
SPIN AND STATISTICS IN QUANTUM THEORIES

while in the negative-parity sector its spectrum is given
by the distinct set

(1,2,3, . . .). (A7)

Thus, there is no unitary transformation which can
take JI in a positive-parity representation into H in a
negative-parity representation, as there would be if
Eq. (A3) were a completely well-defined expression in
an irreducible representation of the algebra (A4).

To circumvent this problem, we try to extend the
algebra (A4) to some larger algebra in which the
positive-parity and negative-parity representations are
unitarily inequivalent. A simple way to do this is to add
the operator

(AS)

to the algebra, so that we obtain

ta,S)= Q,—PC,aj=sC, L~,hg= —S'A. (A9)

This algebra assumes a more transparent form if we
introduce the operators

~12 e(O++) y X23 e(0—A), X81=8. (A10)

In this basis we recognize (A9) as the I.ie algebra of
the noncoinpact group SO(2,1):

PX,„g,„g=-L„, g„,I.„g= I.„,
(A11)

5~28@'813 8~12 ~

Now the parity operator in one-dimensional quantum

mechanics may be written as

&~~ |,'a—1/2) (A12)

where H= 21(ps+92). It is then clear that the analog
of the statistics constraint Eqs. (2.10) and (2.11) are the
conditions that for a positive-parity representation,

(A13)

and for a negative-parity representation,

7/ 1 ~ (A14)

To select an irreducible representation of the algebra
(A11), one must in addition specify the value of the
Casimir operator

Q ~12 +23 ~81 ~ (A15)

Using Eqs. (A1), (AS), and (A10) one finds that
Q= —3/16 in both the positive- and negative-parity
representations.

Finally, restricting attention to representations of

(A11) in which X,12, I.28, and X,81 are Hermitian and. f12
is positive, one Gnds"" precisely one representation
consistent with m= 1 and one representation consistent
with x= —1. The two representations are unitarily
inequivalent, and the Hamiltonian H=2L» is a well-

defined operator in these representations of (A11).
'9 The representations of SO(2, 1) have been studied by several

authors. We are following A. Barut and C. Fronsdal, Proc. Roy.
Soc. (London) A28'I, 532 (1965).

The choice +=1 corresponds to picking E0——4 in the notation
of Ref. 29, while the choice m = —1 corresponds to Eo= &.
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Relativistic Gravitational Bremsstrahlung
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Gravitational radiation is calculated for the situation of a small mass passing a large mass in an unbound
trajectory, where the velocity of the small mass can be relativistic. This allows one to study gravitational
radiation for cases in which the slow-motion approximation is not valid. The gravitational potentials, or
perturbations in the metric, arising from the small mass, are determined explicitly by solving the perturbed
field equations of general relativity, which are obtained by expanding the metric about a metric repre-
senting the geometry of the large mass. From these the energy Qux of the emitted waves is calculated. In
the nonrelativistic limit, the results agree with those of the slow-motion approximation. The qualitative
behavior of the radiation at extreme relativistic velocities is discussed, and is found to disagree with what
one would expect from the fast-motion approximation in that same limit. Numerical results are presented
for the total energy, power, and angular distribution of energy radiated for a range of velocities from 0.01c
to 0.9999c. Signihcant features in the extreme relativistic limit are the peaking of the radiation in the
forward direction and the peaking also in time, which both occur in electromagnetic radiation, and the
fact that the total energy radiated in one transit is proportional to (1— / )v8sa.os

I. INTRODUCTION

HE issue of gravitational radiation has been
argued and discussed at length since Einstein

first predicted its existence' in 1918. This prediction

* Work supported in part by the National Science Foundation.' A. Einstein, Sb. Prenss. Altad. Wiss. 154, (1918).

was based on the linearized Geld equations and the
wavelike solutions which these equations possessed in

analogy with similar solutions of the electromagnetic

field equations. Exact solutions of the field equations of

general relativity for realistic radiating systems are

rare indeed. For most situations one is forced to rely



1560 p. C. PETERS

on some approximation method in order to obtain
numerical answers. ' For systems of slowly moving
Inasses the energy radiated by gravitational radiation
can be computed by the general formalism given by
Landau and Lifshitz. ' The angular momentum radiated
and the radiation reaction for both gravitationally and
nongravitationally bound systems have also been
worked out in the slow-motion approximation. ' The
recent analyses of Brill and Hartle' and of Isaacson' on
the nature of the energy density of gravitational waves,
and of Thorne' on the detailed coupling of the radiation
in the wave zone to the radiation reaction, have gen-
erated confidence in the validity of the slow-motion
approximation.

Astrophysical situations which might produce meas-
urable quantities of gravitational radiation are likely
to be relativistic, and in that case the slow-motion
approximation fails. The possible detection of pulses
of gravitational waves by Weber' leads one to look for
and study the properties of radiation mechanisms which
could produce such bursts of radiation. One such
mechanism is that of relativistic gravitational brems-
strahlung. To treat such a problem one needs an approxi-
mation method which is valid for large velocities. One
attempt, the fast-motion approximation, ' is supposed
to be valid only at large velocities, since it is not valid
for slow motion. However, our results will cast doubt
as to its validity for large velocities, at least as far as
radiation problems are concerned. The approximation
method we will use is described in detail in a previous
paper. " Basically, we expand the field equations of
general relativity about the metric representing a mas-
sive body, where the perturbations in the metric arise
from the presence of a small mass which is allowed to
move with any velocity. Edelstein, "in considering the
problem of relativistic circular orbits, has used a similar
approximation. We will find the perturbation due to
the small mass explicitly in terms of a Green's function
for the problem. This will allow us to calculate the per-
turbations, or gravitational potentials, at a large dis-
tance from the massive body, from which we can com-
pute the energy Aux.

In Sec. II we derive the expression for the gravita-
tional potentials. In Sec. III we use these potentials
to compute the energy Aux. Explicit expressions are

For example, see the review article by F. A. E. Pirani, in
Gravitation: An Introduction to Current Research edited by L.
Witten (John Wiley ar Sons, Inc. , New York, 1962, Chap. 6.

