, «') .

Now' for large «', p~ i(«') («')" '. Therefore, analogous
to (3.12),

&02&"-P.„D2&"(x,y)+(x y)

~'~(.—~)d4~
fP'+m'))' p. i(«')

&„ i) ««2 —)N2i pm+«2 ie—

'7. CONCLUSIONS

In this second paper on the theory of the scattering
operator, the fundamental strong equation for the
scattering operator is solved in perturbation expansion,
assuming that this expansion has at least an asymptotic
meaning. This perturbation solution is in the form of a
recursion relation permitting the computation of the
nth-order approximation from the lower-order ones.
The interaction operator P(x,y) must, of course, be
given.

We developed a graphical method which is very con-
venient for the explicit calculation of S-matrix elements.
Its application to the g' model exemplified how the
renormalized form of the conventional theory emerges
as a solution of the fundamental equation after a suit-
able choice of the interaction operator. However, a
general argument was necessary to show that this is so
to any order of the perturbation expansion. This argu-
ment was carried through for the @~ models. It proved
that when the conventional theory is not renormalizable
(case N&4), the equation for the scattering operator
(1.4) has no solution; but when the theory is renor-
malizable, the renormalized S operator is a solution
of (1.4). We emphasize again that the present theory
involves no renorrnalizations.

It is very plausible that this same situation holds
for the interactions which involve Inore than one field,
in particular, for nuclear and electromagnetic inter-
actions. The earlier work by Pugh" confirms this to
lowest order for the electromagnetic case. The gen-
eralization of the proof of Sec. 6 will not be given here.

"R. E. Pugh, J. Math. Phys. '7, 376 (1966). See also E. M.
Glover, Ann. Phys. (N. Y.) 46, 593 (1968). Unfortunately, these
papers contain mathematically ill-defined expressions.

converges only for e(4. Thus, when e&4, D2&"(x,y)
does not belong to the space 5 on which I' „is defined.

The important question left open is the choice of the
interaction operator P(x,y). How can this operator be
specified in the strong sense, so that it will correspond
to the usual renormalizable interactions and, therefore,
yield exactly the renormalized conventional theory' Or,
perhaps, there is no point in trying to imitate these for
any but electromagnetic interactions, since only these
are experimentally confirmed. As long as this question
remains unanswered, the present theory is like non-
relativistic quantum mechanics: It gives the theoretical
framework but leaves the choice of the potential wide
open.

The restriction to renormalizable interactions in the
conventional field theory is reAected in S-operator
theory by the necessity of restricting the co(xi. x„)
to elements of 5 on which the convolution operators
I',„, etc., are defined. But the present theory gives the
impression that this restriction to 5 is a technical
matter which can be overcome within the theory by
avoiding the use of these operators. This amounts to a
generalization of the preliminary formulation given in
I which will then permit the treatment of "nonrenor-
malizable" interactions. That problem will be studied
in a future publication.

APPENDIX A

In this appendix we want to justify the derivation of
the triangle contribution (4.18) to the three-point
function. This derivation was only done formally and
requires some care, since otherwise one is rather easily
led to undefined expressions. However, the argument
can be simplified by setting |T=i; this function does
not affect the derivation. Thus, we consider

f(*,y; s) —=A+(x —y)

&& LA, (x—s)A, (y —s) —Ap(x —s)Az(y —s)], (A1)

which is the triangle part of D—K A translation T,
by z yields

f(x y) =f(x,y; o) =~—+(x y)—
XL~.(x)~.(y) —~~(x)~ (y)j (A2)

This is a generalized function in 8'(Ra). But it is im-
portant to note that while the product of 6+(x—y) with
the square bracket is defined, the product of 6+.(x—y)
with each term in the square bracket is rot defined. The
translation by z does not change this situation but
simply introduces a parametric dependence on z of the
generalized function of the two four-vectors x and y.

