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The scattering-operator theory developed in a previous publication (I) by one of us (F. R.) is applied
here to “¢*»”’ models. The fundamental equation for the scattering operator is solved in perturbation expan-
sion. A suitable graphic representation provides diagrams for easier computation. The ¢3 model is solved
to second and third order as an example, and off-mass-shell unitarity is checked explicitly. General argu-
ments are presented to all orders to show in perturbation expansion, and for the preliminary formulation
(I), that (a) for the models which are nonrenormalizable in the conventional theory (z>4) there is no
solution of the S-operator equation, and (b) for the renormalizable models (#=3 and 4) the solution of
the S-operator equation is identical to the renormalized conventional theory if the interaction is suitably
chosen. The theory is finite throughout and involves no renormalizations. There are no cutoffs except a
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technical one for the space-time volume which is removed at the end of the calculation.

1. INTRODUCTION

N a previous paper! by one of us, a theory of the
scattering operator (TSO) was developed. It differs
in several respects from a quantum field theory. Most
notably, it does not assume the existence of an in-
terpolating field from which the scattering matrix can
be derived. Only free in- and out-fields enter in the
assumptions. While the theory postulates Poincaré in-
variance, and therefore implies the existence of a
Hamiltonian defined as the infinitesimal generator of
time translations, this operator is not used explicitly,
and no pointwise time translation is carried out. The
dynamics of the theory is characterized by an inter-
action operator (more precisely an operator-valued
distribution of point support) and the observable on-
mass-shell scattering matrix elements are obtained as
the mass-shell limits of more general (off-mass-shell)
quantities, w,(%1,. . . ,%n)-

The wa(%1,. . .,%,) will be referred to as the coefficients
of the stromg scattering operator. (The meaning of
“strong” was carefully defined in I.) They are complex-
valued generalized functions defined over a suitable test
function space ®. Because of translation invariance
they depend only on #—1 independent four-vectors.
®xi—x, (=1, ..., n—1). Restricting ourselves first to a
single self-interacting field characterized by the free
field a(x) of mass m>0, we have as our Hilbert space 3¢
the Fock space generated by this field. Details can be
found in I.

The mass-shell restriction of the w, yields the (usual)
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scattering operator

S= 1+§ (=9

/wn(xl,. ey )i a(x0) ca(Xn):
d*xy,. . ., d%,. (1.1)

n!

With every operator in 3¢, e.g., S, one can associate
an operator-valued generalized function symbolically
written like a derivative, e.g., 6S/da(x), and called
the operator derivative. For example, (8S/da,¢) is an
operator in JC for all ¢&®. It must be emphasized that
the operator derivative cannot be obtained from the
knowledge of the operator, since the off-mass-shell be-
havior of the w, cannot be inferred from the on-mass-
shell behavior. It is convenient, however, to express
the w, in general by operator derivatives. In particular,

1"6nS
Wn(X1ye o o y%n 1.2
(- 0) = <6a(x1) éa(xn)> (1.2)

Here all arguments are off the mass shell. A mathe-
matical definition of the operator derivative was given
in Appendix 2 of I, and references were given there.

In I the concept of strong equations was introduced.
These are equations between operators in 3C or between
operator-valued distributions which are identities in the
Wick products. They are therefore equivalent to in-
finite sets of c-number equations between the coefficient
functions of the Wick products of the free fields valid
also off the mass shell. In these equations some or all of
the arguments of these functions may be off the mass
shell.

The basic postulates of the theory include unitarity
and causality as strong, i.e., off-mass-shell statements
giving restrictions on the w, off the mass shell. These
restrictions can be expressed as one strong equation for
the (strong) S operator. This and the equivalent in-

1640



1 THEORY OF THE SCATTERING OPERATOR. II

finite set of simultaneous c-number equations were
derived in L.

These equations will now be recalled since they shall
be needed later, but we shall cast them in a slightly dif-
ferent form which is more convenient for the use of
perturbation expansions.

It will be convenient to use subscripts for the operator
derivatives with respect to the in-fields; e.g.,

8S s 828
6ain(x)—— - 8ain(x)dain(y)

The fundamental equation I (4.12) then reads?

=S,, etc. (1.3)

— 5184y = iB(2,y)+Bay ReSAS, 4Py SatS,

+P,.S, 1S, (1.4)

The convolutions Py, Py., and B,, involve known
tempered distributions and are given in I. The operator-
valued distribution B(x,y) is real and belongs to the
null space Fp(x,y) of 1—B,. It is related to S by I
(4.11):

B(x,y)= —Bay ImS'S,,. (1.5)

Equation (1.4) is therefore linear-homogeneous in §
and in S*. If we destroy the homogeneity in ST, we shall
be able to reduce (1.4) in perturbation expansion to a
recursion relation. With the notation

Duy=S4S,, —Eu=(S'—1)S.y, (1.6)

and the identity P.;,+Pys+Bsy=1 noted in I, Egs.
(1.4) and (1.5) can be combined into

_'Szy ; zb(x,y) +Ba:y Re(D:w _Eﬂtu) ’I"ny (Dzu - E:w)

+Py(Dys—Ey.). (1.7)
Again,
b(x,y)= — B, ImS;, (1.8)

is a real operator-valued distribution in Fp(x,y).
Equation (1.7) is inhomogeneous in ST.

The operators Py, etc., just like the better-known
function 8(x°—1v°), are not Lorentz covariant, although
their products with other functions can be so if these
functions have suitable properties. The individual
terms of (1.7) are therefore in general not covariant.
However, separation of (1.7) into real and imaginary
parts,

—ReSzy=Re(Dsy—Eay), 1.7

—ImS,, ;b(x:y) +Poy Im(Day—Eay)
+Py, Im(D,y—E,.), (1.77)

shows that the P,, actually enter only in the imaginary

2 The strong equality = was defined in I. ReS means 3 (S+S7),
etc.
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part of Eq. (1.7). This is also the part which contains
the operator 5(x,y). In case the last two terms do not
have a covariant sum, b(x,y) would also have to contain
noncovariant terms, since the left side is covariant.
This case, however, does not arise, as will be shown ex-
plicitly in the following sections. The reason for this
can be seen in the derivation of Eq. (4.10) of I, where the
P, enter only acting on an operator-valued generalized
function (S'S,). which has no support for spacelike
x—y. This support property is by I(2.5) a require-
ment of the causality assumption.

We shall now specify the interaction by a strong
operator. That operator must determine the strong
operator b(x,y) uniquely. But &(x,y) contains also
other terms. The reason for this lies in the fact that its
off-mass-shell operator derivatives contribute to the w,
which are completely symmetric functions of their
arguments. Thus b(x,y) will also contain terms necessary
for this symmetrization. We also note that the P.,
terms can never produce a function f(x,y)EFg(x,y). If
Szy Is to contain such terms, they must come from
b(x,y). Thus, we write

b(x:y) =7J(x:y) +S(x;y) )

where v(x,y) is the interaction and s(x,y) are terms that
are uniquely determined from the symmetrization.
Both are in F5(x,y) and are real.

In order to solve (1.7), the following Wick expansions
will be used:

(1.9)

DIll;iO Dn+2(x7y’£1)' . '1£n):a’(£1)' . 'G(En):
X fI d4£% ’
. = (1.10)
EW = Z—:l) Eﬂ+2(xsy’£17 e ,En) : 0(51) ct a(gn) :
X ﬁ d4£i )
=1
s ® 1
b(x7y) = ZO '*" bn+2(x)y7£11° .. ,Sn)
n=07.
ra(t1)- - -a(ka):(d%). (1.11)

We want to emphasize that these expansions hold on
account of the completeness of the in-fields. They are
not perturbation expansions.