'L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Co., Inc. , Reading, 1Vfass. , 1959),
Chap. 11.

4 P. C. Peters, Phys. Rev. 136, B1224 (1964).
s D. R. Brill and J. H. Hartle, Phys. Rev. 135, B271 (1964).
6 R. A. Isaacson, Phys. Rev. 166, 1272 (1968).' K. S. Thorne, Phys. Rev. Letters 21, 320 (1968).
8 J. Weber, Phys. Rev. Letters 22, 1320 (1969).
9P. Havas and J. N. Goldberg, Phys. Rev. 128, 398 (1962);

and S. F. Smith and P. Havas, ibid. 138, B495 (1965)."P. C. Peters, Phys. Rev. 146, 938 (1966)."L. Edelstein, Ph. D. thesis, University of Maryland, 1968
(unpublished).

obtained in the nonrelativistic limit and the high-
velocity behavior is also extracted. Section IV presents
the results of the numerical integrations which were
performed to find the angular distribution of the radia-
tion, the power, and total energy radiated.

II. GRAVITATIONAL POTENTIALS

In the following we assume that there is a spherically
symmetric body of mass M located at the origin of our
coordinate system. The geometry of the region exterior
to the central body is then described by the Schwarz-
schild metric, which, in isotropic coordinates, "is given
by"

with

ds2= gpvCh"Ch" (2.1)

(2.2)

where q is the gravitational potential

q = —GjtrI/r. (2.3)

We further assume that a small particle of mass m,
m&(M, moves under the gravitational inQuence of the
larger mass, and that its path in space-time, x&=s&(s),
is determined (ignoring gravitational-radiation reac-
tion) by the geodesic equation. One should note that
this assumption was criticized in Ref. 9. We then have
that

ds' nP ds ds
=0 (2.4)

where s is the proper time along the path of the particle,
obtained from an integral of ds from (2.1) along its path.

The presence of the particle causes the metric in the
exterior region to be changed slightly from its unper-
turbed form (2.1), the perturbation in the metric being
of order Gm/rc', which is small since m is small. We
define the perturbation in the metric, h„„which we call
the gravitational potentials, by

gl4r go" +ho» (2.5)

'~ R. Adler, M. Bazin, and M. SchiBer, Introduction to General
Relativity (McGraw-Hill Book Co., New York, 1965), Chap. 6.

'~ Greek indices take values from 0 to 3; Latin indices are
restricted to spatial components 1 to 3. At any space-time point
we may choose g„„=p„„where q„„has only diagonal components
1, —1, —1, —1. Throughout most of the paper we take c=1;
it will be explicitly put back in the 6nal expressions. Ordinary
differentiation is denoted by a comma (,), covariant differentia-
tion by a semicolon (;).

with g„„&"given by the metric (2.1). The gravitational
potentials are found from the solution of the perturbed
field equation of general relativity, "
h.„„' h„„' h„„'. +g—„,h p.

' 'P—h„,.R—
+g„„h„pR P = 167rGST„„, (2.6)—
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where
(2.7)

covariant diHerentiation is taken with respect to the
unperturbed metric, and OT„„is the perturbation in the
energy-momentum tensor T„„arising from the presence
of the mass m. In general, there is a contribution to
bT„„directly from the mass m as well as a contribution
to 8T„„from the central body reacting to the presence
of the mass m. However, if we restrict ourselves to a
consideration of only the spatial components of Eq.
(2.6), then we need consider only the direct contribu-
tion' to bT„„from the mass ns, assuming that the central
body is moving slowly (V«c) and is nonrelativistic
(p«pc'). Thus the physics of the central body is un-
important for our considerations and we can ignore the
particular form of the interior solution in computing
BT;;. The bT„„for the mass m is found from

ds dot'
8T&"(x)=m ds 8'(x,s(s))

ds ds
(2.8)

where h'(x, s(s)) is the biscalar generalization of a four-
dimensional 8 function.

We consider in this paper the case of gravitational
bremsstrahlung, the gravitational radiation emitted
when the small mass m is deAected slightly in its tra-
jectory past the central body. A small angle of deQec-
tion implies that the quantity GAS/bi' is small, where b

is the radius of closest approach (—impact parameter)
and v is the speed of the small mass in a coordinate
system in which the central body is at rest. The small
mass is allowed to move with any speed v less than c,
so that a small angle of deflection implies that the small

mass moves in a region in which GM/re'«1. We there-
fore approximate the exact Schwarzschild geometry
(2.2) by a metric which is of first order in q, i.e.,

goo= 1+2',
gp, =0,
g'= —~ (1—2o)

(2 9)

(2.10)

relates the spatial components of h„„to time components.
In terms of the Fourier trans'form of h,;(r,t) with respect
to time, we have

where q is again given by (2.3). Corrections from oo'

terms are seen at each stage of the following calculation
to contribute to the final results in one higher order in
the small quantity G3E/bc'. It should be noted, however,
that the approximation made by (2.9) does not reduce
the expanded field equations (2.6) to those linearized
about flat space. Included in (2.6) are terms arising
from the nonlinearity of the field equations of general
relativity. In the terminology of an expansion of the
field equations about Rat space, one would say that the
field equations (2.6) with the metric (2.9) include the
effects of the stress-energy-momentum pseudotensor of
the gravitational Geld. Thus this calculation allows one
to investigate explicitly the role of these nonlinear terms
in generating the gravitational radiation.

The solution of the perturbed field equations (2.6)
for the perturbation in the metric arising from a per-
turbation in T&" of the form (2.8) has been given pre-
viously. ' We need consider only the spatial components
of the potentials (2.7) since the chosen gauge (or co-
ordinate condition)

~pv' =2 p, k~Ap.

