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We continue the investigation of the preceding paper into the irreducible representations of local non-
relativistic current algebras. Here, we concentrate on the new features which arise in classifying the repre-
sentations of the current algebra with regard to particle statistics, and in including internal variables
such as spin.

I. INTRODUCTION Next, in Sec. II C we show how to construct a formal
expression for G(x,y) in terms of p(x) and J(x). With
G(x,y) written in this way, the above-mentioned con-
straint equations behave somewhat like Casimir opera-
tors for the p(x), J(x) algebra in that they distinguish
representations with E bosons from unitarily inequiv-
alent ones with E fermions. The operator expression
for G(x,y) derived in Sec. II C is formally identical for
bosons and fermions. However, we show in Sec. II D
that the explicit realizations of J(x) as a differential
operator on a, fixed Hilbert space dier in the E-particle
Bose and Fermi representations by an additive function
of p(x). Consequently, G(x,y) also has a distinct realiza, —

tion as a differential operator in Bose and Fermi repre-
sentations. It is precisely this fact which allows G(x,y)
to satisfy diAerent algebraic constraints when applied
to Bose and Fermi states. The different realizations of
J(x) also lead to distinct expressions for the Harniltonian
in the Bose and Fermi representations. These are also
displayed in this section.

In Sec. II E we discuss an alternative formulation of
statistics obtained by reinterpreting the statistics con-
straint equations as a prescription for uniquely extend-
ing representations of the local p(x), J(x) algebra to
representations of the larger algebra generated by
G(x,y). Bosons and fermions belong to unitarily inequiv-
alent representations of the G(x,y) algebra in any
number of space dimensions. In the Appendix we illu-
strate the ideas used in Sec. II E by considering a simple
example from elementary quantum mechanics where a
procedure for extending representations of an algebra
to those of a larger algebra is used to pick out the parity
content of a representation.

Section III concerns spin. In Sec. III A we incorporate
spin into the theory by adding the spin-density operator
X(x) and considering the algebra' generated by p(x),
J(x), and X(x). For the special case of spin- —', particles,
we obtain an expression for the Hamiltonian in terms
of these current densities. In Sec. III B we study the
irreducible representations of the current algebra
describing a system of E identical spin-~ particles. It is
found that a slight extension of the results of Ref. 1
allows us to construct these representations, and that
one can also obtain in this case a functional representa-

'ERE and in the accompanying paper' we explore
the problein of describing the particle content of

nonrelativistic quantum theories formulated in terms
of currents. As previously explained, ' our approach to
this problem is through a study of the irreducible
representations of local, equal-time current algebras.
In I, we concentrated on systems containing a finite
number of spinless particles and obtained representa-
tions of the associated current algebra, without, how-
ever, dealing in any detail with the problem of particle
statistics. Here, we shall discuss the new features that
arise in extending these results so as to describe particle
statistics and spin.

This paper is organized as follows. Section II is de-
voted to statistics. In Sec. II A we give a physical argu-
ment to show that bosons and fermions belong to uni-
tarily inequivalent representations of the current
algebra. The argument is based on the observation that
the relative angular momentum operator, written in
terms of the particle number density' p(x) and particle
fiux density' J(x), is a well-defined operator in an ir-
reducible representation of the current algebra and has a
spectrum which differs for bosons and fermions. There
is no analog to an angular momentum operator in one
spatial dimension, and the physical argument does not
go through. In fact, in one space dimension, states
containing E bosons or fermions belong to unitarily
equivalent representations of the current algebra. '

In Sec. II 8 we introduce the density G(x y)
=il"(x)f(y) and find, abstracting from the underlying
second-quantized theory, that G(x,y) satisfies distinct
algebraic constraints when applied to Bose and Fermi
states. These equations of constraint are shown to
contain all of the usual information about statistics.

*Work supported in part by U. S. Atomic Energy Commission
under Contract No. AT(30-1)-2171. Part of the work reported
here is included in a thesis to be submitted by Jesse Grodnik to
the University of Pennsylvania in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

~ J. Grodnik and D. H. Sharp, preceding paper, Phys. Rev.
D. 1, 1531 (1970); henceforth referred to as I.

'These quantities are defined in terms of commuting or anti-
commuting second-quantized fields ft(x) and P(x) as p(x)
= its(x) 4 (x), I (x) = (&/2~t) L4'(x) V4 (x)—Vf'(x)it (x)j.~e»»&
set M=1 throughout the paper. For further explanation of the
notation and terminology used here, the reader should consult I.' G. Goldin, J. Math. Phys. (to be published). 4 R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968}.
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tion of the current algebra similar to the one we ob-
tained for spinless particles in the preceding paper. '

Some speciic examples of the general results described
here are given in Ref. 5.

II. STATISTICS

A. Unitary Inequivalence of Bose and Fermi
Representations of Current Algebra

The major results of paper I apply to both boson and
fermion representations of the p(x), J(x) current
algebra' '

(2.1a)

the center-of-mass angular momentum operator associ-
ated with this same volume,

x~(x)d'~ lXI J(x')d'x' l, (2.3)
v & & v

and the relative angular momentum operator

L„=L—L, (2.4)

These operators can be formed from the smeared
operators

(2.5)
p(f) = f(x)p(x)d'x

and

(2.ib)
~(g) = g(x) J(x)d'~ (2.6)

L= xXJ(x)d'x, (2 2)

J. Grodnik. , Ph.D thesis, University of Pennsylvania, 1969
(unpublished).' Recall that we are dealing with spinless particles at this point.

8
+i [J&(y)8(x—y)j. (2.1c)

Pyk

At this point we need a procedure by which to classify
the E-particle representations' ' of this current algebra
with regard to particle statistics. Since the formalism
we have been developing is rather diRerent from either
the Schrodinger or second-quantized formulation of non-
relativistic quantum mechanics, we do not expect that
the techniques used there to distinguish bosons from
fermions will be directly applicable here. Indeed, we

shall handle statistics with methods which are quite
diferent from the customary ones of imposing sym-
metry or antisymmetry requirements on wave functions,
or commutation and anticommutation relations on field
operators. All the methods are, of course, mathemati-
cally equivalent for systems with a 6nite number of
particles.

Our first task in classifying the irreducible representa-
tions of the current algebra (2.1) in regard to statistics
is to establish the unitary inequivalence of boson and
fermion representations. The situation regarding this
question, in fact, contains a complication. It. turns out
that whereas in two or more space dimensions the boson
and fermion representations are unitarily inequivalent,
in one dimension they are unitarily equivalent. A proof
of these statements has been given by Goldin. .' Our
intent here is to motivate the mathematical results
with a physical argument.

We begin by introducing the total angular momentum
operator' associated with a finite volume of space V,

by choosing the test functions f(x) and g(x) in a suitable
way. r Thus Eqs. (2.2)—(2.4) define self-adjoint operators
on the domain of p(f) and J(g) in any irreducible
representation of the p(f), J(g) algebra (2.1) containing
a 6nite number of particles.

Now for two particles, both contained in the sub-

volume V, the Bose or Fermi nature of the particles is
reQected in the spectrum of the relative angular mo-
mentum operator L„, Eq. (2.4), which we recall con-
sists of the even integers for spinless bosons and the
odd integers for spinless fermions. Consequently, the
two-particle boson and fermion representations of the
current algebra must be unitarily inequivalent, since a
unitary transformation cannot change the spectrum of
a well-dehned operator such as L„.

The above argument can readily be extended to the
case where there are more than two particles. One con-
siders a subvolume of space V~ containing a given pair
of particles, with the remaining particles all outside
of this volume. As before, the spectrum of the relative
angular momentum operator will diRer according as
the two particles in V» are bosons or fermions. One then
picks another volume V2 including a diferent pair of
particles and again looks at the spectrum of L„. Re-
peating this process until all pairs of particles are
sampled, we obtain the spectrum of the relative angular
momentum operator as a function of V, which we again
see diGers for bosons and fermions. Thus we can con-
clude that in two or three space dimensions, states with
A' bosons form a representation of the current algebra
(2.1) which is unitarily inequivalent to one based on

states with E fermions.