The strong equation (1.7) now reduces to the
(equivalent) infinite set of simultaneous c-number
equations for the w, of (1.1):

[(=D"/nlJwnra(®y- - )= (i/nDbuia(xy- - -)
+Bay Re[Dayo(xy- - ) —Enpa(ay--+)]
FPoy[Dnya(ay- - ) —=Enyolay- )]
+Pya Doy - ')_En+2(yx’ ' )] (n20).

The quantities D and E are bilinear functions of the w

(1.12)
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as was given explicitly in I(5.4)-(5.7). Since the w are
symmetric functions of their arguments, the right-hand
side of (1.12) must be symmetrized. This operation is
not explicitly indicated in (1.12). Equation (1.12) is
equivalent to 1(5.2) and can easily be reduced to it by
use of the identity I(4.8) and a combination of the
B,y ImE,, and 9(x,y) terms into 8(x,y).

In order to solve equation (1.7) or equivalently
(1.12)%for a given interaction, we shall have to take
recourse to perturbation expansions, i.e., to the as-
sumption that the solution has an expansion in a param-
eter (the coupling constant, say) which is at least an
asymptotic expansion. In that case, (1.12) reduces to a
recursion relation for w,™ of order m in terms of lower-
order w, ") (m’'<m). The resulting perturbation solu-
tions will be found to be identical to the corresponding
results of renormalized conventional theory. We shall
therefore be able to answer the following questions of
long standing: Given the finite predictions of the con-
ventional theory, i.e., of the Tomonaga-Schwinger-
Feynman-Dyson quantum field theory of the late
forties, which (at least for electrodynamics) agrees so
well with experiment, of what equation are these pre-
dictions the solutions? The theory of the late forties
has no answer to this question because of the diverg-
ences which exist in its equations until after re-
normalization. The present theory can point to Eq.
(1.7) as the fundamental (divergence-free) equation
which yields these results.

In the next section we shall develop a graphical
representation for D and E. Just as the Feynman
diagrams, these graphs will be very convenient com-
putational aids. But these are at first not perturbation
approximations.

In Secs. 3 and 4 the graphical representation of Sec. 2
will be used to lowest orders in perturbation expansion
for a specific model (the ¢? theory). In Sec. 5 we verify
that strong unitarity is indeed satisfied for the preceding
results. Finally, in Sec. 6 the “¢™ model” is considered
to all orders of perturbation expansion and it is proven
that the present theory yields exactly the same results
as the renormalized conventional theory when the inter-
action is suitably chosen. The last section summarizes
the situation.

2. GRAPHIC REPRESENTATION AND
PERTURBATION EXPANSION

The quantities D and E of (1.7) contain integrals
of the form?

k
f w' (e om' ) TT Ayl =0 Yoglna” ")
r=1
k
XII d*ne'd*m”, (2.1)
=1

3 See I(5.4)-(5.7).

PAGNAMENTA AND F. ROHRLICH 1

BO=OE]

F16. 1. Representation of the integral (2.1). The intermediate %
lines represent A functions and are integrated over.

with 2>k, ¢> k. Since the w are symmetric in their argu-
ments, we can say that they enter with & “contracted”
arguments each. We represent each w by a circle and the
II A, by % lines connecting the two circles (internal
lines). The remaining arguments of each w are drawn
as lines emanating from the respective circles (external
lines). The whole integral (2.1) then looks like in Fig. 1,
the circle for w, to the left of the one for wq as in the
integral.

In (1.12) the arguments x and y of D and E are singled
out. We shall draw the external lines labeled by % and y
downward, the other external lines upward. The ex-
ternal line y always belongs to the circle on the right.
The external line x belongs either to the left circle
(case D) or to the right circle (case E). The numerical
factor in front of the integral is obtained as follows: For
m external lines upward on the left (right) circle, there
is a factor i®/m! ((—4)"/m!), and for the % internal
lines a factor (—1)*/k!l. With these instructions the
diagrams (a) and (b) of Fig. 2 uniquely determine the
expressions Dyrprp and Enrneg, respectively, of I(5.5)
and I(5.7). In these cases p=n'+1, g=n'"+1 for (a),
and p=#', g=n""+2 for (b). The quantities D, and
E,is of (1.12) are obtained by summing Dppri and
Eprpik, respectively, over all #', #”, and k so that
n'+n" —2k=n and by symmetrizing over the upward
external lines.

When we want to solve Eq. (1.12) by perturbation
expansion, we assume that there exists a parameter g
such that the sums

] 0
wa=2] gron'™, Dn=3. g"Dyp™,
m=1 m=2

2.2)
En = Z ngn (m)

m=2

have a meaning at least in an asymptotic sense.
If Dyprwrr O Egrgeer, are constructed from «*™ and
w®, we shall write Dyipri @ or Eprnr™ @, Then

n'-k n'-k n'-k n"-k
il; k i ﬁ k i
X Yy X
(a) (b) y
F16. 2. Representation of (a) Dnrprz and (b) Enrgrer. The incom-
ing ' —k lines carry a factor ¢(»'~® /(n’—k)!, the intermediate %

lines (—z)*%/k!, andYfinal »''—% lines (—z)»"~®/(n""—k)!. No
factor is attached to the x and y lines.
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ignoring the symmetrization), we have
g g ym

r—1
Dn+2(r)=z z Dn,n,,k(-v)(r—er)
s=1n'n""k
W' +n" —2k=n) (2.3)

and an analogous equation for E,».

The perturbation ansatz (2.2) solves (1.12) in the
sense that this equation becomes a recursion relation
for the w™ in terms of v with »<m. Thus, given
bnte of (1.11) in perturbation expansion,

0
bu= 3 a0, bW =0, (s, (0

m=1

(2.4)

with 2,520, one has

(=) wna Wy - ) =ivnysPlwy--+),  (2.5)

since D and E do not contribute to first order. For
higher orders, »>1, D and E may both contribute, and
(1.12) holds in each order 7.

The diagrams in perturbation expansion are the same
as in the nonperturbative case, except that each circle
that refers to an w with a fixed number of variables
now also refers to a fixed order of perturbation
approximation.

3. ¢ MODEL TO FIRST AND SECOND ORDERS

In the present model, we identify the interaction
by the lowest-order term of v(x,y) in perturbation ex-
pansion. This term corresponds to the vertex part of
the usual theory. For the so-called ¢* model, we take*

2D (x,y) = d(x—y)aly)a(y) , @3.1)

or, equivalently,

vS(l)(xyy;E) = 5(90"3’)5(3"‘ E)U(E) )

3.2
1, 0=0 for n*3. (32)

The factor o(x) is a real c-number function with
support in R* which vanishes sufficiently fast for large
argument so that the first-order .S operator S™ given
in (3.4) is an operator on 3C. The function ¢(x) has no
physical significance and the limit ¢ — 1 is taken at the
end of the calculation. It is forced upon us by mathe-
matical requirements and is not entirely unexpected.
The perturbation expression SV is heuristically related
to the interaction Hamiltonian and Haag’s theorem
prohibits the existence in Fock space of a relativistic
total Hamiltonian in a nontrivial theory. The need for
o(x) has the unattractive consequence that the theory
is not Poincaré invariant until after the limit ¢ — 1 is
taken.