A;;(r, oo) =—

where"

4Gm dt' (dt' e'~ "+~'
8 5~

1+2' 1+2' kds R
+16Gnz dt' d'r'~ —e' "8'(r' —z(t'))

&ds

XI oi'v'e& ioi(e'7' '—+v'7~) ,'(1+v—')—(7'~V; ', 8;,V')—jG-(r,r', oi), (2.11)

with

GMi e'"" t'rR+r R )
G(r,r', M) =- in/

2oo R Er'R+r' Rj
~ dl &.~(u+~r+f )-

(n+r') p

m'= de'(t')/dt, ', R =r —r', R' =r—z(t'), 7';= +
8$ ~$

rr' ' (rr'
p(r, r', I) = r' +~ ——+u

~r' E r' )

We need the expression for tt;z o(1',t) for large r for our later calculation of the energy radiated. This is obtained by
taking the limit of Eq. (2.11) in which r))r, multiplying by ice, and t—aking the inverse Fourier transform. This

'4 A sign error in the Green's function given in Ref. 10 has been corrected.
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yields the expression

dt' SG'35m
dt'(1 —

2 q
') —v'v&'()(t' —t+r —n z(t'))+

ds
dt' d'r' —()3(r' —z(t'))

ds

8t 8x&' Bx") Bx' Bx' x ' x '

()(t' —t+r —n r') ln(r'+n. r')+
'+n r'

dQ
i)(t' —t+r —n. r'+u)—,(2.12)

=g~r js the unit vector in the radial direction.
We must next reduce this expression o

which the dependence of the potentia. s on poson osition and
is ex licitl given. In making this reduction,

we need only keep terms of order m r .
that in the secon, ong erd 1 term on the right-hand side o

that the motion of the small mass
e of constant velocity in a straight line. Also in t e

fi t term on the right-hand side o, . „oncers erm
t containing the acceleration of the smallup a term con

ma bea-mass, t e remainin, th aining factors in that term may p-
roximatea Dy s raigd b t ht-line motion. This reduction o

h 1 th . We vill sketch the reductionterms in rat er cng
h erst term on the right-hand side o ~ . ano t e rs erm

of the termswe wl s Owll h how one can reduce one o e
ast termd b the derivative operators in the lasgenerate y e er

in the results ofof (2.12). The final answer will contain
analogous proce ures app

'
d pplied to the other terms in

I the erst term on the right-hand side oInt e rs e~
his can betime aenva ive ad

' t' acts only on the 5 function. is
/ ~

changed to a derivative with respect to t, since

1 8—()(t' —t+r —n r'(t')) =-
Bt

)& ()(t' —t+r —n r'(t')) .
~ ~

YVe then integrate by parts with respect to t', giving

4Gns dt 1 v'v&n v
V'V' O'V'

ds (1—n v)' 1 —n. v

v'v&' —ln ——2j, (2. )
dt

dt ds

(d/dt) ln(dt/ds) = —2j

v'= —y (1+v')+4v'j,

and thus using the expression for p we have

4G'35m
h" p(') ———

r(1 —v')"'(1 —n v)'r"
—(x"v'+x"v') (1+v')

+t'r'(4r' v—
(n.r') (1+v')

1—nv
4(n v) (r' v. ) —.

We next calculate the terms coming from (8/gx")
X (&/Bx") in the second term of (2.12). Recall that the
velo

' ' v' can be treated as constants. Also, because
ultimately we will use these potentials to compute the
energy Aux, we can ignore any terms in k;; which are
proportiona o;; r1 t 5" or n' since only the traceless trans-
verse part of the potentials contributes to the energy
Qux. Taking the derivative with respect to x&', we And
for this term

where time differentiation is denoted by a dot, and
where all quantities are to be evaluated at the retarded
timet=t —r n r'= t r' t' YVe obtain the acceleration an
time derivatives of ln(dt/ds) from the geodesic equation
(2.4) using the metric (2.9) and keeping only lowest-
order terms in q. This gives

«(1 v2) 1/2

v 8 (
dt fd'r'P(r E(C)') -( ( )(I'' l+r —o r) —8(t —t—+r+r—)).

8$ (2.15)

x" acts on the second 8 function, we get 8'(t' t+r+r') Perfor—ming the in. te-7Vhen the derivative with respect to x" acts on t e secon unc
'

gration over r',t over d'r' this then becomes

e can en s ect to t'. including the other terms from (2.15) arising from the derivativeWe can then integrate by parts with respect to t . nc u ing
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t " we then arrive at
C

w)th r'—=z) twith respect to x', we

4G'Mm(1+v')—

r(1 p2) )./2
dt'[S(t' t+—r n —r') . S(—t' t+—r+r') j

x' x"(2r'+n r')

r"(r'+n r')'
dt 8(t' t+—r+r')

X' 'V~+X~ 'V'

r' v' r' v r' v/r'+n v~dt't)(t t+r—+r')x' x& r v/r +v~

~r '' ' ' r'v r" rynrI(r'+r' v)r'(r'+n r') r+r v
(2.16)

the time t from the source at two d&fferent reetarded timesb""'n t""' '"'""'""""'"''" "
d "' "ld'n '" 'n"'1

W te that there is a contribu io
tq'andt2 w ere q= — ' ' dt'=t —r—r t2 . ein= ——'j 'g. Th

'
tegrations over t can e on, yt)' and t2', where t~'=t r+n r —(ty ) an

f(t')
ddt(&' i+r+r'(f)) f(&' =( )

(2.17)

s arisin from (8'/W')n'v& in (2.'12), which is calle
& ph" &'& and that fromThe results of reducing the terms arising from 8' Bt v'vj in

in (2.12), which is called h@,0&'), are

8G'Mme'v'
(2)

r(1—n')'I'(1 —n v)

(2.18)

)1 t' t r —n r' —8(t' t+r+r') v—'/r' —(r' v)'/r" (r' v r n v

r' nr''1—I1'V

(v'/r' —r' v/r")(r' v/r'+n v)-
/

(1+ ' /')'( +
8G'3fns

A" &"=ij,o
2X 1/2t'( j.—'0

s(&' t+~ nr') 8(i—' —&+—r+r'))
dt'