Also, we are now working in a 6nite subvolume V of space. If one
works in a box with periodic boundary conditions at the walls,
this subvolumeV is to be understood as contained entirely within
the volume V of the box.

7 For example, to obtain the z component of Eq. (2.2) from
Eq. (2,5) one chooses the test function to be g{x)=(—y,x,o)
throughout the volume V, and joins this function in a continuous
way to a function which vanishes sufBciently rapidly outside this
region.
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It is worth remarking that a mathematically rigorous
proof' of this statement relies on the fact that one can
make a local rotation which interchanges two localized
particles.

In one space dimension, there is no physical pro-
cedure by which two localized particles can be inter-
changed, ' and in this case one can, in fact, construct a
unitary operator connecting boson and fermion
representations. '

The equivalence of boson and fermion representations
in one space dimension presents a problem in inter-
preting the previously given expression for the Hamil-
tonian, ' 4

H = iSLgp(x) —2' (x)] [Vp(x)+2iJ(x)jd'x
p(x)

A statement of statistics of the above kind is not as
explicit as one might like. Here and in the following
sections we will develop an alternative statement of
statistics in terms of an operator whose behavior differs
in boson and fermion representations of the current
algebra in a way which can be stated in a concise and
explicit fashion.

A candidate for such an operator is found in a density
of the form

G(x,y) =0'(x,&)4(y,&), (2.8)

where P(x) and P"(x) are second-quantized fields satisfy-
ing either commutation or anticomrnutation relations.

It is clear that G(x,y) behaves quite differently in
boson and fermion representations of the current
algebra. To see this in a simple way, we introduce the
Fourier transform of G(x,y):

+ p(x)p(V) V(x y)d'«'—y (2.&)

in this case. The difhculty is that whereas we know on

physical grounds that the spectrum of the Hamiltonian
differs for bosons and fermions, even in one dimension,
we also realize that the assumption that H can be
written in terms of p(x) and J(x) in a well-defined way,
plus the fact that in one dimension, bosons and fermions
belong to unitarily equivalent representations of the
current algebra, would mean that the spectrum of II
must be the same for bosons and fermions. We will

indicate how this apparent contradiction can be over-
come in Sec. II E. Here, we remark that no such difh-

culty of interpretation arises in three space dimensions
where boson and fermion states span unitarily inequiv-
alent representations of the current algebra.

B. Statistics Constraints on Density G(x,y)

The physical argument given in the preceding section
to show that the Ã-particle boson and fermion repre-
sentations of the current algebra (2.1) are inequivalent
suggests one way to classify representations of the cur-
rent algebra in regard to particle statistics. Thus one
can think of putting statistics into the theory by suit-
ably specifying the spectrum of the relative angular
operator L„(V), Eq. (2.4). Specifically, for bosons one
would require the spectrum of L,(V) to consist of the
even positive integers for any finite volume V containing
just two particles, while for fermions one would demand
that L,(U) have a spectrum consisting of the odd posi-
tive integers.

8 This statement is true if one works in an infinite volume. If one
works in a box with periodic boundary conditions, bosons and
fermions belong to inequivalent representations in one as well
as three dimensions. The mathematical operator which inter-
changes particles in this case is translation on the torus (Ref. 3),
which, however, would physically entail moving some of the
particles through the walls of the box. In discussing statistics we
will disregard the exceptional situation created in one dimension
by imposing periodic boundary conditions.

G(m, n) = — e' *—"" G(x,y)d'xd'y, (2.9)
V

and note that G(m, m) is the operator for the number of
particles of momentum m. For a system of E bosons,
the spectrum of G(m, m) is the set of numbers {0,1,2, .. . ,

X), while for X fermions, its spectrum consists of the
clearly inequivalent set {0,1}.

We next remark that it is a matter of straightforward
calculation' to show that if G(x,y) is assumed to be
built out of Bose fields, it satisfies the constraint

G(w,x)G(y,z) —G(y,x)G(w, z) = ~(x—y) G(y, z)
—B(w—x)G(y, z), (2.10)

whereas if G(x,y) is built out of Fermi fields, a different
constraint equation is found, namely,

G(w x)G(y z)+G(7 x)G(w z)
= ~(x—7)G(w, z)+~(w —«)G(y, z) (2»)

These constraint equations" will turn out to be just
what are needed to distinguish boson from fermion
representations of the current algebra. As a first step
in making this idea plausible, we will show that Eqs.
(2.10) and (2.11) contain all of the usual kinds of infor-
mation about statistics.

The physical interpretation of these constraints be-
comes clearer in momentum space, where Eq. (2.10)
reads

G(k, l)G(m, n) —G(m, l)G(k,n)
= 8&, G(k, n) —b&, iG(m, n), (2.12)

~ To derive Eqs. (2.10) and (2.11), one simply starts from the
expression G(w, x)G(y, z) =Pt(w)P(x)Pt(y)P(z) and performs the
(equal-time) commutations or anticommutations necessary to
interchange pt(w) and pt(y).' These nonlocal constraints replace the statistics conditions
given in Ref. 4, where it was suggested that Fermi states should
satisfy the constraint p'(x) =B(0)p(x), while Bose states are un-
constrained. Although one can obtain the above equation by
setting w=x=y=z in Kq. (2.11), the limit which must be taken
is not well defined, either mathematically or physically.



SPIN AND STATISTICS IN QUANTUM THEORIES 1549

for bosons, and

Qg Qm Q1QII= ~Qm Qk Q]Q~ (2.15)

Qi7f Q QiQ = —Qm Qit Q)Q~ (2.16)

for fermions. Taking the matrix elements of these equa-
tions between initial and final two-particle scattering
states, one can obtain a relation between amplitudes
that can be expressed graphically as shown in Fig. I.
The plus sign is for bosons and the minus sign for
fermions. Thus Eq. (2.15) implies that the sign of a
scattering amplitude is unchanged if two bosons (in
the final state, for example) are interchanged, while
(2.16) states that the scattering amplitude changes sign
if two fermions in the Anal state are interchanged.

Our program now is (i) to write G(x,y) in terms of the
current densities p(x) and J(x), (ii) to obtain distinct
expressions for J(x) as a functional differential operator
in boson and fermion representations of the current
algebra, (iii) to obtain the corresponding expressions
for G(x,y) as a functional differential operator in boson
and f'ermion representations and to check that these
expressions are consistent with the statistics constraint
equations, and finally, (iv) to understand what the
statistics constraint equations mean in one space
dimension —where the boson and fermion representa-
tions are unitarily equivalent.

In concluding this section we point out that the use of
equations such as (2.10) and (2.11) to pick out statistics
is not a new technique. In particular, Araki and Wyss, "
in studying representations of the canonical anticom-
mutation relations, have employed a smeared version
of Eq. (2.11) to restrict the representations of the
algebra they investigate to totally antisymmetric ones.

and the Fermi constraint becomes

G(k, l)C(m, n)+G(m, l)G(k,n)
= 8i, G(k,n)+ ba, (G(m, n) . (2.13)

Nova let k, 1, m, and n approach a common value l.
In this limit the Bose constraint (2.12) is identically
satisfied, whereas the Fermi constraint reduces to the
form

G(l, l)G(1,1)=G(1,1) . (2.14)

Thus the operator G(1,1) (=aita~) is a projection operator
acting on Fermi states, and Eq. (2.14) implies that the
number of fermions with momentum 1 is either 0 or 1.

Expressed in terms of annihilation and creation
operators, the constraints (2.12) and (2.13) take the
form

G(x,y) =p(x) exp Lvp(z)+»J(z)3 dz, (217)
2p(z)

where the integration is taken along the straight line
from x to y. It will turn out that this integral is, in fact,
independent of path in any irreducible representation of
the current algebra.

