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In this paper we show how to specify the particle content of a nonrelativistic quantum theory of lV

identical spinless particles in terms of observables like the particle number density and the Qux density
of particles. Our approach to this problem is through a study of the irreducible representations of the
local, equal-time current algebra. It is shown how these representations de6ne a functional representation of
the current algebra, and that the Hamiltonian can be written in terms of the currents in a nonsingular
fashion in any irreducible representation.

L INTRODUCTION

ECENTLY, a number of authors have shown how
to write complete, formal field theories of various

kinds in terms of current densities and similar local
observables. ' ' Such formulations of local field theories
will turn out to be particularly interesting if they (i)
reveal qualitatively new features of a field theory which
are not otherwise evident, (ii) lead to new and useful
approximation techniques, or (iii) enable one to write
complete theories in terms of currents which have no
canonical realizations.

To examine any of these possibilities, it is necessary
to learn how to work with the theory as expressed in
terms of currents directly, without reference to an
underlying canonical Geld theory.

The technical problems which come up when one
tries to do this result in large part from the fact that
Geld theories written in terms of currents are not
canonical. Thus one does not have at one's disposal
annihilation and creation operators satisfying canonical
commutation or anticommutation relations, the Fock
representation, nor the rest of the standard apparatus
of canonical field theory. As a result, one must devise
new ways to answer some questions which have simple
answers in the canonical formalism. For example, using

just the currents, how does one construct single-particle
states, two-particle states, etc? How does one distin-

guish bosons from fermions? In short, how does one
describe the particle content of a theory using currents?

Here and in the following paper7 we examine these
questions in nonrelativistic quantum mechanics.

For this purpose we consider a finite number of
identical particles enclosed in a box. The second-
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Vgt(x) VP(x)d'x+ Pt(x)P(»',

&«(» —y)1t'(y)4(y)d'~d'y. (&.2)

To write this theory in terms of "currents" one
introduces the number density of particles

p(x) =4'(x)0(x) (1.3)

and the particle Aux density

J(x) = (1/2&Vi) Lft(x) Vf(x) —Vpt(x)p(x) j, (1.4)

and notes that they satisfy the equal-time algebra':

Lp(x),p(y)3=o,

z 8
Lp( ),~s(y)1 = —— Eh( —y)p(x) j3f Bx"

(1.5a,)

(1.5b)

quantized version of this problem, recast in the language
of currents, is the simplest example we have of a theory
of currents which is supposed to describe some relatively
well-understood, but nontrivial, physics. It is hardly
necessary to emphasize that the formulation of non-
relativistic quantum mechanics in terms of currents will
turn out to be mathematically equivalent to the more
standard ways of writing the theory. Nevertheless,
there is a pleasure in seeing a subject from a diferent
perspective, and we expect that the results developed
here will turn out to form a useful starting point for
later analyses of systems with an infinite number of
degrees of freedom. to

&For systems of spinless bosons or fermions, which we
study in this paper, the usual second-quantized form of
the theory is defined by introducing canonically con-
jugate fields P(x) and Pt(x) which satisfy at equal times
the commutation (—) or antic ommutation (+)
relations:

[1t'(x),P(y)]+——0,
B(»)A'(y) 3+=3(»—y),

L4'(x) 1t'(y) j+=o,

and defining in terms of these operators a Hamiltonian
which is typically of the form
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+— [~(»—y)Ji(y)1. (I 5c)~ gyA

The formal rewriting of the second-quantized theory
in terms of currents is completed by observing that the
Hamiltonian (1.2) can be expressed in terms of p(x)
and J(x) as'

H = [Vp(x) —2'J(x)j
8M u(x)

X[7'p(x)+2iM J(x)jd'x

+ p(x) I'(x —y)p(y)d'«'y (1 6)

In this paper we will see how to describe the particle
content of the nonrelativistic field theory defined by
Eqs. (1.5) and (1.6).

The manifold of states available to a given system of
spinless particles spans a single irreducible representa-
tion of the local current algebra (1.5). Accordingly, our
approach to the problem of describing the particle con-
tent of the theory will be through a study of the repre-
sentations of this algebra.

Our discussion of this problem is organized as follows.
In Sec. II A, the current algebra (1.5) is transcribed
into momentum space. In Sec. II 8, we write down an
expression for p(x) and J(x) in terms of multiplication
and differentiation operators in such a way that the
commutation relations are formally satisfied when p(x)
and J(x) are applied to a suitable class of functions. We
will see that J(x) breaks up into three pieces: (i) a term
whose structure is determined by the current algebra,
(ii) a term whose structure is not determined in this
way but which must be included if one is to have an
inner product in which J(x) is Hermitian, and finally,
(iii) a term whose form can distinguish a representation
with Ã bosons from a unitarily inequivalent one with
Ã fermions.

The operator corresponding to the total number of
particles commutes with p(x) and J(x) and is a constant
in any irreducible representation in which it is de6ned. '
States with di8erent numbers of particles therefore
belong to difterent irreducible representations of the
current algebra. In Sec. II C a set of conditions is
derived, in the form of polynomial identities in p(x) and

J(x), which characterize representations containing a
given number of particles. These conditions, together
with an appropriate choice for J(x), define irreducible

8 The total-number-of-particles operator will always be defined
in the cases considered here, where we deal with a finite number
of particles.

representations of the current algebra on states with Ã
spinless bosons or fermions. In Sec. II D, the polynomial
identities derived in Sec. II C, together with the re-
quirement of Hermiticity of p(x) and J(x), are used to
determine an inner product on the space of functions on
which the operators of the formal representation of
Sec. II 8 act. The resulting Hilbert space is described
and attention is given to those operators that can
legitimately be applied to vectors in this Hilbert space.
Finally, in Sec. II E, we exhibit the form of the Hamil-
tonian in this representation. It is shown that the
"inverse operator" p '(x) apparently present in Eq.
(1.6) disappears, and that the Hamiltonian is Hermitian
in the inner product of Sec. II D.