1—n v 1+r' v/r'

r' v r' v/r'+n vg-
a I2' '—(' "+

r'(r'+n r')

(v'x" +n'x") Lv'/r' —(r' v) '/r"$
+ dt't)(t' t+r+r')-

r'(r'+n r')(1+r' v/r')'
(2.19)

tials h;, 0, obtained from the sum ot' ,2.14),
ith the 8 functions treated as

straight line, so that r = v,
=0 G' hi act arameter and u v= . i

a s g

the ath, we can fin exp ici
t ' and t2' defined above Eq.the two retarded times tj an 2, e

(2.1/). This yields

(t —r)+n b
I

(2.20)

S' ' 's now expressed in term s of tj' or t2', we see~nce x' is n
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the surface ds'. This is mathematically much simpler in
form than the Sp; and gives the same result for the total
change in energy resulting from gravitational brems-
strahlung emitted when a small mass is deflected by a
large one. Thus we will use the Landau-Lifshitz form
in the following analysis. For simplicity, we choose the
surface of integration to be a large sphere surrounding
the system.

The calculation of the power radiated into each solid
angle dQ parallels a previous calculation which con-
sidered gravitational radiation of a system of two masses
moving in Keplerian orbits. " However, here we will
not make the assumption of nonrelativistic motion, and
we will consider the case of unbound trajectories. In
terms of the quantities A, B, and C, de6ned by (2.24)
and tabulated in Appendix A, the power radiated per
unit solid angle is

that the time dependence of all of the quantities in

(2.14), (2.16), (2.18), and (2.19) can be given in terms
of the single time variable t—r. The angular dependence
is given by the products of unit vectors (independent
of time) n v/v and n. b/b. If we choose a coordinate
system in which v/v=e and b/b=e„, then in terms of
standard spherical coordinates we have

n v/v= sin8 cosy, n b/b= sin8 sing. (2.21)

In addition, if we de6ne a dimensionless time parameter
v by

r= (ct—r)/b, (2.22)

the general form of h;, , p is given by

h,;,s= (G'Mm/rb'cs) f;,(r,P,e, p), (2.23)

where P= v/c and f@ is a dimensionless matrix. f;; has

only three independent elements, which we call A, B,
and C, i.e., dI' G'M'm'

(—' (3A '+ 2A B+3B'+4C')(1+cos48)f„=A, f„„=B, f,„=f„,= C. (2.24) do 32v.b4Cs

These are found from the derived potentials and are
given in Appendix A.

The potentials (2.23) are retarded radiation potentials
as is seen from their asymptotic dependence f(t r)/r. —
Because these represent waves propagating away from
the system, one would expect them to carry energy
away from the system. In the next section we evaluate
this energy Qux.

+sr(A' —1PAB+B'+12C') cos'0

+s(B'—A')(1 —cos40) cos2&

——,'C(A+B) (1—cos48) sin2&

+—' [(A —B)'—4C'$ sin49 cos4&

+sC(A B) sin40 sin4$}—, (3.4)

dP
dQ

dQ

or it can be integrated over time to Qnd the energy
radiated per unit solid angle at each angle,

III. ENERGY RADIATED IN TRANSIT
where the angular coordinates are again de6ned by
(2.21). The expression (3.4) can be integrated over

Far away from a nonradiating system, the total mass solid angle to And the power radiated at any time t,

of the system can be read off from that part of gpp

which is inversely proportional to the distance from the
system. This mass, times the square of the speed of

light, is also the total energy of the system. This energy
can be expressed formally as'

E= Sppd'r, (3.1) dI'
dt

dQ
(3.6)

where S„„is the sum of T» and all of the nonlinear
terms arising from the expansion of the field equations of The total energy ~E radiated in a transit of the small
general relativity about the Minkowski metric g„„.S„„mass past the large one is then the time integral of (3.$)
is a conserved quantity in the sense that or the integral over solid angle of (3.6), i.e.,

r1 &BS„ /Bxv=0. (3 2)

Sp,ds'= —I'

where p is the power radiated through the surface.
Over a time average the right-hand side of (3.3) reduces
to an jntegra]. of the Landau-Lifshitz pseudotensor' over

The change in the energy of the system can then be
expressed, using (3.2), as the integral of Ss; over the
surface ds' surrounding the system

dE
dt I'= dQ

dQ
(3.7)

Because of the complexity of the expressions involved,
these integrations must in general be done numerically.
However, in the nonrelativistic limit we can reduce our
expressions and perform the integrations explicitly. In
the limit v«c, (2.14) reduces to

h" s&'& =+ (4G'Mm/rr") (x"v'+x"v') (3 8)

r~ P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
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The reduction of (2.16), (2.18), and (2.19) is accomp-
lished by writing (since r'c '8/8/' is small)

b(&' —~+2'—n r') —8(~' —~yr+2')
= —(r'+n r')(8/R')8(t' —t+r), (3.9)

obtained from (3.15) or (3.16) as

37x 6'HEI'm'v
AE = ~«c .