To derive Eq. (2.17), we start from the second-
quantized form of the theory, taking G(x,y) =If t(x)g (y)
with the fields lt t(x) and It (y) satisfying

(2.18)

We note that if P is the total momentum operator, then

e"*LV(x)lt (y) je "'=I "(0)4(y—x), (2 19)

so that it will suffice to express G(ofz) =IIt(0)lt (z) with
z=y —x, in terms of p(x) and J(x). One can then invert
Eq. (2.19) to obtain G(x,y).

Next, we write a formal operator differential equation
for G(o,z). To obtain this equation, one considers the
quantity

VG(0») = 0 "(o)Vk(z) (2.20)

and rewrites it in the form

VG(O z) =if t(0)lt (z)L1!~t(z))Vlf (z)=—G(O, z)V(z). (2.21)

One can easily show that V(z) can be written as"

V(z) = $1/2p(z))LVp(z)+2'(z) j, (2.22)

and that it satisfies the commutation relations

LVi(x), Vi(y)j=0, k, 1,=1,2, 3 (2.23)

for either bosons or fermions. The differential equation
(2.21) can readily be converted into an integral equation
of the form

z

G(o,z) =p(0)+ G(o,w)V(w) dw,
0

(2.24)

in which we have incorporated the "initial condition '

G(0,0) =P(0) =pt(0)lt (0), and where we have taken as a
contour of integration the straight line from 0 to z.

We shall now solve Eq. (2.24) by iteration. Taking
the first iterate as

C. Formal Construction of G(x,y) as a
Function of p(x) and J(x)

In this section it is shown that the density G(x,y)
can be written, formally, in terms of p(x) and J(x) as

Gt»(O, z) =p(O), (2.25)

Fro. 1. Graphical description of Eqs. (2.15) and (2.16).

"H. Araki and W. Wyss, Helv. Phys. Acta 3V', 136 (1964).

"We emphasize that V(z), Eq. (2.22), is not a well-defined
operator on the Hilbert space which is used (see Refs. 1 and 3),
in representing the current algebra. Equations (2.22) and (2.23)
are therefore purely formal relations. They will be employed only
at intermediate steps in the calculation, and one can check that
the final expression for G(x,y), Eq. (2.17), is well defined.
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and delning the nth iterate as

G&"&(O,z) =p(0)+ G&" "(O,w)V(w) dw, (2.26)
0

one Ands

G'"'(O,z) =p(0) 1+ V(zi) dzi+ V(zi) dzi

Now let us see what the constraint equations say in
the case of two particles. Using Eq. (2.33) with iV= 2,
we find that G(x,y) applied to a wave function It (xi,x2)
g&ves

G(x,yg (xi,x2) = 8(x—xi)It (y,xg)

+8(x—x,)It (x„y) . (2.34)
0 It is now a matter of simple algebra to check that Eq.

(2 27) (2.34) is compatible with the Bose constraint, Eq. (2.10),
if and only if

The order of the factors V(zi), V(z2), etc. , in this
equation is immaterial in virtue of Eq. (2.23). One next
assumes that G(O, z) is given by the formal limit

G(O,z) = lim G&"&(O,z),

extends the limits of integration in each term of Eq.
(2.27) from 0 to z, and takes care of repetitions in this
equation by dividing by nt to 6nd

00

G(O,z) =p(0) P — V(w) dw
=o e~

=p(0) exp
0

V(w) dw (2.29)

G(x,y) =p(x) exp V(z) dz (2.30)

we then substitute (2.22) for V(z) into this equation to
obtain Eq. (2.17).This completes the formal derivation.

With an explicit operator expression for G(x,y) at
hand in Eq. (2.17), we can make another check on the
correctness of statistics constraint equations. Specifi-
cally, we will see that, in what might be called the
Schrodinger representation of current algebra, " Eqs.
(2.10) and (2.11) are equivalent to the requirement that
the wave function be even or odd under interchange of
particle coordinates.

To see this we deal first with one particle and recall' "
that we can write

p(x) = B(x—xi),
J(x) = —,'Lb(x —xi)pi+ p,b(x —x,)5,

(2.31)

where Ix;,P;5=ib;; Using 'E.q. (2.17) and the fact that
(Vp(x)+2iJ(x) 5= 2ip(x)pi, we find

Finally, we use Eq. (2.19) to translate back from
G(O,z) to G(x,y), obtaining

P(xi,x2) =P(x2,xi), (2.35)

and with the Fermi constraint, Eq. (2.11), if and only if

P(xi,x2) = —iP(x2,xi) . (2.36)

We have then further confidence in using the statistics
constraint equations (2.10) and (2.11) as a means of
picking out the statistics content of a representation of
the current algebra. It is worth stressing that, although
the formal steps leading to Eq. (2.17) appear to be
valid in one dimension as well as three, there may well
be a problem with writing G(x,y) as a function of the
currents in one dixnension, just as there is with the
Hamiltonian (see Sec. II A).

D. Distinct Exi&ressions for J(x) in Bose and Fermi
Reyresentations of Current Algebra

We express the unitary inequivalence of the Bose and
Fermi representations of the current algebra by requir-
ing G(x,y), Eq. (2.17), to satisfy the distinct algebraic
constraints (2.10) and (2.11).

To allow G(x,y) to satisfy Eq. (2.10) in a Bose repre-
sentation and Eq. (2.11) in a Fermi representation, it is
necessary to 6nd distinct representations for it as a
functional differential operator in the Hilbert space used
to represent the current algebra. " In this section we
will show this can be achieved by suitably choosing a
representation for J(x).

In I we represented p(x) and J(x), acting on a suitable
class of functionals 4'{p(x)},as follows:

po. (x)+(p(x)}=p(x)+{p(x) } (2.37)

J"(x)+{p(x) }= p(x)-.& ——.&P(x)
Sp(x) 2i

X+(p(x)}. (2.38)

We also commented there that one could generalize
the representation (2.38) for J(x) to the form

G(x,y) = h(x —xi)e'» o' '&.

For 1V particles, Eq. (2.32) becomes

(2.32) 1
JoP(x)+{P(x)}= P(x)

i 8p(x)

G(x,y) = P h(x x&)e'&"&—

"See Sec. IV of I.

(2.33)
1

&P(x)+F(p(x)} +(p(x)} (2 39)
2i

'4 For a discussion of the properties of this Hilbert space see
Secs. II and III of I and Ref. 3.



SP I N AN 0 STAT I ST I CS IN QUANTUM THEORIES

7'p(x)+ 2iJ(x) (2.40)

annihilates the ground state Qo. This result also follows
directly from the fact'5 that the ground state of a system
of free bosons should minimize the kinetic part of the
Hamiltonian (2.6).

Moreover, we certainly expect that the ground state
for a system of free bosons will turn out to be a constant
functional

Qs{p(x) }= const, (2.41)

just as it is a constant in the conventional formulations.
Now the point is that Eqs. (2.40) and (2.41) are com-

patible only if F{p(x)}=0, i.e., if J(x) is given by Eq.
(2.38). To see that the representation (2.38) for J(x)
is indeed correct for bosons, one must check that it
leads to a representation for G(x,y) which satisfies the
Bose constraint.

To do this, one first substitutes Eq. (2.38) into Eq.
(2.17) to obtain"

G(x,y) =p(x) exp
-3p(y) ~p(x)-

(2.42)

af ter noting that the integral in (2.18) is independent of

"W. J. Pardee, L. Schlessinger, and J. Wright, Phys. Rev.
1'75, 2140 (1968).