In Sec. III it is shown that the representation dis-
cussed in Sec. II is the Fourier transform of a formal
functional representation' ' of the current algebra (1.5).
In fact, the work of Sec. II can be regarded as defining
the functional representation for systems with a finite
number of degrees of freedom. In this section we also
display the form of the Hamiltonian in the functional
representation and again And that the undefined
quantity p '(x) is absent.

Since we are dealing with systems containing a finite
number of particles, we know that it must be possible
to recover the ordinary Schrodinger representation from
our work. This is indeed the case, and in Sec. IV we find
that the Schrodinger representation comes out as a
different realization of the representation of Sec. II,
thus obtaining by a different route a result previously
obtained by Gross. "

There are representations of the current algebra which
are not obtained directly from the Fock representation
of the field theory (1.1)—(1.2). These arise because the
connection from the current algebra back to an under-
lying field theory is not unique, at least in the non-
relativistic case. In Sec. V some of these additional
representations are displayed and their physical inter-
pretation discussed.

No claim to mathematical rigor is made for the
derivations given in this paper. However, we would like
to call attention to some recent work of Goldin""
where many of the results described here are obtained in
a rigorous way. His approach is to use the Gel'Fand-
Vilenkin formalism" to study the unitary irreducible
representations of the group generated by exponentia-
tion of the current algebra (1.5). We shall have frequent
occasion to refer to his results.

In the following paper' our results are extended to
include spin and a detailed discussion of particle
statistics is given. Further details are given in the

9 . J, Pardee, L. Schlessinger, and J. Wright, Phys. Rev. 175,
2140 (1968)."D.J. Gross, Phys. Rev. 177, 1843 {1969).» G. Goldin, Ph. D. thesis, Princeton University, 1968
(unpublished)."G. Goldin, J. Math. Phys. (to be published).

'3 I. Gel'fand and N. Vilenkin, Generatised Fendions (Academic
Press Inc., New York, 1964), Vol. 4.
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doctoral thesis of one of us (JG).'4 Finally, these results
have been generalized to the case of an infinite number
of particles in an infinite volume with finite average
density ("E/V limit" ) and will be reported shortly. "

&(f) = d'~ f(x)p(x)

ol

J(g) = ~'~ g(x) J(x) (2.2)

satisfy periodic boundary conditions.
One next introduces the Fourier transforms of p(x)

and J(x), which in our notation read

II. IRREDUCIBLE REPRESENTATIONS OF
LOCAL CURRENT ALGEBRA

A. Current Algebra in Momentum Space

The representations of the current algebra (1.5) are
conveniently analyzed in momentum space. To intro-
duce the momentum-space current algebra, we work in
a box of volume V, with each side of length 2L That is,
it is supposed that any functions f(x) or

g(x) = (gi(x),g2(x),6(x))
that occur in formulas like

and

t J,(m),J,(n) 7 = (~/L) m,J,(myn)
(7r/—L)ni Ji(m+n) . (2.8c)

Note that the effect of a coordinate-space 8 function
multiplying p(x) is just to translate the argument of the
Fourier-transformed quantity, while the gradient of a
coordinate-space 8 function has the additional effect of
multiplying the Fourier-transformed quantity by a
number like mi, Las in Eq. (2.8b)7. It is the fact that
these singular quantities show up in a relatively tract-
able form in Eq. (2.8) that makes the momentum-space
algebra convenient to work with.

B. Formal Representation of Current Algebra

A formal representation of the current algebra (2.8)
can be written down in the following way. One intro-
duces functionals

+{}=+{"(—)" (o)" (), "}
which are elements of a space of functions of in6nitely
many complex variables s(n), where n=(n&, ri2, ne) and
the e; run over all integral values.

One then supposes that the operator p,~(n) acts on a
functional +{z} as multiplication by the complex
number s(n); i.e. , one writes'6

p(m) = e ~em ~ x/Lp(x) (2 3)
p.,(n) 4{z}=p(n) 4'{z}=no(n) @{z}, (2.9)

and represents J,~(n) acting on +{z}by the following
formula involving multiplications and differentiations:

Ji,(m) = dx e ' ~ *'LJi(x) (24)

where x=(xi,x2,x3), 4=1, 2, 3, m=(mi, m, ,m, ), and

nzi, nz2, nba assume all integral values from .—~ to +~.
One notes that Hermiticity of p(x) and J(x) requires

p*(m) =p( —m), Ji,*(m) =Ji, (—m), (2.5)

and that the inverses of Eqs. (2.3) and (2.4) are given by

8
J"( )+{ }=L—( /L) 2 & (&+ )

Bs(h)

+Pns(n)+F(z, n) 7+{z}. (2.10)

In these equations, n is a real number and P is, in general,
a complex number, both of which are left unspeci6ed
for the moment. Also,

g stands for

~(x) = (1/V) eiwm ~ x(Lp (m) (2.6)
k1,k2, k3=—oo

m1, m2, m3=—oo

Ji(x) = (1/V)
mg, mg, m3=—oo

e'™R'LJ~(m). (2.7)

Cu(m), ~(n) 7 =o

Q(m), Ji(n) 7= (~/L) mip(m+n), (2.8b)

'4 J. Grodnik, Ph. D. thesis, University of Pennsylvania, 1969
(unpublished).