4In the following we shall work exclusively with the in-fields
and shall therefore drop all subscripts “in.”
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It follows from (2.5) that

wnP(x,y,...)=0, m>*3 (3.3)
w3(1)(x:y:‘§) = “5(9‘5—3’)5(}’_5)0(5) ] '
and consequently )
SO = —% /cr(é) 1a3(8): d4. 3.4)

For an internal consistency check, we can derive (3.1)
from this operator. We then check easily that (1.8) is
satisfied in first order.

The form (3.4) of S® is the reason for relating the
theory of the .S operator based on the interaction (3.1)
to the ¢? model of the conventional theory.

Now S® must be an operator in J¢. Thus, since
|0) is an eigenvector of S and the perturbation ex-
pansion is assumed to exist term by term, ||S®]0)||
must exist. But®

(1) 2 (95X N\[¢H) 1
IS10)*=(0]5 15 [0)= — /U(S)G(n)

XA (E—n, m)d*Ed*n

1
== [oxtmtrae [ o e=n, )
Xa(n)d*td*y.

If o were identically 1, this integral would not exist.
But if ¢ is as indicated, the integral does exist. In the
limit ¢ — 1, i.e., with Fourier transform &(p) — 84(p),
the integral vanishes because p; has no support at k2=0.
Thus

lin}”S(l) |0)]| =0. 3.5
This is in fact necessary if we are to have S@ =1 and
S$10)=0). The global translation invariance which &
destroys is therefore recovered in this limit.

We now turn to the evaluation of w,®(x,y) ,the self-
energy diagram. Using the graphs of Sec. 2, we see that
E;®(x,9)=0 because no such diagram can be con-
structed with «3® insertions alone. For D,®(x,y),
we find

S INC S
=—%i / o: p2(m?,i)di?o (x)
o " XA4(w—y,)0(3), (3.6)
ReDy @ (x,y) = i /; :2 pa(m?k?)dr? (%)
XA(x—y, Da(y). (3.7)

8 The powers of A, are well known. See, e.g., J. Gomatam and
Fh Rohrlich, J. Math. Phys. 10, 614 (1969), and references given
there.
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Here we have used

A w—y, m?) =i j At 5=y, ), (3
with "
pa(m??) = (167211 —(2m/x) 20(x2—4m?). (3.9)

Because ReD:® involves a homogeneous A function,
which restricts the momentum to a mass shell «>m,
the action of B, on ReD:® vanishes. Equation (1.12)
therefore yields

w2(2)(x:)’) = ibz(Z)(x;y) +P$11D2(2) (x;y) +PMID‘2(2)(yyx) ’

or

wY(Z)(xfy)=in(2)(xay)
—3[PoyA X (x—y, m?)+Pyl 2 (y—x,m?)]. (3.10)

In the last equality the limit o — 1 has been taken.

Now b;®(x,y) is a tempered distribution with point
support at x°=4° In p space it is therefore a poly-
nomial in p°. The restriction to § on which P, and Py,
are defined (see Appendix 5 of I) limits this polynomial
to powers not exceeding the third. The spectral condi-
tions (assumption I of Paper I), in particular the
stability of the one-particle state of mass m, require
that @, (p) vanish on the mass shell like (p24-m?)2. As
we shall see below, the square bracket in (3.10) has
this property [see (3.12) below]. It follows that 5,®
would have to be a multiple of (p2+m?)?; i.e., involve
(po)*. Since this is not possible, b2® must vanish.® This
means that to second order the interaction cannot con-
tain a Wick monomial of second degree.

If we set the mass in P, equal to m, the mass of the
asymptotic free field (a choice which will be seen neces-
sary below), we find

00

n®(5—y) = =i f

4m

p2(m? k) di®K K,

0(x"—y)Ar(x—y, %)

(K2 —_ mZ) 2

+@x=y)

= —%1/ p2(m* k) dx*K K,
4m?
A(x—y, k?)
(k2 —m?)?

, (3.11)

where A, is the causal (invariant) function. In p space
this becomes

. 'l: ) p2+m2 2
PB)== 2(27r)2/p2(m * )<K2—m2>

2

X ————. (3.12)
Prx2—ie

¢J. G. Wray [J. Math. Phys. 9, 552 (1969)] shows that the

A. PAGNAMENTA AND F.
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Equation (3.9) is exactly the Umezawa-Kamefuchi-
Killén-Lehmann spectral representation for the re-
normalized self-energy graph to second order in g.

That (3.12) is exactly the renormalized result of the
conventional theory can easily be demonstrated by the
technique of renormalization of the Feynman-Dyson
theory in spectral form.”

We emphasize the fact that the present theory
yielded directly the physical (i.e., in the language of the
conventional theory, the “renormalized’”) result. No
renormalization process is involved here. Nor could
there have been such a process, since the spectral as-
sumptions ensure that the only mass which enters the
theory is the physical mass. No bare particles or bare
fields occur in the present theory.

Now we return to the point made earlier that the
mass in P,, cannot be arbitrary but must be the same
physical mass m which characterizes the asymptotic
free field. Had we taken a mass u=m in P,,, we would
have obtained a factor (p+u?)? in the Fourier trans-
form of the last line of (3.10) instead of (p?4m?)?, and
there is no 5, that would correct this behavior.

The graphical representation of Eq. (1.12) shows that
to second order in g we have besides w.® also non-
vanishing terms w;® and ws®. For ws® we find the
equation

3(—1)%wa @ (x,3,£1,£2) =1b4® (,9,£1,£2)
+Bay Re(D® —Ey®)(x,9,1,2)
+Py(Ds® —E4®)(x,9,1,£2)
+PU1(D4(2) _E4(2>)(y)x7£17£2) . (313)

Substitution of (3.3) for w3 into (2.3) and using
8.y=084(x—17y) gives (cf. Fig. 3)
D®(x,y,61,82) = —Fio(x)o(y) At (x—y)
X (812025 +822015), (3.14)
E4(2)(x)y;£1;£2)=%id(gl)a(x)A+($1"'30)5;;3,512. (315)

Since ¢ is real, ReD,® and ReE,? differ from D,®
and E4® simply by a replacement of 1A, by —3A;. Be-
cause of the factor 8., the null space of Py and Py,
contains E4®(x,9,¢1,£2). Thus (3.13) becomes

w4(2)(x)y)£1;£2) = —_%[Ala(x _y) (61152y+52251y)
FA15(E1—%) 820121 — 3[04 (3,3, £1,£2)

—PoyAg(—) (81002y+02401,) +(x=9)]. (3.16)
X X, X Xy X, X
D(Z)_L( |+ z+ 2+ ) (2)= | z+
4, 2 4
x y x Y X y
(@) (b)

F1c. 3. The graphs for (a) Ds® and (b) E4®. The in-fields are
labeled w1, ®2, which corresponds to &, & in Eq. (3.14).

stability of the vacuum and of the one-particle states imply that
B,y (x,y) =0. Applying B., to our equation also yields v® =0.
7 F. Rohrlich, Nuovo Cimento Letters 2, 199 (1969).
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The symbol Ar,(x—y) is defined to be Ar(x—y)o(x)a(y).
At this point we must decide whether or not we want an
interaction which contributes a term v,®. If we assume
a pure ¢*model in which the interaction is restricted
to the first-order term (3.1) and (3.2), then v, =0 and
only 54® contributes:

54(2) (x’y;Ehg?) = [P12Av(x_ 52) +P2:Av($2_x) jawy‘sm .
The four-point function in second order then becomes
w4(2) (x)y7£17£2) = _%SAla(x “'y) 6135214

+396SP oy As(x—) 61202, (3.17)
where S is the symmetrization operator for all varibles.