"We remark that this is a well-defined functional expression
in the sense discussed in I; i.e., it preserves equivalence of vectors
in Hilbert space and satisfies the condition G(x,y}~=6(y,x) in the
measure 0&(p(x) }K)p(x) Ldefmed in Eq. (3.16) of I and also dis-
played in Eq. (2.44) of the present paper).

that a suitable choice of the function F{p(x)} could
distinguish a Bose representation from a Fermi repre-
sentation, and that for bosons one could pick F=0. Let
us try to understand these statements.

There are two general requirements on the form of F.
First, F{p(x)}must be real, so as not to disturb the
Hermiticity of J(x), which is already assured' by the
structure of the first two terms in (2.39). Secondly,
F{p(x)}must be of a form which still allows J(x) to
satisfy the current algebra (2.1). These requirements
will be automatically satisfied by the functions F{p(x)}
which we consider here.

The central point now is to show that in each fixed-
particle number sector one can find two functions
F{p(x)} leading t via substitution of Eq. (2.39) into
(2.17)j to two distinct representations for G(x,y), one
of which satisfies the Bose constraint but not the Fermi
constraint and the other of which satisfies the Fermi
constraint but not the Bose constraint.

We will first show that a representation of G(x,y)
which satisfies the Bose constraint is obtained if we
pick F{p(x)}=0. This can be seen as follows.

First, one can readily conclude from the second-
quantized form of the theory of Ã noninteracting bosons
that the operator

path and can be trivially evaluated since

(~p(x)+2iJ(x)$= W
2p(x) Bp(x)

Then, using Eq. (2.42), one verifies by explicit com-
putation that the Bose constraint (2.10) is identically
satisfied on a dense domain of functionals. This calcu-
lation can be carried out by applying Eq. (2.10) to a
polynomial functional of the general form

!
T{p(x)}Os{p(x) }=

~

~ ~ ~ fi(xi) ~ f„(x„)p(xi)

where fi(xi) f„(x„) denotes an appropriate set of
test functions. Ke shall omit the details of the
calculation.

We would, however, like to make the following re-
marks. (i) All of the above clearly holds for any finite
number of bosons. (ii) The fact that the choice F{p(x) }= 0 leads to a form for G(x,y) which satisfies the Bose
constraint on a dense set of states means that Eq. (2.42)
is a suitable expression for G(x,y) for interacting as well
as for free bosons, in spite of the fact that the rationale
for picking F{p(x) }=0 was based on the noninteracting
theory. (iii) If Eq. (2.42) is used for G(x,y), one finds
that the Fermi constraint cannot be satisfied on any
state of the form (2.43).

Our remaining problem then is to find an expression
for J(x) as a functional differential operator in a Fermi
representation of the current algebra.

To do this we begin by recalling that in the Schrod-
inger formulation of quantum mechanics one represents
observables like the momentum or kinetic energy as
differential operators, symmetric in the particle coordi-
nates. The domain of such operators is specified in part
by imposing boundary conditions on the vectors to
which they are applied; for example, one may require
these vectors to be symmetric or antisymmetric under
interchange of particle coordinates. Thus, an observable
such as J(x), while having an identical formal expression
in Bose and Fermi representations, will, in fact, be
defined on different domains in the two cases.

Let us try to insist for the moment that equations
like (2.38) and (2.42) hold for Fermi, as well as Bose,
representations of the current algebra. Of necessity, we
would have to suppose that in the Fermi representation,
these functional differential operators are dered on a
domain which is diGerent from the domain consisting
of the dense set of functionals of polynomial type, Eq.
(2.43), suitable for the Bose representation. One might
think that one could construct such a domain in the
following way. Let Qp{p(x)}be the ground-state func-
tional for a system of E noninteracting fermions in the
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inner product defined in Eq. (3.16) of I:

(C P) = " ~*{~(x)}+{~(x)}

by writing it in the form

1—p(x)e
—'" v e"

)2i 8p(x)
(2.49)

)&(8[@(x)—P 8(x—x,)])g d'x;X)p(x). (2.44)

We expect that Qz{p(x)}is a cyclic vector of the Fermi
representation so that functionals of the type

Since it is symmetric, we expect that it can be written
in a, well-defined way as a functional of p(x), and it is
Eq. (2.49) which we identify with the functional

F{p(x)}mentioned at the outset whose choice can dis-

tinguish fermions from bosons. It is convenient to
introduce

T{p(x)}QF{p(x)}, (2.45) 2 {p(x)}= e'*~= (e'~)'. (2.50)

Qg =Re'~. (2.46)

The modulus is a symmetric function of the particle
coordinates, and so one can write it as a functional of
p(x), R=E{p(x) },whereas the phase is antisymmetric
in the particle coordinates and is not in the functional
Hilbert space. One can, nevertheless, consider the uni-
tary operator

(2.47)

which maps the antisyrnmetric functions (2.45) in the
Fermi domain into symmetric functionals of the type
(2.43) in the Bose domain.

Under this mapping, the inner product (2.44) is left
invariant, p(x) is taken into itself, and J(x), Eq. (2.38),
is taken into

J(x) = —.c(x)& ——.&~(x)
i bp(x) 2i

with T{p(x)}defined by (2.43), are dense. Finally, to
make the fermi domain. dkgerent from the Bose domain,
we would like to assume that Q~{p(x)},as a functional
of p(x), is in some sense antisymmetric under inter-
change of particles. But this cannot be assumed as long
as we represent the current algebra on a functional
Hilbert space of the kind described in I and Ref. 3. This
is because such functionals are always symmetric func-
tions of the individual particle coordinates, as is clear
from the form of the inner product (2.44). Thus a func-
tional Q&{p(x)}having the properties necessary to de-
Gne a domain for fermions distinct from that for bosons
is not an element of our Hilbert space.

Suppose, however, that we proceed, not by trying to
replicate the usual Schrodinger approach, but as follows.
One can write the Fermi ground state as a modulus R
times a phase e'~,

Then our expression for J(x) in the Fermi representation
is given by'~

1.

J"+{u(x)}= -~(x)& ——&~(x)
bp(x) 2i

1 1
+—p(x) . — V -A {p(x)} 4'{p(x) }.

2i A{p(x)} bp(x)
(2.51)

We wish to emphasize that the operators p(x) and

J(x) are now defined on the same domain in the Bose
and Fermi representations of the current algebra, but
that J(x) has explicitly different realizations, (2.30) and
(2.51), as a functional differential operator in the two
cases. This procedure may be contrasted with the
conventional one, where we work with operator expres-
sions which are formally identical for bosons and
fermions, but apply the operators to vectors in distinct
domains. We remark further that the new term added
to J(x) is real and that the Fermi expression for J(x)
will still satisfy the current algebra because it is gener-
ated by a unitary transformation from the Bose form
of J(x), which we know is coinpatible with (2.1). One
can also verify the latter point by explicitcomputation.

One can write A {p} in terms of the ground-state wave
function 0& for a system containing a 6nite number X
of noninteracting fermions as"

A {p(x)}= Qp'/Qp*Q p. (2.52)

Explicit expressions for Q~' and Qg*Q~ as functionals
of p(x) are given in a thesis by one of us. 5 Here we
mention that for two free fermions, having momenta 0
and k, Eq. (2.52) becomes

~{p(x)}= L2p( 2k) p ( k)3/L4 p(k)p (k)j (2 53)

where p(k) is the Fourier transform of p(x):

-1
+ -p(x)e-'~~ V e'~ . (2.48)

i k Bp(x)
p(k) = e

—""p(x)d'x. (2.54)

The first term in Eq. (2.48) is our former expression
for J(x). The second term is actually a symmetric func-
tion of the particle coordinates, in spite of the fact that
the factor e'& is by itself antisymmetric, as is made clear

An equivalent expression for J(x) in the I'ermi representation
is given by Goldin (Ref. 3). However, he arrives at this expression
in a rather different way.