"G. Goldin, J. Grodnik, R. Y. Powers, and D. H. Sharp (un-
published).

Finally, using Eqs. (2.3) and (2.4) in Eq. (1.5), one
obtains the equal-time algebra satisfied by p(m) and

Ji,(m):
(2.8a)

We have written the formula for J(n) as a sum of
three pieces. One is led to a term of the form Pi 1s(1+n)
8/Bs(1) in a natural way in trying to construct an ex-
pression for J(n) which satisfies Eq. (2.8) out of quan-
tities like s(n) and 8/Bs(n).

One is not led to the form of the other two terms in
this way. We will see in Secs. II C and II 0 that the
term Pns(n) is necessary in order to define an inner
product on the functions %{z}in such a way that p(x)
and J(x) are Hermitian.

"We shall use p(n) and ns(n) interchangeably. It is important
to keep in mind that these are both c numbers. When it is impor-
tant to distinguish between p(n) and the operator p(n), we will
designate the latter by p ~(n).
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—z

Bz(n) 2 Bz'(n) Bz'(n))

1 8
+i

as*(n) 2 az "(ri) &~'(n) ~-'( —n)

(2.11)

(here s"(n) and s'(n) are the real and imaginary parts
of s(n)$, and Q(z} will depend separately on s'(n) and
s'(n), for each n.

One would like to give this representation more than
a formal meaning. From the mathematical point of
view, the main problem is to find a way to give a precise
meaning to the "space of functions of infinitely many
complex variables" on which p(n) and Jq(n) act, and to
define a suitable inner product with which to turn it
into a Hilbert space. These problems have been solved

by Goldin, ""and the problem of finding an inner
product is also discussed here, in Sec. II D.

C. "N-Particle" Identities

The formal representation written down in Sec. II 8
is, essentially, the most general representation of the
current algebra (2.8) in a box. What one must do now is
find conditions, supplementary to Eqs. (2.8), which
select out particular irreducible representations.

As we shall see, one can abstract from the underlying
field theory polynomial identities in p(m) and J(m)
which characterize representations realized by states
with any given number of particles. These conditions,
together with the conditions distinguishing bosons from
fermions which are incorporated into the form of J(n),
Eq. (2.10), pick out the irreducible representations of
the current algebra. A proof of these statements, which
is best carried out in a, different mathematical frame-

Finally, the choice of the function F(z,n) can dis-
tinguish a representation with Ã bosons from a unitarily
inequivalent one with E fermions. %hy bosons can be
distinguished from fermions in this way, and the speci6c
form of the function F(z,n), are questions which are
discussed at length in the following paper' and in Ref.
12. Here, we remark that for bosons one can always
choose F(z,n) =0, and for simplicity we shall make this
choice throughout this paper. Most of our results will
remain true for a nonzero choice of F(z,n) appropriate
to an E-particle Fermi representation, as will be shown
ln Ref. 7.

It is readily verified that if Eqs. (2.9) and (2.10)
[with F(z,n) =0] are substituted into Eqs. (2.8), the
commutation relations are formally satisfied when ap-
plied to functionals 4'{z}.

Note that O{z}depends, for each n, on both s(n) and
s(—n) =s*(n). Therefore, %(z} is not, in general, an
analytic function of the s(n)'s. Consequently, it will

not turn out that 8/Bs(n) is the complex partial deriva-
tive of +(z}.Instead, 8/Bs(n) and 8/Bs( —n) are short-
hand for combinations of real derivatives

work from the one used here, has been given by
Goldin. ""Here, we show how the E-particle identities
are derived and point out some of their implications.

To derive the identities, we start from the second-
quantized form of the theory and consider the one-
particle sector of Fock space. A complete set of states
in the one-particle sector is constructed in the usual
fashion by applying ft(xi) to the Fock vacuum ~0&
to find

I»i) =&t(»)
I o),

where ~xi) can be taken as a state with a single particle
localized at xi. Using the definition of p(x), Eq. (1.3),
and recalling that

one has (for either bosons or fermions)

p(») I»&=It(x)4(x)kt(») I0)
=It(x)L~4 t(x,)0 (x)+~(»—»,)) I 0&

= 8(»—xi) ~xi&. (2.12)

Next, applying p(y) to each side of Eq. (2.12) and using
the fact that p(x) and p(y) commute, one finds

p(x) p(y) I») = ~(»—»)~(y —») I»)
=p(x) ~(x—y) ~

x,&. (2.13 )

From the completeness of the states ~xi) in the one-
particle sector, one concludes that Eq. (2.13) must be
satisfied for an arbitrary single-particle state. Note that
in momentum spa, ce Eq. (2.13) takes the simple form

Lp(m) p(n) —p(m+n)]
~
xi) =0. (2.14)

There is also an identity involving p(x) and J(y)
applied to single-particle states. Using arguments
similar to those above one finds (see Appendix)

p(m) =p"'(m)+ p"'(m),

J(m) =J"'(m)+J"'(m), (2.17)

where p(')(m) and J(i)(m) act on the single-particle
states associated with one of the particles, and p")(m),
J(')(m) act on the states associated with the other. Thus
(p ',J(") and (p(',J ') separately satisfy the one-

J (*)z(v)+ ,v(*—v) z(z) —&(*—v)J (z))
2M Bx'

&& i xi) =0, (2.15)
which in momentum space reads

LJ(m) p(n)+n(2M) 'wL—'p(m+n) —J(m+n) j~x,)=0.
(2.16)

Identities valid in the two-, three-, . . ., A-particle
sectors of Fock space can be generated from the one-
particle identities in a systematic manner. %e will
illustrate how this is done for the case of two particles.