15 b'c'
(3.17}

2G d'
(3.11)

where Q,;=p, 2N,x.'x '. In our case the sum over masses
m, contains only one term, arising from the small mass.
Carrying out the indicated time derivatives, and using
v'= GMx"/—r", we find that (3.11) becomes

h "5
——(4G2M2/2/rr") L2 (x"2/&'+ x&'2/*')

—3x "x 'r' .v/2'" j,.„(3.12)

which agrees with the sum of (3.8) and (3.10).
Comparison of (3.12) with (2.32) and (2.24) shows

that 3, 8, and C in the nonrelativistic limit become

g —4P2r (4+P2r 2) (1+P2r 2) 5/2—
12P2,(1+P2,2}-5/2

C=4p(2 p272)(]+p2r2) —5/2

(3.13)

where we have used r'= b+vt', P= 2/c, and (2.22).
Since (3.13) does not depend on the angles 0 and p, we
can find the total power radiated, (3.5), from (3.4) by
explicit integration. This yields

P= (G5M2m2/30b4c5) (3 '—AS+82+3C') (3.14)

which becomes, on substitution of (3.13) into (3.14),

8 G5M2m2p2t' 12+p2r2
P= — ~, 2&&c. (3.15)

b452 ((1+p2 2)2

The total energy radiated per unit solid angle, (3.6),
is obtained by substituting (3.13) into (3.4) and per-
forming the integration over time. This yields the angu-
lar distribution of the radiation

6'3Pm'e
$51(1+cos48)+290 cos28

dQ 2566'c'

—16 cos2q (1—cos4e) —(25/2) sin'e cos4pj,

2/«c. (3.16)

The total energy radiated in one transit, (3.7), is then

and integrating by parts with respect to 3'. Thus, keep-
ing lowest order in v/c, (2.16) reduces to

72;;,5 ~ ' = (4G'M2/2/rr") ((x"v~'+ x~'2/')

3x"x&'r—'.v/r" j„,. (3.10)

To this same order in 2//c, (2.18) and (2.19) vanish.
Therefore, in the nonrelativistic limit, h;,,

, o is the sum
of (3.8) and (3.10}.This can be checked with the general
nonrelativis tie expression for h,;,0,

We may also examine the radiation emitted in the
case of ultrarelativistic motion, where I —e'« 1. First
we note that the contributions to the potentials (2.14),
(2.16), (2.18), and (2.19) are all proportional to
(1—n ) '/', which we can interpret by saying that it is
really the relativistic mass 225/(1 —2/2)'/2 rather than 222

which is the source of the potentials. Next we inquire
about the relative importance of the contributions
coming from each of the retarded times t~' and t2',
given by (2.20). Those terms arising from /2' contribu-
tions give rise to radiation over a time t b/2/ even in the
ultrarelativistic region and there is no forward peaking
of the radiation. Thus we would expect these terms to
i.eillalil Rnite as 2/ ~ 5) aside floni tlie factol. (1—5') '/'
mentioned above. The terms arising from the t~' con-
tain factors of (1—n v) ' which cause the radiation to
be strongly peaked in the forward direction, as is the
corresponding case in electromagnetism, " and cause
the power per unit solid angle to increase without limit
as m

—+ c. Also first one might expect the radiation to be
emi t ted in a very short time, again as in the analogous
situation in electromagnetism. A relevant question
concerns, in order of magnitude, how the total energy
radiated depends on 1—v'. Ke therefore need a some-
what more quantitative estimate of the radiation com-
ing from the t~' terms.

To estimate the radiation, we make use of the fact
that the radiation is strongly peaked around 9= ~~a, p = 0
and dehne the angle 8= ~~—8. Because of the factors of
I—n v= p2' (1—2/2) —(82+ 222)j in the denominator, each
factor of 8 or y in the numerator contributes in order of
magnitude (1—2/2)'/'. If we assume first that in order
of magnitude C 3 q or 28, 8 Cp or C5, then the
instantaneous angular distribution of the radiation
(3.4) can be written, to lowest order, as

dP O'SI'm'
(282(C—A q ) '+-,' L2A. (&p2 —b2)

dn
+28—4Cpg2} (3 18)

It is interesting to first suppose, incorrectly, that for
1—2/2«1 only the direct source term (2.14) is important
and that the stress terms (2.16), (2.18), and (2.19) can
be neglected in estimating the expected radiation. One
reason why this is of interest is that this term corre-
sponds to the first (and presumably dominant) term,
of the so-called fast-motion approximation. ' Actually,
as is seen in the first term on the right-hand side of (2.12)
this correspondence is not precise since there are effects
due to p', both explicitly in the (1—2P') and implicitly

"J. D. Jackson, CLussi cd I/ Lect~odyn amies (John WBey R Sons,
Inc., New York, 1962), Chap. 14.
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in (dt/ds)', which are not present in the first term of the
fast-motion approximation. However, in that approxi-
mation these should contribute in higher order in the
expansion parameter, and therefore as a consistency
check one could include them or leave them out at will.
A Inore precise calculation is outlined in Appendix B.

For the case where we assume only (2.14) con.tributes,
we can read off the dominant contributions to A, 8,
and C in (3.18). 8 is obviously 0, since there are no
x"x&' contributions. The dominant A contribution is
seen to be

3= —8b2t'/rls(1 —2/2)'/'(1 —n v)', (3.19)

and to the order in which C Ap or A8, C vanishes.
Substituting (3.19) into (3.18), approximating 82+y2

1—v' 1—n v 1—v', and d0~1 —v', we obtain the
order of magnitude of the typical power radiatedover
a11 angles" of

(3.20)P-G2M2m2/b4(1 —2/2)'.

Using the fact that this power is radiated in a short
burst of duration t b(1 —2/2), we obtain the order of

magnitude of the energy radiated in one transit of a
relativistic particle of mass m,

AE~ G2M22222/b'(1 —1/2) ' (3.21)

e=(r' v —n r')/r', (3.22)

which is a small quantity since n and v are close together
in the forward direction at large velocities. Keeping only
the ti' contributions, we find that the sum of (2.14),
(2.16), (2.18), and (2.19), with (3.22) and (2.17),
reduces to

Next we show that when all the contributions to the
potentials, including the stress terms, are taken into
account, the typical power and energy radiated are
somewhat smaller, which therefore indicates their
relative importance and the error one makes in keeping
only the direct source term in the ultrarelativistic limit.