"Unlike the case of bosons, the form of the ground-state wave
function for fermions depends on the number of particles, as does
the specific form of A {p(x) ) .
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If Eq. (2.51) is used together with (2.17), one obtains
the following expression for G(x,y) in the Fermi repre-
sentation:

G(x,y) =p(x) exp — +
&p(y) &t (x) 2A{t } p(x) = lim G(x,y),

y—+x
(2.58a)

unitarily inequivalent representations of the algebra
(2.57) in any number of space dimensions. ""

We first remarl& that the p(x), J(x) algebra (2.1) can
be recovered from the algebra (2.57) by setting"

~A {p}, (2.55)
— ~t(y) ~t(x)&

an equation which is different, of course, from the ex-
pression for G(x,y) in the Bose representation, (2.42).
One can show that Eq. (2.55) provides an expression for
G(x,y) which satisfies the Fermi constraint, and not the
Bose constraint. An explicit verification of this state-
ment for the case of two particles is given in Ref. 5.

For completeness, we display the form of Hamiltonian
in the Fermi representation. This is obtained by sub-
stituting Eq. (2.51) into Eq. (2.6) to find

H4{p(x) }

d'xd'y 8(x—y) 2&p(x) —2p(x) &-
bp(x)

1 t—t(x) ~ & A{o}
A {p} k 8p(x)

X 2~ + p' A(p} +(p(x)}. (2.56)
&t(y) A (t } &t(y)

In the Bose representation, the Hamiltonian does not
contain the terms involving A{p}.

1Vote added i' proof. On the basis of a recently pro-
posed rigorous definition of the quantity p '(x) given
by G. A. Goldin and D. H. Sharp PProceedirIgs of the

1969 Battelle Reecommtres oe Mathematics amd Physics
(Springer, Berlin, to be published)j it appears that
the definition of H, Eq. (2.7), and possibly that of

G(x,y), Eq. (2.17), must be modified somewhat in the
case of fermions. Such modifications could affect
Eqs. (2.55) and (2.56) as well.

E. Extension of Current Algebra to
Algebra of Density G(x,y)

In this section we shall discuss briefly and heuristi-
cally an alternative method of handling statistics which,
unlike the procedure discussed in the preceding sections,
we believe to be valid in any number of space dimen-
sions. It is based on the possibility of extending repre-
sentations of the current algebra (2.1) to representa-
tions of the equal-time algebra of the density G(x,y):

I G(x,y),G(w, z)j=8(w-y) G(x,z)
—8(x—z)G(w, y), (2.57)

and on the fact that bosons and fermions belong to

J(x) =(I/»)»m L&twiG(x, y) —&(.iG(x,y)j. (2»b)

In passing, one can also note that the kinetic Hamil-
tonian is given by'

~'~d'3 ~(x—y) &(.) &i.iG(x,y) (2.59)

Our interest is restricted to representations of (2.57)
in which

G(xy) =G(yx). (2.60)

There are, of course, a number of ways to study the
representations of the G(x,y) algebra. Here we will dis-
cuss those representations that can be obtained as
extensions of the p(x), J(x) algebra.

It is not necessarily the case that a given irreducible
representation of the current algebra has a unique ex-
tension to a representation of the G(x,y) algebra. For
example, in one space dimension there are at least two
ways" to extend a representation of (2.1) to a repre-
sentation of (2.57). One way is to extend the representa-
tion so that Bose constraint (2.10) and the Hermiticity
condition (2.60) are satisfied. A second way, leading to
a unitarily inequivalent representation of (2.57), is to
extend the representation so as to satisfy the Fermi con-
straints (2.11) and (2.60). In three dimensions, however,
we expect that every irreducible E-particle representa-
tion of the current algebra has a unique extension to the
G(x,y) algebra.

In either case, the explicit extension of the p(x), J(x)
algebra to the G(x,y) algebra is carried out via Eq.
(2.17),

G(x y) =p(x)

Xexp L~p(z)+2iJ(z) j dz, (2.17)
„2p(z)

'9 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963).
"The relationship of the algebra (2.57) to the current algebra

has been studied recently by J. Soln, Phys. Rev. 1'7l, 1773 (1968}.
2' For the case of more than two particles, there may be other

extensions of the current algebra corresponding to some kind
of parastatistics. As heretofore, these will be disregarded.

which is now interpreted in a rather different way than
before.

%hat is different is the following. Previously, we
started with a representation of the p(x), J(x) algebra
realized by states in the functional Hilbert space dis-
cussed in Refs. I and 3. It was argued that in three di-
mensions Eq. (2.17) made sense on this doinain. In one
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dimension this is not the case.2' We are now considering
the operators p(x), J(x), and G(x,y) as defined on a new,
and possibly distinct, domain consisting of the states
forming irreducible representations of the larger algebra
generated by G(x,y). We conjecture that for three di-
mensions the domains of the p(x), J(x) algebra and the
G(x,y) algebra will be the same, that for one dimension
they will be distinct, and that Eq. (2.17) will make
sense on the domain of the G(x,y) algebra in any number
of space dimensions. None of the foregoing conjectures
have been proven yet, and we shall not undertake to
give proofs here. We nevertheless think that the results
of a mathematical analysis will turn out roughly as
described above.

If this is so, one can apply essentially the same
procedures as outlined in Sec. II D to construct repre-
sentations of (2.57), corresponding to irreducible rep-
resentations of the current algebra. One starts with a
representation of the algebra (2.1) generated by p(x) and
J(x) and uses (2.17) to obtain a representation of (2.57).
We continue to employ Eqs. (2.10) and (2.11) to dis-
tinguish Bose from Fermi representations of the algebra.

Equations (2.42) and (2.55) defining G(x,y) in Bose
and Fermi representations of the current algebra were
obtained in three dimensions, where the notion of an
extended representation is unnecessary. We now have a
way of interpreting these formulas in one dimension.
In the one-dimensional case these equations de6ne uni-
tarily inequivalent representations, not of the p(x),
J(x) algebra, but of the G(x,y) algebra. However, to
make sense they must be applied on the larger domain
of the G(x,y) algebra. We remark that the same thing
will be true of operators like the Hamiltonian, which is
the way the apparently paradoxical situation described
in Sec. II A gets resolved.

In conclusion, we call attention to the Appendix
where we have tried to clarify some of the ideas used
here by considering a simple example from elementary
quantum mechanics.

III. SPIN

two-component spin-2 fields, and e is a vector whose
components o-~, 0-2, and 0.3 are the usual Pauli matrices.

The spin-density X(») satisfies the equal-time com-
mutation relations4

I
X,(x),X,(y) 1 ='e'.X.(x)~(x-y)

LX'(x),p(y) j=0,

(3.2a)

(3.2b)
8

I:X'(x),J~(y)j= —s LX*(x)|'(»—y)j, (32c)
BXIc

while p(x) and J(x) I
defined as in Ref. 2 but with

hatt(x) and f(x) understood as two-component fields7
continue to satisfy the algebra, (2.1).

Although the algebra (3.2) was abstracted from a
spin-~ field, it is apparent that this algebra could equally
well have been abstracted from a spin-S Geld. Had we
defined X(x) as

X(x) =Pt(x) T,it (x), (3.3)

where Pt(x) and P(x) are now commuting or anticom-
muting (25+1) component fields, and Tsi, Tss, Tss
are a set of (2S+1)&& (2S+1) matrices forming a spin-S
representation of SU(2), we would have again obtained
the algebra. (3.2). Therefore, in analyzing the representa-
tions of (3.2) we must put in the requirement that X(x)
is the spin density for a given number E of spin- —,

particles.
As in the case of spinless particles, we incorporate

conditions of this kind into the theory by requiring
p(x) and, in the present case, X(x) to satisfy an appro-
priate set of polynomial identities. ' We will display the
simplest of these in the next section. Here we remark
that to construct a representation satisfying these
identities, and to write the Hamiltonian in terms of
currents, it is helpful to make use of the fact that for
spin- —,

' particles p(x), J(x), and X(x) can be decomposed
in a simple way into pieces describing "spin-up"
particles, "spin-down" particles, and spin rotations.