However, the pure ¢° interaction is not the one which
yields the results of the conventional theory. To re-
produce these, we separate the convolution operator
Py as follows:

Poy=0.y+Xyzy,

where X, f(%,y)&EFp(x,y). Of course, this separation is
not defined on all the space on which P, acts, but only
on a subspace GC&. However, D, G, so that (3.18)
is permitted in our case. We now choose the interaction
so that its contribution to 24 exactly cancels all the
X terms. The only 5, terms left will then be those
needed for symmetrization, ;. Equation (3.17)
then becomes

02y =0(x"—5°), (3.18)

1@ (x,y,&1,82) = —3SA1,(x—) 61202y
—%iSE.S‘,;(z) (xyyv gh 52) - ARa(x —y)
X (B1abryt-dasbry)+ (=2 )], (3.19)

Using Ar(x—y)+Ar(y—x)=2Ap(x—y), we see that
we must take for the unsymmetrized term,
54(2)(“’,3’721:52)

= —[Aro(x—£2) +Aro(E2—2) 1824012,

analogous to the case of the pure ¢* model. We then
have

(3.20)

@i @ (x,y,E1,82) = —3S[ Ao (x—7) 81202,
—2iAps(x—1) 61202y |
=3iSAco(x—) 81202y
=3[ Aco(x—y) 01202y Aco(y — £2) 00y 012
FAco(b2—£1) 01,0201 (3.21)

In the limit ¢ — 1 this expression is identical with the
second-order four-point function of the conventional
theory. In order to achieve this result, the interaction
contribution of ;¥ must be chosen to be

Sv4(2)(x:y:£1:£2) =SXZyA“(x_y)61“52”' (3'22)
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I

(a) (b)

F16. 4. Diagrammatic representation of typical
D and E terms in wg®.

X, X3 X3 Xg

A

Xy

In the following, we shall aim to obtain the results of
the renormalized conventional theory. We shall choose
the interaction accordingly, ignore the possibility of the
pure 3 model, and adopt (3.21) rather than (3.17).

The strong four-point S operator in second order
follows uniquely from (3.21):

8

S4(2)—%i/Ac(x—y)a(x)a(y):a2(x)a2(y):d“xd4y, (3.23)

as can easily be checked by computing

w4(2)(x,y,51,$2) = <S¢y$1£2(2)>0 .

The six-point function to second order is not a con-
nected graph and is a trivial product of two first-order
three-point functions—except for symmetrization and
a suitable numerical factor (see Fig. 4). Since we shall
use ws® later to exhibit unitarity, the computation is
given explicitly below.

We use the abbreviation

a12=0(x—£1)8(61—&2),

and start with the basic equations I(5.4) to I(5.7). In
obvious notation

D¢® =§7}:5x125y340 (®)a(y)

(3.24)

1
-— =

= (3.25)
24 (i) (k1)

dzisbyr1o () (y) .

The sum extends over all six ways of separating the
four £; into pairs. Similarly,

1
Ey®= —?;51235zy4a(£1)0(x>

1 4
=—— 3 djrtdayic(f)o(x), (3.26)
24

=1

where 7, k, I take on the three values different from 1.
Since Ds® and E¢® are real, v4 cannot contribute to
the symmetrization, and since there are therefore also
no noncovariant terms, »4®=0. Thus, from (1.12)

1
Zm(‘z)=D6<2)__Eﬁ(z>_
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If we use &5=x, £6=17, ws? takes on the symmetric form

ws® (£1,. . ., E6) =3 2 Sijtdimno(E1)a(£r) . (3.27)

The summation extends over all (§) combinations of
taking groups of three out of the six &;.

The strong six-point .S operator in second order
based on (3.27) is uniquely

Se®=— 7—12 / o(®)a(y): a*(x)a¥(y): dbxdby. (3.28)

4. ¢* MODEL TO THIRD ORDER
For w;® we find the equation

—1:(.03(3) (x:y;z) = 7:173(3) (x:y:z) +Bzy Re(D3(3) —E3(3))
X (2,9,2)+ P2y (D3® — E3®) (xyz)

FPyo(Ds® —E;®)(yxz) . (4.1)

The diagrams for D;® and E;® are conveniently
written down by exhausting the number of possible
internal lines k=1, 2, 3 in Eqs. I(5.4)-(5.7). These
diagrams are shown in Fig. 5.

The terms with one internal A, -line (k=1) vanish.
We show this on the first one which reads

8(x—2)o(x) / P A= Dn®(E—y).  (4.2)

This integral is a convolution of two tempered distribu-
tions. Its Fourier transform exists and can be written,
with (3.8)2and dpa(k2)= pa(m?,k2)dx?,

|3

[t evaatzrm IR3E
4m?
?2+m2 2 1
Y g
k2—m? p2H-k2—ie
Z . 2 z
K=I: qj‘_i_@ @__@ @L@
X y X y Xy
b4 4 z
X Yy X y Xy
z 2 z z
k=3: (Hk = q 6\
Xy x Y Xy Xy

F16. 5. Representation of the perturbation diagrams of both
D and E which can contribute to the third-order vertex function.
The diagrams are grouped according to the number % of internal
lines. In the £=3 diagram, ws® and we® have been substituted.
The numbers inside the circles indicate their order.
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This expression vanishes because of the factor
(P4

The £=2 terms are shown in Fig. 6 after insertion of
w3 and ws®. They lead to triangle diagrams and to
diagrams with a self-energy insertion in an external line
which we will call fish diagrams. The last fish diagram
in Fig. 6 contains a factor §(x—v) and is therefore in the
null space of both P, and P,.. We split the complete
third-order vertex into two parts, the fish terms and the
triangle terms:

w3 ™ (x,y,2) =1F3 @ +iT3® . 4.3)

The nonvanishing fish diagrams only contribute to D
terms. Collecting both the P,, and the P,, terms, we
find® [introducing 8., =68(x—y) again]

%ny[éyZ/d4f A+2(x"£)Ac(E—y)
e f & Ac*<x—z)A+2<s—y>]+<x¢y>.

This can be read off from the second line of Fig. 6. We
regroup this expression with reference to 8., and &,.
to read®

a[P f 0 AF (= DA (E—)
+P,, / & A+2(y—s>Ac<s—x>]+<xﬁ 9.

Each term is a convolution. Using the spectral represen-

S 2 2
+ + +
C+C -+
FN + +
X y y Xy
©+ 5 zlc*o+ T c
+ + +

Xy

Fi1G. 6. Representation of the k=2 diagrams after substitution
of ws® and ws®. The top line produces the triangle part of the
vertex, the bottom line the fish diagrams.

8 It is easily seen that for the fish diagrams the limit ¢ — 1 can
be taken at this stage already, so that these factors will not occur
until Eq. (4.9).