For this purpose we regard the space of two-particle
states as a direct product of two one-particle spaces,
and write
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particle identities, Eqs. (2.14) and (2.15), and are
mutually commuting. One then forms

p(m) p(n) p(l) =Lp"'(m)+p'"(m)XP'"(n)+p "i(11)j
&& I p"'(1)+p"'(1)3

and uses the one-particle identity to find that the
identity

fp(m) p(n) p(1)—p(m) p(n+1) —p(n) p(m+1)
—p(1)p(m+n)+2p(m+n+1) j I X&,x&) =0 (2.18)

must hold on each of a complete set of two-particle
states.

The analog of Eq. (2.16) on the two-particle space
turns out to be

I J(m) p(n) p(1) —J(m+n) p(1) —J(m+1)p(n)
—J(m) p(n+1)+M —'(~/L)-', np(m+n) p(1)

+~ '(~/L) Rip(m+1) p(n)
—~—'(~/L) (n+1)p(m+n+1) +2J(m+n+1) j

&& I»») =0. (2.19)

Closed expressions for the pp- and pJ-type identities
satisfied on the Ã-particle space are derived in Ref. 14.

There are several topics to be discussed at this point:
(i) whether these identities are necessary and sufficient
to characterize representations of the current algebra
on states with a given number of particles; (ii) whether
there are any other identities which one would not be
able to abstract directly from the field theory (1.1)-
(1.2), but which are compatible with the current algebra
and determine irreducible representations of it when

supplemented with the statistics conditions; (iii) some
of the further implications of the E-particle identities.

Let us consider item (i). We remark that if the
p(n)'s satisfy the one-particle identity, they will auto-
matically satisfy the two-, three-, . . . , and S-particle
identities. Likewise, if they satisfy the two-particle
identity, they will satisfy the three-particle and higher
identities. So to pick out a representation on three-
particle states, for example, one must require that the
p(n)'s satisfy the three-particle identity, and no identity
of lower order.

As long as we restrict ourselves to identities ab-
stracted directly from the field theory de6ned by Eqs.
(1.1) and (1.2), a simpler statement will suRce. One
notes that Eq. (2.18) with m n=1=0 implies

p(0)Go(0) —1X (o)—2j=o (2 2o)

while Eq. (2.14), with 111=11=0,says

p(0) I p(O) —1)=0, (2.21)

so that demanding p(0) =2 rules out the case where the
two-particle identity is trivially satisfied by p(n)'s
satisfying the one-particle identity. Thus, in these cases,
the requirement that p (n) 's satisfy the X-particle
identity and the condition

(2.22)

characterizes a representation of the current algebra on
E-particle states. However, there are some cases not
covered in this way, while the 6rst statement still
applies.

These other cases arise because it is possible to
impose conditions on the p(n)'s, other than those that
one gets directly from the underlying held theory, in a
consistent way. As an example, in place of Eq. (2.14)
one could require

Bp(m) &p(m+n) pp(m+n)
p(n) = —= —,(2.24)

88$y Bmlc g'gg

obtained from Eq. (2.14) by regarding m and n as
continuous variables" and differentiating with respect
to mq. Defining the operator

xi ——i(L/n. ) lim Vp(m),
m~0

(2.25)

and taking the m —+0 limit of Eq. (2.24), one finds

I
—i(~/L)x&jp(n) =vp(n) . (2.26)

Since the different p(n)'s commute, it is clear that the
solution to Eq. (2.25) is simply

p (n) p(0) &
i an ~ xi—II— (2.27)

To satisfy Eq. (2.14) we must set p(0) =1, and the
Hermiticity condition p (n) =p( —n) requires the oper-
ator xi to be real. Equation (2.27), together with Eq.
(2.6), gives the expected result

p(X) =8(x—Xi), (2 28)

which mak. es it clear that the operator x~ defined in
Fq. (2.25) is the position operator of the particle.

' One can not just postulate any polynomial identity between
the p(n)'s and expect to get a relationship which is compatible
with the current algebra. For example, an equation like p(m) p(n)=&~™p(n+m)is incompatible with Eq. (2.8b). Indeed, one can
show that of all equations of the form p(m)p(n} =A (m,n)p(m+n},
only those with A (m,n) independent of m and n (i.e., a constant)
are compatible with Eqs. (2.8a)—(2.8c).

&8 If one for some reason objects to~regarding m and n as con-
tinuous variables and using~diQ'erential equations, one can of
course carry the argument through keeping m and n discrete and
using~diGerence'equations.

p(m) p(n) =2p(n+m) . (2.23)

This equation is compatible with the current algebra, '~

and as we shall see, determines a representation of it
that is unitarily inequivalent to those determined by
either Eq. (2.14) or (2.18). Moreover, it is clear that
any p(n) which satis6es Eq. (2.23) will also satisfy the
two-particle identity and the condition p(0) =2. Such
representations will be discussed further in Sec. V.