Thus, we introduce the number density of spin-up
particles,

A. Nonrelativistic Current Algebra for
Systems of Syin--,' Particles

p "&(x)= ~t i'(x) A(x),
the momentum density of spin-up particles,

(3.4)

To describe a system of nonrelativistic spin- —, par-
ticles in terms of currents requires the use of p(x), J(x)
and a further operator which carries information about
spin. A natural choice4 for this operator is the spin
density

X(x)= -,'if t(x)~(x), (3.1)

where pt(x) and &&f (x) are cominuting or anticommuting

"The expressions for H and G(x,y), Eqs. (2.7) and (2.17),
continue to preserve equivalence of vectors in Hilbert space and
satisfy the appropriate Hermiticity conditions. The difhculty with
these expressions which arises when we work in one dimension
and let the "volume" go to inanity is a more subtle one involving
operators with more than one self-adjoint extension, and is best
discussed with rigorous techniques. G. Goldin (private
communication).

p "&(x)=6'(x)A(x) (3 6)

and the momentum density of spin-down particles,

J&'&(x) = (2z) 'I it s (x)Vgs(x) —Vif st(x)it s(x)). (3.7)

The operators p&'&(x), J&'&(x) and pf'&(x) J&'&(x) are
mutually commuting:

9"'(x),p"'(y) j= Lp"'(x),J"'(y)l
= LJ"'(x),J"'(y)j=o ('&i) (3 g)

they independently satisfy the current algebra (2.1).

J »(x) = (2')- B,t(x)Vit, (x) —Vif, (x)4,(»)j, (3.5)

the number density of spin-down particles,
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d'* Z [&p"'(x)—»J"'(x)j .(3 ~) 8 '=i, 2 p&'&(x)p(») =P"'(»)+P"'(»),

J(x) =J'"(»)+J"'(»)

Za(») = lLp'"(x) —p"'(»)1.

(3.10) XI ~p"'(x)+»J"'(x)j (3 16)

(3.11) We remark that one can verify by explicit calcula-
tion that Eq. (3.16) de6nes an SU(2)-invariant Hamil-
tonian, although this invariance is not manifest in the
expression displayed.

Finally, it is a simple matter to write the interaction
part of the Hamiltonian, H~, in terms of currents. An
interaction described by a spin-independent two-body
potential would as before be written

Up to this point we have treated particles with spin up
and spin down as though they were two independent
species of particles, with their separate currents p&'&(x),
J~"(x) and p&'&(x), J&'&(x). However, spin up and spin
down represents two possible states of the same particle,
and it is possible to go from one state to the other by a
spin rotation. Such spin-rotation operators are not
included in the set (3.9)—(3.11) and must still be added
to the algebra. An appropriate choice for these oper-
ators would be

d xd'y[p~" (x)+p ' (x)g

&& I'(x —y)[p"'(7)+p"'(y)l, (3 17)

We can now write p(x), J(x) and one component of case"
X(x), say Z8(x), in terms of these operators as

Z &+~(x) = [Z,(x)yiZ, (x)j,
which destroys a spin-down particle at x and creates a
spin-up particle at x, and

while a spin-dependent interaction might take the form

d'~d'y Z'+'(»)Z' '(y) ~(x—y) (3 18)

Z& &(x) = [Z~(x) —iZ2(x) j, (3.13)

which destroys a spin-up particle at x and creates a
spin-down particle at the same point. The commutators
of Z&+&(») and Z& &(x) with the other operators are
easily computed. We will have a particular need for the
following:

[p"'(x),Z"'(y) 3=Z"'( )~(»—y), (3 14a)

[ "'( ),Z' '(y)7= —Z' '(y)~( —y), (3 14b)

LP("(») Z'+'(y) j= —Z'+'(y) ~(»—y), (3 14c)

Lp'"(»),Z' '(y) j=Z' '(y)~(x —y). (3.14d)

Ke will see in the next section that the particular
form of this decomposition, Eqs. (3.8)—(3.14), together
with a set of polynomial identities for p(x) and X(x),
determine irreducible representations of the current
algebra (2.1) and (3.2) realized by systems of spin-2
particles.

At this point, we will indicate how the Hamiltonian
for a system of spin- —, particles is written in terms of
currents.

Considering first the kinetic part of the Hamiltonian,
Hp, we recall that in the second-quantization formalism
one writes

d &d yP '(»)P"'(y)II (» y) (3—19)

p(m) p(n) =p(m+n), (3.20)

Z;(m)Z, (n) = ~~p(m+n) (the repeated index

i is not summed), (3.21)

B. Irreducible Reyresentations of Current Algebra
for Syin--,'Particles

Ke turn our attention now to the problem of finding
the irreducible representations of the algebra (2.1), (3.2),
(3.8), and (3.14). These representations can be con-
structed in a manner which closely parallels our previous
work with spinless particles, and so we shall confine
ourselves mainly to a statement of results here. Further
details can be found in Ref. (5).

As before, conditions which characterize representa-
tions on states containing a given number of particles
will play a fundamental role in picking out irreducible
representations of the algebra. These conditions again
take the form of polynomial identities involving p(x),
J(x), and X(x) and they can be abstracted from the
underlying fi.eld theory using the methods described in I.

The identities involving p(m) and X(m) which hold
on the one-particle space are easily shown to have the
form

K)= d'x Q VIf;t(x) .~p;(x) .
s=l, 2

(3.15) p(m)Z;(n) =Z;(m+n),

Z;(m)Z;(n) = —,'ie;;~Z&(m+n),

(3.22)

(3.23)

Use of Eqs. (3.4)—(3.7), and repetition of the calcula-
tion leading to the expression for Hp in terms of cur-
rents in the case of spinless particles, gives in the present

"We have taken the mass M of the particles to be unity in
Eq. (3.16).This equation is a more precise version of the schematic
form for the Hamiltonian of a system of spin--, particles displayed
in Kq. (2.17) of Ref. 4.
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where P(m), J(m), and X(m) are the Fourier transforms
of p(x), J(x), and X(x), defined in I.

The content of these identities is simply analyzed.
In I we saw that Eq. (3.20) implies that P(m) =P(0)
Xe ' '" with P(0) =1. The second equation tells us
that the total spin squared X'(0) = 43 and that the pro-
jection of the total spin along the 3 axis is +-, . Equation
(3.22) constructs Z;(m) given P(m) and Z;(0), while
(3.23) characterizes Pauli matrices.

There are additional identities involving p(x) and
J(x), and X(x) and J(x), on the one-particle space, and
naturally distinct sets of identities characterize the
two-, three-, and i7-particle representations. ' However,
by working with the operators P&'&(x), J"&(x) and p "&(x),
J&'&(x) it will not be necessary to make explicit use of
most of these identities.

The number density of spin-up particles, p&'&(x),
and the number density of spin-down particles, p&@(x),
form a maximally commuting set of operators in the
algebra (2.1), (3.2), (3.8), and (3.14). We can therefore
construct a representation in which they are simul-
taneously diagonal.

Moreover, we see that the operator for the total
number of particles,

p(0) = p(x)d'*

p"'&x&d'x+ fp"'&x&d'p

(3.24)

commutes with all the operators in the algebra and is
therefore a constant in each irreducible representation.
The operators for the total number of spin-up particles,
p&'&(0), and the total number of spin-down particles,
p&" (0), do not, separately, have this property. However,
it is clear that on an S-particle space, the eigenvalues
of P &'&(0) consist of the integers 0, 1, . . ., M &E and the
corresponding eigenvalues of P &"(0) consist of the
integers 0, 1, . . . , S—lV.