In order to show that the stress contributions to the
potentials, (2.16), (2.18), and (2.19), can.cel out the
dominant-, behavior of the direct source terms, it is
useful to define the quantity e as

&g,o=
BG'Mvr v'r' . '(2r'+n r') 1 —r/ rr r' v —r'. v/r'+

)-+
~

1 —-'2(1+2/)
r(1 —1/')'/' (1—11 V)' r'(r'+n. r')' r'2 5 r' 1+n r'/r'

(1—n v)' —2e(1 —n v)-

(r'+n r')'

g"1/&+x"2' e(2r'+n r') (1—n v)

(1—n v)' r"(r'+n r')' r'(r'+n r')'

—',(1-2/2) 2:"x&' 2r'+n r'
+ — . (3.23)r" 1—n v r"(r'+n r')'

(1 2/2) 1/2

A
(1-n.v)' 7

(1—n.v)'(1—n v)r —(1—2/2)(r+n b/b)

[(1 n. v) 2+2/2(T+n ' b/f/) 2]1/2
(3.24)

To estimate the radiation from these potentials, we tively. Thus we expect that A, 9, and C, dered by
use (2.20) and (2.22) to solve explicitly for e, r', and (2.24), are of order
1+n r'/r' as a function of the time parameter r. This
gives 1

b[(1—n v) 2+2/2(r+n. b/f/) 2]'/2
r'=

1—D V

n vr+n 1/b
1+ =1+

y' [(1—n v)2+2/2(r+n b/f/)'$"'

(3.25)

(3.26)

(1—2/2) "'(1—n v)

and when we substitute these into the angular distribu-
tion (3.18) with approximations, made as before, we
6nd in order of magnitude that the typical power
radiated is

O'M'm'

gi'hen we substitute these into (3.23), and use the fact
that 1—gn. vv1 —2/2 n b///1 (1—2/2)'/2, we find that the
square brackets in the coefficients of e'2/', x'2/'+&' 2/',

and x"x&' are of order 1—2/2, (1—2/2)'/2, and 1, respec-

"Zu the estimate (3.20) we have implicitly assumed that the
radiation reaches its peak at the same time for different points
on the sphere. Actually, as in electromagnetism, there is a time
spread on the order of b(1—v')'I2 of the peak time, which is larger
than the time width of the peak, b(1—v'). Thus (3.20) is the
power obtained by adding up the power radiated at various angles
at the time for each angle that this radiation is near a maximum.
If we want the observed power P, this would be (1—u')'" smaller
than (3.20), but (3.21) would still be the same since the radiation
would uow take place over the smeared time spread b(1—22}'/2,

rather than b(1—v') as before.

p~
4C2(1 2/2/C2) 2

(3.27)

hE
PC4(1 —1/2/C2) 2/2

(3.28)

It might be thought that this power is radiated over a
time t b(1—2/2) as before. However, inspection of the
potentials shows that, because of the factors of 1+n r'/
r', the potentials keep their order-of-magnitude estimate
for a time span which is larger, i.e., the power (3.27)
is radiated over a time t~ b(1—2/') '/2. This yields for the
total energy radiated in one transit the order-of-magni-
tude estimate

G'M'm'
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We note that (3.27) and (3.28) are much smaller than
the direct source estimates (3.20) and (3.21) of the fast-
motion approximation. The precise forms of (3.27) and
(3.28) have to be determined by numerical integration,
which results are presented in the next section.

One further remark should be made concerning the
limits of validity of (3.27) and (3.28) in the ultra-
relativistic limit. In deriving our potentials, we have
stated that since GM/r'c' is small, we may ignore
acceleration effects in the second term on the right-
hand side of (2.12). However, examination of this kind
of term in the ultrarelativistic limit shows that because
we would be differentiating (1—n v) ", the terms would
actually be of order tLGM/r'c'7/(1 —v'/c') smaller.
Therefore, these terms become important, and our ap-
proximation breaks down, when 1—v'/c' becomes so
small that it is comparable to GM/r'c', which we have
already assumed is a small parameter. It is therefore
not appropriate to take the limit of the expressions
(3.27) and (3.28) as v -+ c in the case of finite GM/bc'.

IV. NUMERICAL RESULTS

Because the integrations indicated in (3.5)—(3.7)
could not be done analytically, it was necessary to
perform numerical integrations to find the power
radiated I', the angular distribution of the radiated
energy dE/dQ, and total energy radiated d,E. These
integrations were done for a selected set of velocities v

from 0.01c to 0.9999c.For velocities up to 0.99c, angular
integrations were carried out over the whole sphere, and
time integrations were carried out for Pr /define by
(2.22)7 from —2.5 to +2.5. In the nonrelativistic limit
these results were compared with the formulas (3.15)—
(3.17) and were seen to agree to within 1'Po. Sources of
error were the finite mesh size in the integrations and the
finite limits on the time integrations. For velocities
e& 0.99c, the radiation became peaked in angle and time,
and the range of integration was narrowed so that the
mesh size would adequately cover this structure.

Figure 1 displays the energy radiated AE as a func-
tion of P= v/c. For low P, the energy radiated decreases
rapidly because, from (3.17), DE ~ P for small P. For P
near 1, the energy radiated increases rapidly as is seen
from (3.28). It is of some interest to see how this energy
is radiated in time. In Fig. 2 we plot the power radiated
I', defined by (3.5), against the time parameter Pr for a
selected set of velocities. Ipse of the parameter Pr rather
than the time t eliminates the major nonrelativistic
effect, namely, the fact that the power is radiated over a
time during which the small mass is close to the large
one, which is of order t b/w Significant fea. tures of Fig.
2 are the over-all increase in power radiated with
velocity, the relativistic narrowing of time over which
most of the energy is radiated at larger velocities, and
the emergence of a high, narrow peak in the extreme
relativistic limit. Figure 3 is a plot of the angular
distribution of the radiated energy dE/dQ t given by

(3.6)7 for angles 8= ~~ and q between —m and +m.
Note that this is in the plane containing the mass 3f
and the trajectory of m. The velocity of m is in the
direction 0=-', 7r, p= 0. Again we have selected a sample
set of velocities to illustrate the major features of the
angular distribution. Generally dE/dQ increases with
velocity, except for an interesting region near p= &75'
for P between 0.35 and 0.65. At larger velocities the
radiation is emitted predominantly at smaller angles,
and it is seen to be concentrated in a narrow peak. in
the extreme relativistic limit. It is interesting to note
also that the power radiated in the forward direction,
which is a minimum at low velocities, becomes a maxi-
mum at high velocities. Although not plotted here, in
the extreme relativistic limit the radiation is also
strongly peaked at 8=-,'m if dE/dQ is plotted against 8
for @=0.