Next, let us see what we can conclude about the
structure of p(n) or p(x) directly from equations like
(2.14) and (2.18).

For this purpose, we will deal with the case of a single
particle first and consider the equation
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The mathematical content of the one-particle identity
is really all contained in Eq. (2.27). One can explain the
physical content of the one-particle identity as follows.
If we write n=e&e&+N&e&+e3e3. Eq. (2.27) takes the
form

p(n) =L~(zi)l"'L~(zz) j"'Lu(z3)l"'. (2.29)

Obviously, this equation says that only three out of the
apparently infinite number of variables p(n) are actually
independent in the one-particle sector, as is appropriate
for a system having three degrees of freedom. The
additional content of the one-particle identity is that
p(0) =1 and that the spectrum of each of the variables

p(8~), p(ez), and p(e3) consists of the complex numbers
of modulus-unity. The latter statement refl.ects the fact
that the p(n)'s are supposed to be the Fourier coeK-
cients of a positive quantity and one can, in fact, prove
it directly using Eq. (2.29) and the Bochner condition. "

An analysis of the two-particle identity runs along
similar lines. To obtain the analog of Eq. (2.26), one
differentiates Eq. (2.18) with respect to nz; and n/„
de6nes the operators

x,+x2 ——i(L/n. ) lim Vp(m),
z~-+0

x '+xz' ——(i)'(L/~)' lim V'p(m),
(2.30)

sets m;=e;, and sums over j to find in the m —+ 0 limit

2V'p(1)+2i(vr/L)(x~+x2) Vp(1) +(~ /L)'

Xf(xg+xz') —(xg+x2)'jp(l) =0. (2.31)

general solution of Eq. (2.31) satisfying the
condition p(0) =2,:"and)the Hermiticity condition has
the form

(2.32)(n3 &
—inn ~ xg/L Lz—own x2/5

7

19 gf a set of Fourier coefficients satisfy the Bochner conditions,
they are the Fourier coefficients of a positive function. For a
discussion of the relevant mathematics, see S. Bochner, Lect~res
oe ' Fomri er IrItegr pl,v (Princeton University Press, Princeton,
N. J., 1959),

where xq and x2 are two real, independent operators.
The Fourier transform of Eq. (2.32) is

p(x) = 5(x—x&)+8(x—x,), (2.33)

which is evidently the number density operator for a
system of two particles localized at the positions xi
and X2.

Finally, we must see what the pJ identities tell us.
For this purpose, we apply J/, (m) p(n) to a, one-particle
state. First, we evaluate this expression using Eqs. (2.9)
and (2.10) which give

8
J(m)~(n) = —( /L) g Iz(m+I) nz(n)

li, lP, &3 Bz(l)

+pmz(m)nz(n) (2.34).
Commutation of the factors 8/cjz(l) and z(n) and use of

the one-particle identity z(m)z(n) =z(m+n)/~ allows us
to write Eq. (2.34) in the form

J(m)p(n) = (s/L—) p lz(m+n+1)—
$1, l2, l8 Bz(1)

+(pm —nnw/L)z(m+n) . (2.33)

On the other hand, the one-particle pJ identity, Kq.
(2.16), says

J(m) p(n) =J(m+n) —(nx./2L) p(m+n),
an equation compatible with Eq. (2.35) only if

p = —(Q.m/2L) . (2.36)

One can show that with this choice of P, the validity of
the E-particle pp identity implies the validity of the
corresponding pJ identity, so that these do not require
further analysis.

The interesting thing about this result is that one can
not choose P=O. This means that in any irreducible
representation of the current algebra one must include
a term proportional to nz(n) in the expression for J(n),
which will give a Vp(x) contribution to the coordinate
space expression for J(x). This fact, which will turn out
to be very important when we try to define a Hamil-
tonian, is not one that could have been learned just by
looking at current commutators.

D Matrix Elements

In Sec. II B we wrote down expressions for p(n)
J(n) in terms of multiplication and differentiation
operators acting on functionals 4'{z) which are regarded
as elements of a space of functions of infinitely many
complex variables. In this section" we turn to the
problem of trying to And a function (or generalized
function) 0(z) which defines an inner product on this
space of functions

C'*{2')+{2') (2')» (2.37)

Equations (2.38) and (2.39), plus the 1V-particle

» One of the authors (DHS) would like to thank Professor V.
Bargmann for a helpful discussion of this topic.

Lh- ~ =?I.d (1)=rr, d'(k)n, d.'(l)j - ...h .
way that the operators p(n) and J(n) satisfy
Hermiticity conditions

(p( —n)C, e) = (C,/o(n)e), (2.38)

(J/, (—n)C, +)= (O',J/, (n)%'), (2.39)

and that any given E-particle identity is satisfied. For
example, on the one-particle sector we require, in
addition to Eqs. (2.38) and (2.39), that

(C' Lp(m) p(n) —
/ (m+n) 1+)=o (2 4o)
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write this equation as

~ ~ ~

-i2z8'&1z(e)=e '
C*{z}+{z}

C*{z}@{z}

C
X —g &La(1)—s(oi) "z(e2)"z(o )"] g ds(k),

s(e) ice k

(2.49)
where e is a vector with components (1,1,1).

Equation (2.49) can also be written in a form in
which all the s(n)'s are treated symmetrically as follows:

irreducible representations accomodated by a given
measure o~(z) Sz. Distinct measures are in turn defined

by imposing one or another of the E-particle identities
discussed in Sec. II C.