? The factor 8., was pulled out in order to simplify the transition
from (4.5) to (4.6) below. This is justified by replacing the
convolutions P,, and P,, by a sequence of smooth convolutions
P,¢ and Py* as in (A4) of Appendix A.
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tation (3.8), we obtain
° PoyAi(x—y, %)
%,5[ / Pl
am? — k2 4m*+ie
P?!’:A+(y_x7 Kz)

+ / dps
am?

The denominators never vanish in the region of integra-
tion, so that the ie can be dropped and we find

[o(x—2)+8(¢—2) U (x—y),

:|+(x\-——‘y).

—k24-m?2—1e

(4.4)
with

0

I(s—y)=—3i f dps
41»2

v PoyA(x—y, )+ PyA(y—x, m?)

K2_,m2

(4.5)

As in (3.11), the numerator becomes

Ac(x—yi K2)
K,K—————,
(k2 —m?)?

such that (4.5) can be written

1 ° Ac(x_y7 Kz)
I(x-—y) = —giK;KyLmzdpQW

1: 00
= — /gip(z—y)dflp/ dp2
2(2#)4 im?

(p2+m?)? 1
(k2 —m?)? p*-k2—1ie .

Since Rel(x,y) involves Ai(x—7, k%), B, acting on it
will vanish. The total contribution of the D terms to
F3;®(k=2) is therefore given by (4.4) and (4.6):

F3®(k=2)=1bsp®(k=2)+ (6. 08,2)I (x—7)
Ay(z—x, k2)
)

(k*—m?)

(4.6)

@7

The last term comes from the last diagram of Fig. 6:

ReE;® (k=2) =Red,, / A2 (z—E)A(E—x)diE

A+(Z =X, Kz)

=Re(—1)6,,,/ dps s
As before, s3p®(k=2) in (4.7) must be so chosen that
one obtains symmetry:
AP(Z'—x) K2)
ssprP(k=2)= 6,,KzKyfdp2——— .
(KZ_m2)3
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This choice is unique. Equation (4.7) then becomes
(written in symmetric form)

F3®(k=2)=8(x—y)I(y—2)+(y—2)I(z—1x)

+o(z—x)I(x—y), (4.8)

where I(x,y) is given by (4.6).

Before we compute the triangle diagrams of Fig. 6,
we shall turn to the evaluation of the fishes which
emerge from the £=3 case of Fig. 5. Since this calcula-
tion is very similar to the one above, we can summarize
the results:

Dy (k=3)= / AP (E—3) A ()bt (2 = )

iy f dpst s (=, A (E—5, )

+x=y)
=0,

since in Fourier transform one has a product 8(p2?4-«?)
Xo(p2+m?) with x5~ m?.

Es®(k=3)= fA+2(£—Z)A+(E—x)6xyd4E=O )

for the same reason. Thus, the £=3 contributions to
w;® vanish and (4.8) is the total contribution of fish
diagrams.

The implication in this calculation of the fish diagram
has been that v37® =0, i.e., that there is no contribu-
tion from the interaction in third order of the third-
degree Wick monomial. But the result (4.8) does not
agree with that of the renormalized conventional theory.
The latter has the same form as (4.8), but instead of
I(x—y) of (4.6) the renormalized Feynman-Dyson
(RFD) formulation yields

7 Adr—y, k%)
Igrp(x—y) = —%in/ dp———, (4.9)
am? (Kz_,mz)z
so that

wﬂ’(x—y) =KJRFD(x—y) .

The difference between (4.8) and the conventional
result

(4.10)

Fsrrp®(,9,2) =3S0(z—x)Irrp(x—y) (4.11)

is

3S6(z—x)[I(x—y) —Irrp(x—y)]

2_I_m2
etr =) J4 fd
>/ Ry

=3iSé(z— x)K;é(x——y)/

=355(z——x)2(2

(? —m2)3
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The presence of §(x—y) permits us to choose an inter-
action with a v3® term which cancels this difference,
producing (4.11) instead of (4.8):

Vsw (3) (x’y,z) = -—CS(S(Z —x>K:55(x_y)

3 sz
c=" / e
2 (K2_m2)3

To compute the triangle part 7'3® of the third-order
vertex, we look at the top line of Fig. 6 and read off the
triangle part of (D—E). Each diagram occurs twice
but the factor 2 is canceled by the presence of two
internal lines. Consider

Poy(D—E)r(%,9,5) = Pzyo(x)a(y)o(2)As(x—y)
X[A1(x—2)Ac(z—y) +AX(x—2)A (z—y)
+A(z—) A (z—x) ].
In writing (4.14) we have used
nyf(xiy)Ac(x—'y) =szf(x;y)A+(x,y) .

Since we wish to compare this with the result of the
conventional theory which is given in terms of A, alone,
we eliminate from (4.14) A;* and A, using the relations

(4.12)
with

(4.13)

(4.14)

AF(x)=A(x) —A(x)—A_(x), (4.15)
A () =A(x) —A4(x). (4.16)

Equation (4.16) substituted in (4.15) gives
A () =—Acx)+Aa(x)+Da(—x).  (417)

We now substitute (4.16) and (4.17) into (4.14), carry
out the cancellations, and find

Poy(D—E)1(x,9,3) =Pyo(2)a(y)a(z)[Ac(x—2)Ac(z—7)
—Au(x—2)A4(z—y) A (x—Y).

The time ordering in the product A4A, contradicts the
one imposed by P,,. This term therefore drops out and
we are left with

Poy(D—E)r(%,y,2) =Payo(x)o(y)o(2)

We again use the separation (3.19) for P., whose
applicability is proven in Appendix A, and recall that
there is a similar term with P,,. The part with the 6
function gives for the triangle part

T(x,y,8) = 0,0, (x—y)A(y—2)Ac(z—2)+(x =),

or

T(x,y,5) =8o(x=y)Ac(y—=2)Acz—2), (4.18)

which is exactly the Feynman result. But how was this
result obtained? The X,, and X,, terms which come
from the separation (3.19) of P., have point support.
They can be split into real and imaginary parts. The
real part is covariant and, because of the identity
Xoy+Xys=—B,,, it is exactly canceled by the term

A. PAGNAMENTA AND F. ROHRLICH 1

B.yRe(D—E) in Eq. (4.1). The imaginary part must
be canceled by the interaction terms ivs7®. A general
discussion of these cancellations is given in Sec. 6.

From (4.8) and (4.18) we find for the “vertex part”
of the third-order S operator

s 1
Sp®=— E /]RFD(x,y):aZ(x)a(y):d4xd4 ’ (4.19)

|
Sp®=— ; /T(x,y,z):a(x)a(y)a(z):d“xd‘*yd‘*z. (4.20)

Other third-order S-operator terms such as those in-
volving the five-point function are left as an exercise
for the reader. The above examples, which are carried
out in such detail, suffice to acquaint one with the
technical details of these calculations.

5. STRONG UNITARITY

Previous papers (in asymptotic quantum field theory)
had to make use of various extraneous assumptions to
ensure unitarity or had to postulate unitarity in addi-
tion to the equations satisfied by the w, [analogous to
our set (1.12)7]. Equations (1.12) of the present theory
already ensure the unitarity of the solution. However,
since these are nonlinear integral equations, we do not
have an existence proof for solutions. In fact, the
perturbation expansion which we have employed most
likely does not converge but is at best asymptotic.
Therefore it is of some interest to verify this claim of
unitarity explicitly for the perturbation approximations
which have just been computed for the ¢® model.
Specifically, we shall verify stromg unitarity, i.e.,
“off-mass-shell” unitarity.