Properties of the radiation in the extreme relativistic
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APPENDIX A

To obtain A, 8, and C, we sum the potentials (2.14),
(2.16), (2.18), and (2.19), making use of (2.17) and

(2.20). We then write x"=b'+vy')I', and, following the
def(nition'of A, 8, and C given in (2.24), we factor out
GMrpi/rb'(, " and read off A as the coefficient of v'vy'/v',

8 as the coefficient of b'by'/b', and C as the coefficient of

(b'v'+b'v')/bv. To this end we define the sucession of

quantities

5= sin8sinp, e= sin8 cosy,

2

-log (I-P )
IO

FIG. 4. Asymptotic behavior of the total energy, maximum
power, and energy per unit solid angle in the forward direction,
for large values of P. Natural units are those specihed in Figs, 1—3
for each of the various quantities. The numerical values of these
quantities, as well as the slopes of the lines, may be obtained from
this graph since there has been no shifting of the zeros in the
logarithmic plot.

"=(+b)/(1 —P ),
L(1 P2) yp2riji/2}/(1 P2)

xi = (1+P ri ), yi = ri/xi, itpy17i
=Pyi,

ni ——b/xi+ Pyie,

with x2, y2, p2, and n2 similarly de6ned. Then we form
the quantities

lf i=I'(1—vi')/(1+~i) —P'(vi+ ~)'/(1+~i) '—2(1—P~)/(1+~i),

2 1 pal/(1+(il)+p(rl+6)/(1+Ql)

&i= (Pvi+P')/(1+Per) '(1+~i)+Py i/(1+Pvi) (1+~i)+(Pvi+P~)/(1+@ i) (1+~i)',
L.= (1+P )-./(1 P~) 4P vi-~/(1 -P~) 4pv. -, -
&i=P'(1 —vi') (pi+ ~)/(1+Pvi)'(1+~i),

Di ——P'(1 —yi')/(1+ni) (1+Pyi) '——',(1+P')/(1+Pyi) (1+(ii) 1

Ei (ni+ 2)/(1+ ni) ', ——

with quantities with subscript 2 being similarly defined.

In terms of the above quantities, A, 8, and C are

16P PyiTi py2Di

(1 P')"' *'(1—P )' ~ '(1+—Py )' ~'(1+Py)I
py p'2

H/"2 Ã2

(1—p')"'(1 —p )(n'(1 —p )' x, '(1+p'y, ) x, '(1+p'y, ))

4(1+P') / P'yi'&i

(1—P~) i/~)), x ~(1—Pg)

p'y~'&a

x,'(1+P'y2)

p'y~'&~

*.(1+P y.)~

4P'Li 8P'y (1+p')

(1—P')'I'(1 —Pe)'xP (1—P')"'(1—Pe)'xi'
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4(1+p') ( E2 +—
(1—P') '12 kZ) 4(1—Pe) X2'(1+P2y2) X2'(1+P'y2) l

T2Sp

(1—)1')x'(x, '(1—IP )' x '(1+yP'y, )' x, '(1+(1'y,))

4P(1+P')4(1+p') py181 py2+2 py2~2
+

(1—y')'x(x~'(1 —P ) x '(1 +I')y) x '(1+ 'yy, ) (1—y')"'(1 —y )'x~'

APPENDIX B

In this appendix we compute the gravitational
bremsstrahlung expected from the fast-motion approxi-
mation in the extreme relativistic limit. The physical
situation is the same as before. We follow the methods
of Smith and Havas, ' except that we look at the radia-
tion only in the limit that 1—v'«1. For comparison
with results derived previously, we will evaluate the
radiation by an energy-Qux method, which is shown by
Smith and Havas' to give results which are consistent
with the equations-of-motion approach.

Far away fro~ the small mass 2I, the gravitational
potentials of the small mass are

h„,= —4Gm2)„2)„/r(1 —r, ') "'(1—n. v) ~,.1, (B1)

where 2)„=yt„7)~, 2)~= ds /dt, and all quantities are
evaluated at the retarded time t'=t r+n r—'(t'). A
similar expression results for the potentials of the large
mass M, except that the velocity of the mass M is small.

The energy radiated is given by'

r2

dt 16m G
UpA, e~d0, (B2)

which corresponds to our equation (3.3). The U()2 is
broken up into the sum of the three terms Apl, ,Bpj„and
Cpp where it is asserted that consistency requires keep-
ing only the A p& term. The Bpj, term vanishes if the co-
ordinate condition g Ph „p=o is satisfied; however, if
that same coordinate condition is placed on (B1), it
implies the acceleration vanishes. The Cpj, term origi-
nates from a divergenceless part of the Upj, in the con-
servation laws, and can be thought of as somewhat
arbitrary.

Noting that we ultimately want the time integral of
(B2), we consider the time average of equa, tion (B2).
Using the fact that at large distances the potentials
behave as f(t r)/r, but not imposin—g the coordinate
condition, it is easy to show, using methods outlined
before, 4 that"

»A factor-of-2 error in the de6nition of these quantities in
Smith and Havas (Ref. 9) has been corrected.

Bpge~dO = A p, ~hpg, ~
—Ape, hp7 g

Xg &g~'e'dQ, 83

CpI,e~dQ =0,

where ( ) means an average over time. The A()2 term,
when substituted into (B2), gives the integral of the
Landau-Lifshitz energy Qux' at large r, before any co-
ordinate condition is used. One sees explicitly that the
Bpp term does not contribute if the coordinate condition
is satisfied, and CpI, does not contribute in any event.