(2) Because of the singular nature of the inner
product that must be used here, one might guess that
only some of the operators that one can write down
formally are actually well-defined operators on I,'{z}.

Among the operators that are not well defined are the
individual derivatives" B/Bs(n), or any linear com-
binations of them of the form P C(n)B/Bs(n), where

C(n) is independent of the s(n)'s. To see the problem,
one can work in one dimension and consider the two
functions

X[g 5)s(1)—e " '*]d'x,]g dz(k) . (2.50)
1 k

42{z}=%&{0,. . . ,O,s2,0, . . .0}=s2.
(2.53)

Here, an integral is carried out over xi as well as s(k).
Finally we note that if we pick C= (i/2m)'& Eq. (2.49)

reduces to the usual inner product on one-particle states
in the Schrodinger representation

(2.51)

In a similar fashion one can define inner products on
two-, three-, and E-particle states. The defining equa-
tions are now Eqs. (2.38) and (2.39) together with the
1V-particle analog of Eq. (2.40).

For E particles, the inner product is written as

C*{z}%{z}o.~(z) Sz

Xg d', ]g d (k), (2.52)

a result which is an obvious generalization of Eq. (2.50).
In Eq. (2.52) one integrates over d'x; as well as ds(k).

Ke would like to make some comments on the results
of this section.

(1) Goldin points out" " that the functionals 4'{z},
regarded as functions on a certain set of in6nite se-
quences of complex numbers s, e= —~, . . ., ~, de6ne
a Hilbert space of square-integrable functions I.,'{z},
for each measure o.,(z) X)z, i = 1, . . . , N. The relationship
of this result to the representations of the current
algebra is the following. For each distinct measure
o.~(z)Sz, the Hilbert space I-,„'(z) accommodates at
least one and possibly several irreducible representations
of the current algebra (2.8) on states with 1V pa.rticles.
As shown in the following paper~ and in Ref. 12, repre-
sentations on states having diff erent statistics can
correspond to difIcrent choices from among the several

On the one-particle space we have from Eq. (2.14) that
s~'=s2, so the functions 0'~=a~' and +~=s2 must be
regarded as egninalemt elements of the Hilbert space, and,
in particular, s~' —s2 must be equivalent to the zero
element. Now try to apply B/Bsi to si2 —s2. One finds

(B/Bsi)(si' s&) =—2si, which is clearly not equivalent to
zero. This means that B/Bsi is not well defined when

applied to elements of I.,'{z},because one thing a
well-de6ned operator must do is produce zero when

applied to the zero vector.
The operators p(n) and J(n), on. the other hand, do

turn out to be well defined. A general proof that p(n)
and J(n) preserve equivalence of vectors in Hilbert
space has been given by Goldin, ""and it is simple to
check that this is so explicitly in specific cases such as
the example just mentioned. What these results mean
is that one can formally compute with B/Bs(n) as if it
were defined only when B/Bs(n) occurs in specific com-
binations with s(n), as, for example, in the expression
for J(n). As we go along, we shall check that all physical
quantities are well defined in this sense.

(3) We have remarked in Sec.'II C that the combined

pp and pJ identities dictated the presence of a term of
the form ns(n) in the expression for J(n) which leads to
a term like Vp(x) in the expression for J(x). The work
of this section shows that such a term is indispensable
if one is to 6nd a reasonable inner product in which the
one-particle identity, for example, is satisfied. This is
most easily seen by looking at Eq. (2.47) for f(si).
Without the es„ term in J„,this would read

(2.54)

Since this equation must hold for all e, it can be satis6ed
only by the unacceptable function f(s&)=0. This is

probably a good place to comment that if one writes
out J„in the standard way in terms of annihilation and
creation operators, one immediately discovers the es„
term„gut the idea here has been to see how one could
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We begin with the expressions for p(x) and J(x) in
terms of s(n) and 8/Bs(n):

(2.56)

(a)r/—2LV) g e' '*'zms(m), (2.57)
cia) ~ x)+ ~ ~ +iaN ~ x)Vd)r(X1 X+)

infer its presence without recourse to the underlying
second-quantized theory.

(4) One can also regard the measure o.l))(z)X)z as
determined by the Hamiltonian of a quantum-mechani-
cal system, through its ground-state wave function. For
a system of 1V particles in a box, this connection is J(x) ( /LV') p p e' xlLns(m+n)
established through the formula as(n)

4'0 (Xl) ~ )Xli')i/0(xl). . .)XN)

)(e)a&'X)+" '+)a&'x&dm/I ~ ~ ~ (pal)l (2 55)

where do(XI). . .)X~) is a measure Lwhich we can write
as o (x), . . .,Xl)l)d~xr ~ d'xl)l in all.'cases of interest here(
and Po(x), . . . ,XN) is the ground-state ~wave~function
associated with a particular Hamiltonian. For a free
system, fo(XI). . .,XN) is a constant, and one finds
d)T(x), . . .)Xl)l) =d'xr d'xl)l. If the particles interact via
some two-body force, the ground-state wave function
will in general be complicated, but

PO (Xl) ~ ~ ~ )XN) PO(X1) ' ~ &XN) =—f(xl) ~ ~ ~ )XN)

is still positive and the measure for the interacting
system is that of the free system multiplied by this
positive function f(X4. . .,XN). The Hilbert spaces deter-
mined by these two measures are equivalent, as are the
corresponding representations of the x, p conuxiutation
relations.