In constructing a representation of the spin-~ current
algebra on S-particle states, we begin by introducing a
basis in this space consisting of a set of states 0 M{)},
M=O, 1, . . . , cV, on which P&'&(m) and P"&(m) are
diagonal. The states %M{/} are labeled by the eigen-
values M of P&"(0), and by (, which distinguishes states
with the same value of M. We shall see shortly that $
actually stands for P&'&(m) and p "&(m), or P '&(x) and

P "&(x), so that NM{ $},M = 0, 1, . . . , E, is a set of IV+ 1
functionals of P&'&(x) and P&'&(x).

We recall next that since (P&'&(0), J&p'&(x) j=0, the
operators J&'&(x) do n.ot change the number of spin-up
or spin-down particles. Consequently, on the snbsPace
of the X-particle space in which p&'&(0) =M and
P&'&(0) = iV —M, one can represent the entire P(x), J(x)

subalgebra (2.1) just as one would if we had M spinless
particles of species "1"and (E—M) particles of species

This can be done by a slight generalization of the
procedure used in I. For example, to construct a func-
tional representation for the P(x), J(x) subalgebra in this
case, one writes %M{p&'&(x),p&2&(x) } for O'M{)}and rep-
resents the operators P&'&(x) and J&'&(x) as

p.."'(x)+ {p"'(x),p"'(x)}
= &'&(x)@ { &'&(x),P&'&(x)}, (3.25)

J.."'(x)+ {P'"(x),P"'(x))

= —p"(x)V—, ——Vp" (x)
8p&'&(x) 2i

X+ { "'( ), "'( )}, (3.26)

with the index i= 1, 2. In particular, we have

P"'(0)+M{P "&(x),P "&(x)}= M+M{P "&(x) P"'(x)}
P"'(0)+ {P"'(x),P"'(x)} (3 2&)

= (E—M)@M{P&'&(x),P&'&(x)}.

In Sec. II of this paper, we saw that one could add
certain functionals of p(x) to the above expressions for
J(x), and we discussed how a specific choice of these
functions could distinguish Bose representations of the
algebra (2.1) from unitarily inequivalent Fermi repre-
sentations. One can expect that similar techniques will

be necessary to distinguish bosons from fermions in the
case of spin-~ particles as well, but we will disregard
these complications at this point.

To restrict the general representation (3.25)—(3.26) of
the p(x), J(x) subalgebra to a subspace of the E-particle
space containing M spin-up particles and E—kI spin-
down particles, one must supplement Fqs. (3.25)—(3.26)
with the requirement that p&" (m) satisfy the M-particle
identity with p&'&(0) =M, while p&'&(m) simultaneously
satisfies the (1V—M) -particle identity with p &'& (0)
=E—3E. This requirement is incorporated into the
formalism by suitably choosing an inner product on the
space of functionals VM{p&'&(x),p&'&(x)}. It is apparent
that the correct way to construct such an inner product
is to write the measure dP»&{P&'&(x),p&'&(x)} in the
product form'4

dp~{p"'(x),p'"(x) }= ~M{p'"(x))~~-M {p"'(x) )
)& Sp&'&(x) 5)p&@(x) . (3.28)

If Eqs. (3.25)—(3.26) are substituted into Eq. (3.16)
they lead to an expression for the kinetic part of the
Hamiltonian from which the undefined P '(x) is absent,
which preserves equivalence of vectors in Hilbert space,
and which is Hermitian in the inner product (3.28).

The foregoing analysis shows how to represent the

24 The measures 0~{p(x))Sp(x) are discussed in Secs. II and
III of I, and in Ref. 3.
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operators p&'&(x) and J&'&(x) on functionals of a type
similar to those discussed in I. Use of Eqs. (3.9)—(3.11)
then inunediately provides a representation of the sub-
algebra generated by the operators p(x), J(x), and
Z3(x) on the same class of functionals.

To complete the construction of a representation of
the spin--,' current algebra, suitable expressions must be
found for the operators Z&+&(x) and Z& &(x). This will
introduce new features into the problem.

Applying the commutation relation

Lp &'&(0),Z'+&(x)j=Z &+&(x), (3.29)

which is derived directly from Eq. (3.14a), to the state
+~(p&'&(x),p&'&(x) },we learn that

(&'+'(x)+~(p"'(x) p'"(x) })
is an eigenstate of p&'&(0) with eigenvalue M+1. From
Eq. (3.14b), one finds that

(~& '(x)+i (p&"(x),p"'(x)})
is an eigenstate of p&'&(0) with eigenvalue M —1. Since
3I takes on the values 0&M CE on the S-particle
space, we also see that

2 &+&(x)%~(p"&(x),p&'&(x) }=0,
~' '(x)+0{p"'(x)pp"'(x)}=o (3.30)

Thus Z&+&(x) is an operator which takes us from the
subspace of the 1V-particle space on which p&'&(0) =M,
p &'&(0) = 1V M to the subsp—ace on which p &'&(0) =M+1,
p&'&(0) = 1V—M —1, while Z& &(x) takes us from the f&rst

subspace to one in which p&'&(0) =M—1, p&2&(0)
=E—M+1.

These observations tell us how the operators Z&+&(x)

act on the label M of the functional 4'~{p& &(x),p&2&(x)}.
Specifically,

&'+'(x)+~(p"'(x),p"'(x) }
= +~+i'(p"'(x),p"'(x)}, (3 31)

&&-&(x)+ (p"'(x),p"'(x)}
=+~ i'{p ' (x),p"'(x)}. (3.32)

The prime on 0'~~~ indicates that these operators also
change the dependence of the functional on the variables

p "&(x) and p&'&(x).

To understand this part of the representation prob-
lem, we need to express Z&+&(x) and Z& &(x) as func-
tional differential operators in such a way that their
commutation relations with p(x), J(x), and X(x) are
satisfied. In particular, we need to satisfy Eqs. (3.14).

It is not difficult to check that these conditions are
satisfied if we represent Z&+&(x) as follows:

~' '(x)+~{p'"(x),p'"(x)}

=p&'&(x) exp
8p&'&(x) hp&'&(x)

X+M—1{p&1&(x)p&2&(x)} (3 34)

The above functional expressions bear a certain re-
semblance to those given in Sec. II for the density
G(x,y). In fact, a direct derivation of Eq. (3.33), for
example, can be given using techniques similar to those
employed in Secs. II C and II D to write G(x,y) in
terms of p(x) and 8/bp(x). In the present case, one starts
with the operator G»(x,y) = &&t'i (x)$2(y), which destroys
a spin-down particle at y and creates a spin-up particle
at x, expresses this operator in terms of p&'&(x) and
J&"(x) using the methods of Sec. II C, introduces the
functional representation for p&'&(x) and J&'&(x), and
notes that Z &+&(x)= lim, r Gi2(x,y) to obtain Eq. (3.33)~

We can summarize the above representation in a
concise way using a matrix notation. In the matrix
formalism, we represent the /V+1 basis vectors in the
X-particle space by the %+1 independent column
vectors

+o(p&"( ),p'"( )}
0

0
@i(p&'&(x),p &'&(x)}

0

0
0

0.@~(p&'&(x),p"'(x)}.
(3.35)

A general S-particle state

+o{p"&(x)p'"(x)}'
+ { "'( ) "'( )}

-+~{p"'(x) p"'(x) }
(3.36)

0 1 0 0
0 0 1 0
0 0 0

can of course be expanded in terms of the basis states.
The operators p&'&(x) and J&'&(x) are diagonal in this

matrix representation, while to represent the action of
Z&+&(x) on the label M we introduce the off-diagonal

(E+1)X /V+1) matrices:

Z+ (x)4'~(p&'&(x), p&2&(x)} T( )= (3.3V)

=p"'(x) exp
bp&" (x) bp&'&(x)

X+~+i{p"'(x)p"'(x)} ) (3 33)

0
0 0.