We start with the strong relations

StS=1=S5t. (5.1)

The perturbation expansion of S in powers of g gives

8 n—1
SESim = 5 @Sk (n>1)
k=1

8

=0 (n=1), (5.2a)
and
8 n—1
SMASiIM=_F SIBSmB  (5>1)
k=1
=0 (n=1). (5.2b)

However, since these equations are equivalent, only
one of them needs to be checked. (See I for the condi-
tions of this equivalence.)

For n=1, (5.2) reduces to the statement ReS® =0,
which is obviously satisfied by (3.4).
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To second order, we have to check

s
S@O4STD = _StOSM)
or

[ e@atasasT1/30):0 00 +4 s o)
X:a*(x)a*(y): +Rews @ (x—7v):a(x)a(y): ]

=(%)(;) / oo () dbadty:at(z): ()

Re-normal ordering gives for the right-hand side
1
= [owotiimislawe)

—9iA(x—y):a*(x)a(y): =184, (x—y): a(x)a(y):
+6iA4*(x—y) ]

Since the normal-ordered products are symmetric,
their coefficients contribute only the parts symmetric
in # and y. Comparing the various Wick monomials,
we find that the following equations must hold!°:

ImAy(x—y) = —5i[A(x—y)+As(y—2)], (5.3)
Rew, @ (x—y) = —i[A*(x—y)+AL2(y—x)], (54)
/a(x)a(y)A+3(x—y)d4xd4y =0. (5.5)

The first equation is an identity since both sides
equal $A;(x—y). The second equation, (5.4), requires
the spectral representation (3.8) on the right-hand side,
which then becomes

—ti / dpa[ A (w—y, ) +As(y—x, k). (5.6)

But according to (3.11) the left-hand side of (5.4) is

1 Ay(x—y, k%) 1
- / I e A / doata(a—y, ¢2), (5.7)

(1(2—'7”2)2 4

since K, and K, contain m? and the 8(p2+«?) in Ay
forces us to put p2= —«2 Comparison of (5.6) and (5.7)
then reduces to the same identity as (5.3). Finally,
Eq. (5.5) is necessary for the stability of the vacuum.
It was discussed in connection with (3.5) where a direct
proof was indicated. This completes the unitarity check
to second order.

1 The fact that we can compare the coefficients without restric-
ing them to the mass shell is guaranteed by the unitarity equation
being a strong equation. The fact that the coefficients indeed
agree off as well as on the mass shell is the check on off-mass-shell
unitarity.
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To third order in g, the unitarity conditions (5.2)
reduce to

ReS® = —Re(S®SHW) (5.8)

Owing to the linear independence of different normal-
ordered products, we can verify (5.8) for each diagram
separately.

First we observe that the re-normal ordering on the
right-hand side of (5.8) leads among others to terms
proportional to :a(x): and :e3(x): which cannot be
present on the left-hand side. The coefficients of :a(x):
contain convolutions of the form A #A.2 or A, %w,®
which are easily seen to vanish. The terms containing
:a%(x): involve integrals of the form (5.5) and therefore
also vanish. Thus we turn now to the less trivial fish
and triangle terms.

The real part of the fish diagram in S®, (4.19),
has as coefficient multiplying :a?(x)a(y):

1 = Ay(x—y, k?)
-3 ReIRFD(x,y)=—-é f dpoK

m? (k2 —m?)?

1 * Al(x ) K2)
e
8 4m? K2-"m2

The first step follows from (4.6), the last one by writing
out the Fourier transform of A; and carrying out the
K, operation.

The only nonzero contraction on the right-hand side
of (5.8) which leads to a fish term is

1
— 1 fAc(x—z)A+2(z—y):az(x)a(y):d“xd“yd“z,

(5.9)

and we find successively
——Re:}/Ac(x—y)A+2(z—y)dz

=1 ImfdpzAc(x—z, m?) Ay (z—y, k2)d*

—1 Im/dp2d4p €2 @=0(p0)5(p2+x?) (2 —m2) !

—}Im f doady(5—y, ) —m?)1

== [ dpastamy, 6=,
which agrees with (5.8) and (5.9).
The real part of our triangle diagram (4.13) involves
ReT(x,y,z) = ApxyAP“AP”——%[Af”Al“Apzz

+ApruA A AIApYeA 7], (5.10)
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where the shorthand notation A®¥=A(x—y) has been
introduced. We find for the left-hand side of (5.8).

ReSyp® =— %/ReT(x,y,z):a(x)a(y)a(z):

Xd*xd*yd's. (5.11)
The only contraction on the right-hand side of (5.8)

which leads to a triangle is

_Re(SOSTW),= —} f Ay —2)As(y—2)Ay (s—2)
ra(x)a(y)a(z): d*xd yd*s,

where we have let ¢ — 1. Again, only the part of the
coefficient which is totally symmetric in %, y, 2 con-
tributes. We write

%Agl"’A+y1A+z" =— %A_“’ACWA_*_”
= _%(Aly_iAlwy) (APyz_f_%iAlyz)
X (A= -iA77) .

This is symmetrized by adding to it two cyclic permuta-
tions. Carrying out some cancellations, we find, for the
coefficient of :a(x)a(y)a(z): in —Re(S@STD),,

(1/24) (A™VA przA=o A peU A= Ao ATV AV po=
_I_Ala:yAPyzAlz:z:_I_ApxyAlyzAlz;z:__l_Ala:yAlyzAsz) . (512)

The terms in the second line check with (5.11) and the
part of (5.10) which contains A;. To show that the first
line of (5.12) equals $Ap*¥Ap¥2Ap**, we use

A(x) =2€zAP(x) 5
where e,=e(x)=60(x") —0(—=x°), to write for that line
- (1/24) x4[ezxé:cy+ exyéyz+ fyzfza;:l

XAp*YAp¥2Ap?®, (513)

Because the three four-vectors é=x—y, n=y—z, and
¢{=z—x=—§¢—n form a triangle, adding up to zero,
not all three of them can be simultaneously positive (or
negative) timelike. This shows that the entire € bracket
in (5.13) equals —1. Our demonstration of strong
unitarity is thus completed.

6. ¢ MODEL TO ALL ORDERS: RELATION
TO CONVENTIONAL THEORY

In the preceding three sections we have demonstrated
by detailed calculations that in the first three orders of
perturbation expansion the theory of the scattering
operator (TSO) can reproduce exactly the renormalized
results of the conventional theory which we shall
assume for definiteness to be in renormalized Feynman-
Dyson formulation (RFD). The only requirement which
must be satisfied for this purpose is that the interaction
9(x,y) must be suitably chosen. Unfortunately, v(x,y)
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cannot be compared with the interaction of the con-
ventional theory, since in the latter this interaction is
not known in the Heisenberg picture. It is usually
given in first-order perturbation expansion, in the
interaction picture, and for the unrenormalized version
of the model. However, we shall see below how TSO
yields an operator which corresponds to the interaction
Hamiltonian in the Heisenberg picture and is, in fact,
related to it. (See Appendix B.)

In the present section we shall show for the ¢”
models that a suitable choice of B(x,y) in the funda-
mental TSO equation (1.4) or, equivalently, of v(x,y)
in (1.8) and (1.9), yields exactly the renormalized S
matrix of RFD theory. More specifically, this is so for
the renormalizable models (z=3 and 4), while the non-
renormalizable ones (z>4) cannot be treated either by
RFD or by TSO in the present preliminary form, as
given in I.