For our system we have two contributions to the
h p, one from the mass m and one from the mass 3/I.
In general one must keep both terms, as in the analogous
situation in electromagnetism. For example, in the low-
velocity limit, keeping only the contribution from one
mass leads to spurious dipole gravitational radiation,
which cannot exist. A similar feature is found in electro-
magnetism for systems of particles which have the same
charge-to-mass ratio. In the low-velocity limit, the
radiation potentials of the second mass cancel out the
dominant behavior of the radiation potentials of the
first mass, giving quadrupole gravitational radiation to
lowest order. In the extreme relativistic limit, however,
the situation becomes quite different. The h p, p, as com-
puted from (Bl), become, as in the electromagnetic
analog, strongly peaked in a narrow region in the for-
ward direction (n v=1). Only in the unlikely case of
two bodies moving with parallel comparable velocities
at the retarded times is there any appreciable overlap
between fields generated by different bodies. Thus in the
extreme relativistic limit, as in electromagnetism, the
integrals in (B3) may generally be evaluated by com-
puting the h p, p for each particle separately, and adding
the corresponding energy cruxes from each.

For the particular case at hand, mass m gives peaked
fields, but 3E does not. However, even here the h p, p

from (B1) are, in the forward direction, much larger
than the corresponding contributions from the mass HEI,

although the latter dominate at other angles. Therefore
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we can again sum the Quxes from each particle inde-
pendently. To evaluate the contribution of mass m, we
then substitute (81) into (82) using the equation for
Uoy given in (83).It is convenient to express the energy
radiated in terms of the retarded time t', rather than t.
This we could not do in general previously, since there
were two retarded times to consider. The integrations
are then straightforward, and if we include only the
A, q term of (83), we find the energy radiated

dE I1=+—Gm' +
di' 3 (1—n')' (1—e')') (84)

where iI and &, t are the components of the acceleration
perpendicular and parallel to the velocity. Note that this
represents an energy gain, rather than loss, and is the
energy gain one would calculate from the radiation re-
action force, ignoring the effects due to retardation of
the 6eld from M acting on m. The contribution of the
large mass M is found by replacing nz by M. In this case
one can assume that the velocity of the large mass, but
not its acceleration, is small, to our order of approxima-
tion.

For completeness the energy Qux from m computed
from the Boq term in (83) gives

(dB) 2Gm'

~2(i ~2)2

(1—i ') tt'1 —

vs&-

ii' 1+ 1n~

2v &1+vj

5'= —(1+5 )Q .+45'P "v (86)

with p= —GiV/r. Substituting (86) into (84) and per-
forming the integration over time then gives the total
energy radiated by the small mass in one transit,

hE = (11/6)~G'm'M'/(1 —v') 'b'. (87)

This is the same order of magnitude as our estimate
(3.21), but has the opposite sign, since (87) corresponds
to an energy influx.

The acceleration of M may be found by computing
the acceleration of a body in the presence of a mass m
moving with relativistic velocities. This can be found
by using the near-zone equivalent of the potentials
(81), computing derivatives of the potentials, and sub-
stituting those into the equations of motion of the large

2 (1—v')' (1—v)—
4n' —2 — ln~

~

. (85)
(1—v') &1+.)

Following Smith and Havas, ' we assume that this con-
tribution has no physical signi6cance.

To knish the calculation, we need to use the equations
of motion' to And the acceleration components. For the
small mass, we compute the acceleration to first order in
G3E/rc2. For a finite but sufficiently small mass m, the
radiation reaction terms can be neglected in computing
the acceleration. This yields the approximate equations
of motion of the small mass,

mass. The dominant acceleration is that produced by
the near field of m, i.e., that which is calculated by
assuming the mass m is moving uniformly. Following
procedures analogous to the corresponding electro-
magnetic case, " this yields an acceleration which for
large velocities of m is given by

2Gmv'
(1—v'«1) . (Bg)

(1—v') '~' (E—R.v)'

This acceleration occurs over a short time L~b(1 —v')'~'j
because, as in electromagnetism, the Geld becomes
greatly compressed in the direction of motion of m.
Substituting (88) into the radiation formula (84) and
performing the integration over time gives the radiation
emitted from the mass 3f in the transit of m,

AE= (22~/3) G'm'M'/(1 —v') '"b'. (89)

Note that this is also an energy gain, and it is of order
(1—v')'~' smaller than the contribution (87).

We now reconcile these results with the estimate
given by (3.21). In that case there was no contribution
from the large mass M to the order of approximation
in which we were working. This resulted from the fact
that in arriving at (3.4) we had used the coordinate
condition to reduce the Landau-Lifshitz Qux so that it
contained only time derivatives of the spatial com-
ponents of the potential, h;;0. As has been shown
before, 4 this gauge condition must be satisfied at large
r if the field equations are to be consistent to second
order in. 1/r. In. the case in which only spatial compon-
ents are considered, the large mass does not contribute,
since h;;,p~ GMVV/r, and, although V is appreci-
able, V=O. Moreover, in casting the radiation Qux in
a form where only spatial components h;;, 0 contribute,
we then necessarily have an energy Qow outward from
the system. Thus we change the sign of (87), but the
magnitude of the answer is the same, since the com-
ponents of the potentials (81) are all of the same order
of magnitude.

All of this illustrates again the error one makes in
neglecting the stresses in the system, since it is the
contribution of the stresses which allows the coordinate
condition to be satisfied for nonvanishing accelerations.
The main point we wish to raise here is that the fast-
motion approximation, which does not include the
stress contribution, disagrees with the calculation of
this paper, which does evaluate the stress contributions.
This disagreement is quite drastic for relativistic velo-
cities, the fast-motion approximation yielding radiation
of the opposite sign and many orders of magnitude
larger than we have found in this paper. It would still
be of interest, however, to have the radiation computed
for arbitrary velocities, using the equations-of-motion
approach.

9 W. Panofsky and M. Phillips, Classical Electricity and Mag-
netism (Addison-Wesley Publishing Co., Inc., Reading, Mass. ,
1955), Chap. 18.