Combining these results, we see that one can repre-
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sent the spin-2 algebra on the E-particle space as "
P""'( )+{ "'( ) P"'( ))

1 8 1
= —"()&— ——& "()

i bp(') (x) 2i

I+{ p (x) p (x)}

&"'+'(x)+{p"'(x),p"'(x))

=p('&(x) exp
()p(')(x) 5p(')(x)

g) I (+)@{p(i)(x)p(2)(x))

(x)+{p '(x)~p '(x)}

=p(')(x) exp
Bp(') (x) ()p(') (x)

where I is an (xV+ 1)&((X+1) identity matrix and the
index i= T, 2.

These equations must be supplemented by the appro-
priate set of 1V-particle identities satisfied by p(x),
J(x), and X(x) on the 1V-particle space and its various
subspaces as described above. These are most conveni-

ently incorporated into the matrix formalism by suit-

ably generalizing our definition of an inner product.
This can be done by writing the inner product between

any pair of column vectors C and N, each having the
form (3.36), as a matrix product

shows that by adding distinct functionals of p(')(x)
to J"&(x), one can satisfy the Bose and Fermi con-
straints on an E-particle space. We shall defer a presen-
tation of the details of these calculations.

Finally, we remark that one can readily recover the
Schrodinger representation of the spin- —, current algebra.
The details follow closely those given in Sec. IV of I,
and can be found in Ref. 5.

IIp —,p'—— (A2)

in terms of A and B.The required formula is

JI'p = 2BA 'B—SA. (A3)
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APPENDIX

We shall try to clarify the procedure for handling
statistics outlined in Sec. II E by discussing a relatively
simple example. Suppose we take as "coordinates" in
one-dimensional quantum mechanics the operators2 '

A=&
(A1)

8= ,'(Np+—p—N).
These operators form a complete set in a Axed-parity

sector of Hilbert space. If we want to do quantum
mechanics using A and 8, instead of 2 and p, as co-
ordinates, we need to express the kinetic Hamiltonian

(4,4) = C'M*(r))({p (x) }a))( m{p (x)}
3I=p

&& 4'))r Sp('& (x) X)p(" (x) . (3.39)

Thus from the ordinary formulation of quantum
mechanics we abstract Eq. (A3) for Ho and the equal-
time algebra:

)A,A)=0, PA,Bj=—iA, L8,8]=0. (A4).
One can verify that p(x), J(x), and X(x) are Hermi-

tian in this inner product and that they preserve equiv-
alence of vectors in Hilbert space.

To fully de6ne an irreducible representation of the
spin--', current algebra, one must supplement the above
results with conditions which distinguish bosons from
fermions.

These conditions can be obtained by a slight extension
of the techniques outlined in Sec. II. In the present case
one begins by introducing the set of four densities

G,;(x,y) =)P;t(xg;(y), ~, j=1, 2. These densities can be
shown to satisfy algebraic constraint equations, similar

to Eqs. (2.10) and (2.11),which select Bose from Fermi
states. Next, one derives formal operator expressions for
G,;(x,y) in terms of p('&(x) and J('&(x), and finally one

"An explanation of the tensor product notation is given in
most modern books on quantum mechanics. See, for example,
A. Messiah, Quantum 3Iechanics (John Wiley 8z Sons, Inc.,
New York, 1964) Vol. I, Chap. 7.

The problem of statistics 6nds its analog here with
the question of parity. All the irreducible representa-
tions of (A4) in which 2 is a positive operator, and in
which A. and 8 are Hermitian, are unitarily equivalent. ~s

Equation (A3), then, inunediately confronts us with a
problem, as the following example shows.

For a harmonic oscillator potential, the Hamiltonian
is

H =IIO+ ',A . —(AS)

We know that in a positive-parity sector of Hilbert
space the spectrum of II consists of the numbers

4 ~ 41 3 5 (A6)

"This example is discussed in footnote 38 of Ref. 27 and in
footnote 25 of Ref. 1.

~ D. H. Sharp, Phys. Rev. 165, 1867 (1968)."See, for example, E. Aslaksen and J. Klauder, J. Math. Phys.
9, 206 (1968).
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while in the negative-parity sector its spectrum is given
by the distinct set

(1,2,3, . . .). (A7)

Thus, there is no unitary transformation which can
take JI in a positive-parity representation into H in a
negative-parity representation, as there would be if
Eq. (A3) were a completely well-defined expression in
an irreducible representation of the algebra (A4).

To circumvent this problem, we try to extend the
algebra (A4) to some larger algebra in which the
positive-parity and negative-parity representations are
unitarily inequivalent. A simple way to do this is to add
the operator

(AS)

to the algebra, so that we obtain

ta,S)= Q,—PC,aj=sC, L~,hg= —S'A. (A9)

This algebra assumes a more transparent form if we
introduce the operators

~12 e(O++) y X23 e(0—A), X81=8. (A10)

In this basis we recognize (A9) as the I.ie algebra of
the noncoinpact group SO(2,1):

PX,„g,„g=-L„, g„,I.„g= I.„,
(A11)

5~28@'813 8~12 ~

Now the parity operator in one-dimensional quantum

mechanics may be written as

&~~ |,'a—1/2) (A12)

where H= 21(ps+92). It is then clear that the analog
of the statistics constraint Eqs. (2.10) and (2.11) are the
conditions that for a positive-parity representation,

(A13)

and for a negative-parity representation,

7/ 1 ~ (A14)

To select an irreducible representation of the algebra
(A11), one must in addition specify the value of the
Casimir operator

Q ~12 +23 ~81 ~ (A15)

Using Eqs. (A1), (AS), and (A10) one finds that
Q= —3/16 in both the positive- and negative-parity
representations.

Finally, restricting attention to representations of

(A11) in which X,12, I.28, and X,81 are Hermitian and. f12
is positive, one Gnds"" precisely one representation
consistent with m= 1 and one representation consistent
with x= —1. The two representations are unitarily
inequivalent, and the Hamiltonian H=2L» is a well-

defined operator in these representations of (A11).
'9 The representations of SO(2, 1) have been studied by several

authors. We are following A. Barut and C. Fronsdal, Proc. Roy.
Soc. (London) A28'I, 532 (1965).

The choice +=1 corresponds to picking E0——4 in the notation
of Ref. 29, while the choice m = —1 corresponds to Eo= &.
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Relativistic Gravitational Bremsstrahlung
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Gravitational radiation is calculated for the situation of a small mass passing a large mass in an unbound
trajectory, where the velocity of the small mass can be relativistic. This allows one to study gravitational
radiation for cases in which the slow-motion approximation is not valid. The gravitational potentials, or
perturbations in the metric, arising from the small mass, are determined explicitly by solving the perturbed
field equations of general relativity, which are obtained by expanding the metric about a metric repre-
senting the geometry of the large mass. From these the energy Qux of the emitted waves is calculated. In
the nonrelativistic limit, the results agree with those of the slow-motion approximation. The qualitative
behavior of the radiation at extreme relativistic velocities is discussed, and is found to disagree with what
one would expect from the fast-motion approximation in that same limit. Numerical results are presented
for the total energy, power, and angular distribution of energy radiated for a range of velocities from 0.01c
to 0.9999c. Signihcant features in the extreme relativistic limit are the peaking of the radiation in the
forward direction and the peaking also in time, which both occur in electromagnetic radiation, and the
fact that the total energy radiated in one transit is proportional to (1— / )v8sa.os

I. INTRODUCTION

HE issue of gravitational radiation has been
argued and discussed at length since Einstein

first predicted its existence' in 1918. This prediction

* Work supported in part by the National Science Foundation.' A. Einstein, Sb. Prenss. Altad. Wiss. 154, (1918).

was based on the linearized Geld equations and the
wavelike solutions which these equations possessed in

analogy with similar solutions of the electromagnetic

field equations. Exact solutions of the field equations of

general relativity for realistic radiating systems are

rare indeed. For most situations one is forced to rely