The ¢® model was first studied to arbitrary orders by
Hurst!* and by Thirring" in order to study the con-
vergence of the expansion. We could attempt to com-
pare TSO and RFD in an arbitrary order of perturba-
tion expansion. But this would entail a repetition of all
of renormalization theory, which is difficult and un-
necessary. The consistency of renormalization has by
now been demonstrated repreatedly and in a rigorous
manner.'? We only need the results, which of course are
well known.

Thus, we shall use a general argument, concerning
ourselves primarily with the distributions of point
support which play such an important role in re-
normalization theory. We proceed in three steps and
prove the following assertions.

(1) The Dyson S operator is a formal solution of the
TSO equation (1.4), the interaction 8(x,y) being suitably
chosen.

(2) The renormalized and the Dyson S operator
differ only by distributions in F5. A suitable choice of
B(x,y) therefore yields the RFD S-operator as solution
of (1.4).

(3) No solution can exist in perturbation expansion
for the ¢ model (»>4), but the cases =3 and 4
yield finite results to each order of perturbation
expansion.

We consider the interaction Hamiltonian density
in the interaction-picture form, but with the “re-
normalized free fields a(x)”:

h(x)=(g/n!):a"(x):0(x).

The factor o(x) is used here as a mathematical necessity
as explained in connection with (3.1), and the limit

6.1)

11 C. A. Hurst, Proc. Cambridge Phil. Soc. 48, 625 (1952);
W. Thirring, Helv. Phys. Acta 26, 33 (1953); ¢* model: T. T. Wu,
Phys. Rev. 125, 1436 (1962).

2 N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227
(1957); K. Hepp, Commun. Math. Phys. 2, 301 (1966); E. R.
Speer, J. Math. Phys. 9, 1404 (1968).
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o — lis eventually taken. We define

HE/h(x)d4x, (6.2)

so that H is not the interaction Hamiltonian, but rather
the time integral over it. The Dyson S operator then
has the form

S= (&), . (6.3)

The subscript + indicates positive-time ordering of the
free fields a(x). With the notation H,=dH/da(x), we
have formally

So= —i(H e~ ")y = —i(HaS)4 (6.4)

Say= _i(nyS)+_(HxHyS)+- (6'5)

The first term on the right-hand side is &, since

8

T (n—2)!

102 (x): 0 (x)0(x—7y) . (6.6)

zy

The second term on the right-hand side of (6.5) can
be rewritten by means of the identity!?

(HH,S) = —T4(S.51S,), ©6.7)

where 7', indicated positive time ordering with respect
to the explicitly occurring variables, i.e.,

T F(x,9)=0(x"—y°)F (x,9)+0(y° —2°)F (y,x) .
It follows, therefore, from (6.5) that

(1= B.))S1Say=(1—Bay) ST (S.S1S,)

= P,y S1S,S1S, 4P, nS1S,S1S,.

In the last equation we used 1—B,, =P+ P, as well
as

Poyloy=Poy, Pryby.=0.

By means of the strong unitarity equation (5.1), we
obtain finally

(1=B1,)S1S sy = —PySs1Sy—PuyS, 1Sz, (6.8)

which is equivalent to (1.4) in view of (5.1), as was
shown in I. Thus (6.3) indeed is a formal solution of
(1.4).

This proof is not unrelated to one given by Pugh!
in the context of asymptotic quantum field theory,
where the starting point is the interpolating field.

It is of some interest to consider the expression that

A 13 Seﬁ,‘ e.Ig)., J. G. Wray, J. Math. Phys. 9, 537 (1968), especially
ppendix D.
1 R. E. Pugh, J. Math. Phys. 6, 740 (1965).
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emerges here for the interaction operator 8(x,y). From
(1.5), (6.5), and (6.7) we find

B(,9) =ReSH(H.,S) 14 (1/20) Bayer, [T (),T ()],  (6.9)

where J(x)=14S'S, is the current operator well known
from asymptotic quantum field theory.!s It is related
to the interpolating field A(x) by KA(x)=J(x). To
what extent the first term of (6.9) can be related to 4 ()
is discussed in Appendix B.

Now renormalization theory proves that for those
fields and interactions which constitute a “‘renormaliz-
able theory,” the end result of renormalization is a
replacement of bare masses, coupling constants, and
fields by renormalized ones. Bare and renormalized
quantities differ by multiplicative constants (re-
normalization constants Z) which depend on the
(necessary) cutoff’® and which can be computed as a
sum in perturbation expansion. In this expansion the
factors Z therefore appear in terms of subtraction con-
stants which are, of course, also cutoff-dependent. These
latter constants emerge by separating a low-order
polynomial (usually not higher than of second order)
in the external momentum variables off the unre-
normalized scattering matrix elements. It is therefore
not surprising that in x space these terms correspond to
sums of § functions and their derivatives.

More specifically, renormalization in perturbation
expansion preserves the Dyson form (6.3) of the S
operator, but adds terms A to the unrenormalized H.
These terms can be proved to be quasilocal operators.'?
This means that the second operator derivative of these
terms A,y is of the form

Agy= % 3 (x—y)Ga(x,y) . (6.10)

n=0

The superscript # is symbolic for » partial derivatives.
Now if N <4, then A,,&EFp(x,y) and the “subtraction
term” will not invalidate the above proof: The re-
normalized .S will also satisfy (1.4), since the modifica-
tion of the first term on the right-hand side of (6.5) does
not move it out of Fp. Of course, 8 will now have
additional terms.

However, the condition N <4 is indeed satisfied in
the renormalizable case.!! Thus, one concludes that if
B(x,y) is suitably chosen, the solution to the S-operator
equation (1.4) will be exactly the renormalized Feyn-
man-Dyson .S operator.

The finiteness of the renormalized .S matrix is one of
the celebrated results of renormalization theory. But
there the ¢” model is renormalizable only for n<4.
Does our theory give finite results also for »>4? It is
not difficult to see that in the present, preliminary

15 See especially Refs. 6 and 13 above.

16 A cutoff is necessary since the Z involve divergent integrals.

1”N. N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized Fields (Wiley-Interscience, Inc., New York,
1959), especially §18 and §26.
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formulation, as given in I, the ¢* model for #>4 does
not exist. There is no solution of the S-operator equa-
tion, at least not in perturbation expansion.

The proof of this statement is as follows. Consider the
second-order self-energy diagram. As a straightforward
generalization of (3.6), we have »—1 internal A, lines
in the ¢” model, so that

Da®(x,9)~a(x)o(3)Ar ™ (5—3)
—o(@)o(3)ir? f o)A (5=, 2.

Now?® for large «2, po—1(k2)~ (k2)»—3. Therefore, analogous
to (3.12),

W~ Py Dy (x,9)+H(x =)

L] 2 2\ 2 2
N/eip(xy)d4q/ (P +m> pn‘-l(K) d
(—?m2 N k2—m?/ PP —ie
converges only for #<4. Thus, when #>4, D>®(x,y)
does not belong to the space § on which P,y is defined.

2

K

7. CONCLUSIONS

In this second paper on the theory of the scattering
operator, the fundamental strong equation for the
scattering operator is solved in perturbation expansion,
assuming that this expansion has at least an asymptotic
meaning. This perturbation solution is in the form of a
recursion relation permitting the computation of the
nth-order approximation from the lower-order ones.
The interaction operator B(x,y) must, of course, be
given.