The relationship of the above to what we have done
in this section is as follows. The measures on the s(n)'s
which we have determined reduce in the one-particle
case to d'x, as pointed out in Eq. (2.50). They clearly
correspond to the measure for a noninteracting particle,
and we were able to determine them without speci6c
reference to the Hamiltonian. For a system of inter-
acting particles, the measures are obtained by multi-
plying o.&(z)Sz by an appropriate function 4'o*(z) +o{z)
whose determination will require a knowledge of the
Hamiltonian.

E. Hamiltonian

If one starts from expressions for p(x) and J(x) in
terms of Pt(x) and P(x) LEqs. (1.3) and (1.4)j and
calculates in a formal way, it is possible to express the
Hamiltonian for the second-quantized theory, Eq. (1.2),
explicitly in terms of p(x) and J(x).This rather singular
looking expression is displayed in Eq. (1.6).

In this section we will start from Eq. (1.6) and investi-
gate the form of the Hamiltonian when p(x) and J(x)
are defined by Eqs. (2.6)—(2.10). We shall find that the
resulting form of the Hamiltonian contains no unde-
fined terms involving 1/p(x), and is, in fact, well defined.

2j(7r/L V) Q Q ei ))&)n+ n & x IL&(m+ n) e i nn x llI n-
m n Bs(n)

changes the variables that are summed over to
p=m+n, and v=n, and refers to Eq. (2.56) to find

LVp(x)+2iJ(x) j
= —2i()r/nL)p(X) g e ' "'"lan (2.59)

as(n)

As a result, the factor 1/p(x) appearing in Eq. (1.6) is
explicitly canceled out by the factor p(x) in Eq. (2.59).
Combining these results, we Gnd that the Hamiltonian
density H(x) takes the form

H(x) =-', (Vp(x) —2iJ(x)$— $Vp(x)+2iJ(x) j
p(x)

1 )r) 1
+p(x) d'y V(» —y)p(y) = ——

I

—& 2
2 LI V~

t9
e'~ l 1~ " m. ns(m)

Bs(n)

1
+ — Pk ns(k+m)

o. Bz(k)) Bs(n)

f ~ 2

g Q e'&n' " +n& s(m)z(n) V(n), (2.60)
&V

V(n) = e ' '"V(u)d'u

which can be combined to give

Vp(x)+2i J(x)

= —2i (+/LV) Q g e™~l~ns(m+n) . (2.58)
XII Il Bz(n)

(In this section we reinstate the factor of n set equal to
1 in Sec. IID and set the mass M of the particle equal
to 1.) The important thing about Eq. (2.58) is that its
right-hand side is proportional to p(x). To see this, one
rewrites the above expression in the form
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and the Hamiltonian H= J'H(x)d'x becomes Writing out the various terms in Eq. (2.64) explicitly
one finds

1p~ 8
H= —

~

— Pm ms(m)
2&I. Bs(m)

8 t9

+ —Q Pm ns(m+n)
Q IQ Q Bs(m) Bs(n)

—(n'/V) g s(—m)s(m) V(m) . (2.61)

(C,He) = (HC, e)+

Bs Bz

g 2g

Q noes +„C'
mn BS BS„

We remark that the E-particle identities were not
used in deriving Eq. (2.61), so that it is valid for any
number of particles. However, the Vp(x) term in J(x)
was crucial for the elimination of the 1/p(x) factor in H.

Ke can immediately obtain two checks on the cor-
rectness of Eq. (2.61).First, working on the one-particle
space we have

1 —
~
P Pm ns(m) s(n)

2M I.) cjs(m) Bs(n)

(2.62)

where Ho is the kinetic-energy part of Eq. (2.61) and we
recall that the total momentum is p= 1'J(x)d'x. This
is the expected result for one particle.

Secondly, one can easily check that the continuity
equation

Bp(x,t)/BI+V. J(x,t) =0 (2.63)

is given correctly if p(x) is commuted with the Hamil-
tonian (2.61).

Next let us check that Eq. (2.61) defines a Hamil-
tonian which is Hermitian in the inner products written
down in Sec. II D. Since the interaction part of the
Hamiltonian is obviously Hermitian, we shall just show
the Hermiticity of the kinetic part. To carry out the
calculation we shall work in one dimension and revert
to the notation of Sec. II D. Then we have Ldropping an
over-all factor of -', (m/I )'$

(C,HO) = C*{z}H+{z}0(z)Sz

C*{z}Q m's
Bz

8 8
+Q mes„+„—4{z}a(z)X)z

Bz Bs

8$ &30'

+C* o+s C"' 0 X)z. (2.65)
Bs Bs

The second term on the right-hand sid.e of Eq. (2.65)
vanishes identically for any measure in which J(x) is
Hermitian. This result can be seen most simply by using
Eq. (2.44) and its derivative to eliminate terms like
Bo/Bs„and 8'0/Bs„8s„ from Eq. (2.65). Consequently,
we have

(C,H+) = (HC, @), (2.66)
a,s desired.

Finally, we remark that the particular combination
of s(n) and 8/Bs(n) occurring in Eqs. (2.60) and (2.61)
is well defined in the sense that it will take an expression
equivalent to the zero vector, like s~' —s~ for one-particle
states, into the zero vector.