It is easily seen that f(x,y)Q& by the criteria of
Appendix 5 of I, and since I' „ is invariant under
translation by s, T.&&P „f(x,y)] =P,„T,f(x,y), it follows
that f(x,y;s)QF also. But f(x,y)f g, the space on
which e,„=—e(x' —y') can act. The separation (3.18)
is therefore not applicable to (A2) or (A1).
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In order to achieve what was done by using (3.18)
formally, one can define an in6nitely differentiable
function 9,„=—0(x' —y', a) of x' —y' which depends on
the parameter a in such a way that

increasing to the right) of the A's with respect to their
time arguments. Let 8, the time integral over the inter-
action Hamiltonian in the interaction picture, be given
by"

lim O,y =O,y.
a~o

Then the convolution operator J.',„ is dered as I' „
in I(4.1), but with g,„replaced by 8„~'. The separation
(3.18) then corresponds to

where 0 is a suKciently well-behaved real symmetric
function of the e four-vectors. H can be expressed as a
sum of positively time-ordered products

(A4)&*a =|i*a +~*w

(A3) IH= ——0 (xt, . . . ,x.):a(xt) a(x„):d'xg. d'x, (83)
e!

and is, of course, dered on f(x,y; s).
Now we have

I'*w f(x y' s)+&w:(y,x; s)
=t 8 „ f(x,y; s)+0„ f(y,x; s)j

+P,„ f(x,y; s)+X„:f(y, x; s)$. (AS)

But the limit a ~ 0 of the erst square bracket in (AS)
exists and is just

HL~j =H+L~j,

and find from (32)

H$A)= H+t A j=—St(H+(ajS)+.

The same relation can be derived for

(84)

(BS)

(~(») "~(x-))+
with suitable coefficients by Wick's theorem. We write
symbolically

The second term in the square bracket of (A1) gives no
contribution in this limit. This is plausible from the
argument presented earlier.

The left-hand side of (AS), of course, has the limit
E,„f(x,y; s)+P „f(y, x; s) when a —+ 0, each term exist-
ing separately. Therefore, the limit of the second square
bracket in (AS) also exists.

APPENDIX B

We want to relate the term ReSt(H, „S)+ which
occurs in P(x,y), Eq. (6.9), to the more conventional
interpolating field. To what extent this can be done will

become evident. We dehne the interpolating field by

A (x)=—St(a(x)S)i (81)

as usual in asymptotic quantum field theory. "We can
then apply an equality proved some years ago":

T~(A(xt} . A(x„)}=S(a(xt) . a(x }S)+. (32)

The symbol T~ indicates positive time ordering (non-

"Review articles with fairly extensive lists of references on
asymptotic quantum 6eld theory are: F. Rohrlich, Acta Phys.
Austriaca Suppl. IV, 228 (1967},and F. Rohrlich, in Perspectives
in Modern Physics, edited by R. E. Marshak (Wiley-Interscience,
Inc. , New York, 1966), p. 295.

20 F. Rohrlich and J. G. Wray, J. Math. Phys. '/, 1697 (1966).

H.„[a]=
(e—2)!

~(x,y, xt, . . .,x. 2)

n—2

:a(xt) a(x. g): g d'x;, (86)

so that
ReSt(H.„S)+=ReH,„)Aj=H,„(Aj. (87)

The normal-ordered product of the interpolating field
is de6ned by the Wick relation in terms of time-ordered
products, as indicated by the identity in (BS).

If we want the operator H to be given by (6.1) and
(6.2), we must take the limit in (83):

a(xg, . . . ,x„)—+ 0 (xt)8(xt —x2) b(xt x„). (8—8)

But in this limit (87) becomes meaningless, because
various terms in Wick's theorem diverge.

A notable exception is the case &V=3, where

H.yt A$ —+ go(x)A(x)8(x —y) (m=3) (89)

and Wick's theorem becomes trivial.
lt is amusing to speculate whether this result is an

indication that for local Harniltonians P(x,y) can be
related to interpolating 6elds only if the Hamiltonian is
of the Yukawa type (trilinear).
"Generalizations to sums of such terms are trivial.