We developed a graphical method which is very con-
venient for the explicit calculation of S-matrix elements.
Its application to the ¢* model exemplified how the
renormalized form of the conventional theory emerges
as a solution of the fundamental equation after a suit-
able choice of the interaction operator. However, a
general argument was necessary to show that this is so
to any order of the perturbation expansion. This argu-
ment was carried through for the ¢” models. It proved
that when the conventional theory is not renormalizable
(case n>4), the equation for the scattering operator
(1.4) has no solution; but when the theory is renor-
malizable, the renormalized S operator is a solution
of (1.4). We emphasize again that the present theory
involves no renormalizations.

It is very plausible that this same situation holds
for the interactions which involve more than one field,
in particular, for nuclear and electromagnetic inter-
actions. The earlier work by Pugh'® confirms this to
lowest order for the electromagnetic case. The gen-
eralization of the proof of Sec. 6 will not be given here.

18 R. E. Pugh, J. Math. Phys. 7, 376 (1966). See also E. M.
Glover, Ann. Phys. (N. Y.) 46, 593 (1968). Unfortunately, these
papers contain mathematically ill-defined expressions.

A. PAGNAMENTA AND F. ROHRLICH 1

The important question left open is the choice of the
interaction operator 3(x,y). How can this operator be
specified in the strong sense, so that it will correspond
to the usual renormalizable interactions and, therefore,
yield exactly the renormalized conventional theory? Or,
perhaps, there is no point in trying to imitate these for
any but electromagnetic interactions, since only these
are experimentally confirmed. As long as this question
remains unanswered, the present theory is like non-
relativistic quantum mechanics: It gives the theoretical
framework but leaves the choice of the potential wide
open.

The restriction to renormalizable interactions in the
conventional field theory is reflected in S-operator
theory by the necessity of restricting the w(x;- - %)
to elements of & on which the convolution operators
Py, etc., are defined. But the present theory gives the
impression that this restriction to § is a technical
matter which can be overcome within the theory by
avoiding the use of these operators. This amounts to a
generalization of the preliminary formulation given in
I which will then permit the treatment of ‘“nonrenor-
malizable” interactions. That problem will be studied
in a future publication.

APPENDIX A

In this appendix we want to justify the derivation of
the triangle contribution (4.18) to the three-point
function. This derivation was only done formally and
requires some care, since otherwise one is rather easily
led to undefined expressions. However, the argument
can be simplified by setting ¢=1; this function does
not affect the derivation. Thus, we consider

fay; 2)=A(x—y)

X[A(x—2)Ad(y—2) —Aa(x—2)Ar(y—2)], (Al
which is the triangle part of D—E. A translation T,
by z yields

Jlay)=f(x,y;0) =42y (x—y)

X[A(®)A(y) —As(x)Ar(y)]. (A2)
This is a generalized function in §'(R®). But it is im-
portant to note that while the product of A, (x—1v) with
the square bracket is defined, the product of A, (x—7)
with each term in the square bracket is #of defined. The
translation by z does not change this situation but
simply introduces a parametric dependence on z of the
generalized function of the two four-vectors x and .

It is easily seen that f(x,y)&F by the criteria of
Appendix 5 of I, and since P,, is invariant under
translation by 2, T.[ Py f(x,y) 1= P, T-f(x,y), it follows
that f(x,y;2)EF also. But f(x,y)€EG, the space on
which 60,,=60(x°—»°) can act. The separation (3.18)
is therefore not applicable to (A2) or (Al).



1 THEORY OF THE SCATTERING OPERATOR. II

In order to achieve what was done by using (3.18)
formally, one can define an infinitely differentiable
function 60.,°=60(x"—7°, a) of x°—4° which depends on
the parameter ¢ in such a way that

(A3)

lim 6,,2=10,,.
a0

Then the convolution operator Pg,* is defined as Pgy
in I(4.1), but with 6., replaced by 6., The separation
(3.18) then corresponds to

Py =0z4Xz" (A4)
and is, of course, defined on f(x,y; 2).
Now we have
Pyt f(2,y; 2)+Pys(y,%; 2)
=[02,°f(x,y; 2)+042°f(9,%; 2) ]
F[ %oy f(%,5; 2) +Xya (9,25 2) 1. (AS)

But the limit ¢ — 0 of the first square bracket in (AS)
exists and is just

T(x,9,8)=Adx—3)Ay—2)Ac(z—x). (4.18)

The second term in the square bracket of (A1) gives no
contribution in this limit. This is plausible from the
argument presented earlier.

The left-hand side of (A5), of course, has the limit
Py f(x,y; 2)+Pyf(y,x; 2) when @ — 0, each term exist-
ing separately. Therefore, the limit of the second square
bracket in (AS) also exists.

APPENDIX B

We want to relate the term ReST(H,,S); which
occurs in ((x,y), Eq. (6.9), to the more conventional
interpolating field. To what extent this can be done will
become evident. We define the interpolating field by

A(x)=5"(a(x)S)+ (B1)

as usual in asymptotic quantum field theory.1® We can
then apply an equality proved some years ago®:

Ti(A(@): - - Axn)=S"(a(x1) - -a(2a)S)+. (B2)

The symbol 7'+ indicates positive time ordering (non-

19 Review articles with fairly extensive lists of references on
asymptotic quantum field theory are: F. Rohrlich, Acta Phys.
Austriaca Suppl. IV, 228 (1967), and F. Rohrlich, in Perspectives
in Modern Physics, edited by R. E. Marshak (Wiley-Interscience,
Inc., New York, 1966), p. 295.

2 F. Rohrlich and J. G. Wray, J. Math. Phys. 7, 1697 (1966).
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increasing to the right) of the 4’s with respect to their
time arguments. Let H, the time integral over the inter-
action Hamiltonian in the interaction picture, be given
by21

4
H= = /a(xl,. co%a)ia(x1) - ca(xn) 1 d%- - - d*%,, (B3)
n!

where o is a sufficiently well-behaved real symmetric
function of the » four-vectors. H can be expressed as a
sum of positively time-ordered products

(a(x1) - - - axm))+

with suitable coefficients by Wick’s theorem. We write
symbolically

H[4]=H,[d], (B4)
and find from (B2)
H[A]=H,[A]=S"(H[a]S)+.

The same relation can be derived for

(BS5)

8
(n—2)!

H;,;yl:d] = /o(x:yyxly L 7xn—2)

() -awns): T diss, (B6)

so that
ReST(H,,S)y=ReH ,,[A]=H,[A]. (B7)

The normal-ordered product of the interpolating field
is defined by the Wick relation in terms of time-ordered
products, as indicated by the identity in (BS).

If we want the operator H to be given by (6.1) and
(6.2), we must take the limit in (B3):

(B8)

But in this limit (B7) becomes meaningless, because
various terms in Wick’s theorem diverge.
A notable exception is the case V=23, where

Hoy[A]— go(x)A(2)8(x—y) (n=3)

and Wick’s theorem becomes trivial.

It is amusing to speculate whether this result is an
indication that for local Hamiltonians 8(x,y) can be
related to interpolating fields only if the Hamiltonian is
of the Yukawa type (trilinear).

(%10« oy %0) — 0 (21)0(H1—%2) * + - 0(X1—%n) .

(B9)

2L Generalizations to sums of such terms are trivial.