III. FUNCTIONAL REPRESENTATION OF
CURRENT ALGEBRA

The representation discussed in Sec. II is useful for
bringing out some of the mathematical points that come

up in finding representations of local current algebras,
but it is cumbersome and not well suited for handling
practical problems. Therefore we shall discuss here the
relationship of this representation to the recently
proposed' ' functional representation of the current
algebra, which will turn out to be more convenient for
purposes of computation.

On a formal level, we can introduce the functional

representations as follows. '' One imagines a Hilbert
space in which one chooses as a basis the complete set
of eigenvectors associated with a maximal commuting

set of current operators. In the present case, the basis
vectors would consist simply of the eigenstates of p(x).
An arbitrary state

~

%') is then represented by giving its

components along each of the basis vectors; we write it
as a functional of p(x):

8—pm' (C*s 0)
+{p(x)}=(p(x) I

+). (3.1)

82

+Q mN (C's +.0) 0 Sz. (2.64)
mn ~Sm~Zn

One then seeks to express p(x) and J(x), acting on
functionals %{p(x)}, in terms of multiplication and
functional differentiation operators in such a way that
the current algebra (1.5) is formally satisfied. The
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appropriate expressions are 9 '4 the identification

and
p"(x)+{P(x)}=P(x)+{P(x)} (3.2) 1 8

P e—inn ~ x/L

bp(x) a n Bs(n)
(3.7)

J„(x)@{p(x) }

p(x)—V ——Vp(x) +{p(x) }. (3.3)
i bp(x) 2i

The operator VLb/bp(x) 1 is symbolically defined by
the equation

V —4{p(x) }f(x)dsg
bp(x)

=lim e iLV{p(x)—eVf(x)}—@{p(x)}j, (3.4)

i.e., if we regard o)/Bs(n) as the Fourier transform of
b/bp(x).

One can easily check that if the operator 8/bp(x) is
defined by Eq. (3.7), it has all the desired formal prop-
erties. For example, computing the commutator of p(x)
and b/bp(y), we find

8
p(x) — P eixm ~ x/LS(m) e

—inn y/L

bp(y)- t)s(n)

Q &ixm (x—y) /L
P' m

and is supposed to satisfy the relationship
=-b(x-y), (3.8)

8 8 8
p(x),i—' —=i = 8(x—y).

~3s bp( )-
(3.5)

1 (1 8
J(x)%{p(X)}= p(X)—VI —Z e '

i kn ~ r)s(n))

1

.VP(x) +{p(x) } (3 6)
2j

Equations (3.1)—(3.5) are what we call the functional
representation of .the current algebra. The functional
representation is compact and relatively easy to calcu-
late with using the formal rules of functional differentia-
tion. But one is led to ask whether one can make
mathematical sense out of it, and what its relationship
is to the representation of Sec. II. The answer to these
questions is very simple: The functional representation
is the Fourier transform of the representation (2.9)
and (2.10), and we can, in fact, define the functional
representation in this way, for systems with a finite
number of degrees of freedom. This is easily shown.

First, from Eq. (2.3) it is clear that %{z}is auto-
rnatically a functional of p(x); to write it as %{p(x)} is
just a relabeling. Then, since each s(n) acts on 4'{z}by
multiplication, Eq. (2.56) tells us that p(x) acts as a
multiplication on %{p(x)}.

We computed the action of J(x) on 4'{z} in Sec. II,
Eq. (2.59). Slightly rearranged, the result was

from which Eq. (3.5) follows directly.
As another example, we can compute

tional derivative of a linear functional
=J'f(x') p(x')dsx'. The formal rules of
differentiation give

bF{P}/bp(x) =f(x),

the func-
like F{p}
functional

(3 9)

a result we can check. by doing the following calculation
using Eq. (3.7):

bF{p}

bp(x)
f(x')p(x') d's'

bp(x)

8
f(X&)e

—inn x/Leixm x'/L S(rn)dsgl
P' m, n r)s(n)

f(x&)e—ixm (x—x')/Ldsg&

=f(x). (3.10)

(C' +)= C'*{P(x)}+{p(x) } {P(x)}&P(x) (3 11)

The question we shall discuss next is the way in
which one picks out a given irreducible representation
of the current algebra in the functional representation.
As with the representation of Sec. II, this is most
straightforwardly done by finding a functional o{p(x)}
which defines an inner product

The above equation will agree with Eq. (3.3) if we make

"The expression for J(x) given in Eq. (3.3) differs from that
given in Refs. 9 and 10, where the &p(x) term which should be
present was omitted. This requires slight modi6cations in the
results of Pardee ef al (Ref. 9). We remi. nd the reader that in
Eq. (3.3) we have set the term F(z,n) =0, which means that we
are dealing with bosons. Functional expressions for p(x) and
J(x} in Fermi representations are given in Ref. 7.

in such a way that the operators p(x) and J(x) have the
desired Hermiticity properties, the E-particle identities
are satisfied, and, finally, so that a meaning can be
given to the functional integration. Far from having to
start from scratch to determine o.{p(x)},we shall 6nd
that the work of Sec. II D already contains everything
we need to make sense out of Eq. (3.11).
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To see this, let us recall one way in which one might
try to de6ne a functional integral. "Working as before
in a box of volume V, with sides of length 21-, one begins
by expanding p(x) in terms of some complete ortho-
normal set of basis functions N„(x). Here we choose
u (x)=e™x/Land write

We express this fact by replacing the factor

H 8Ls(m) —e
—'

in Eq. (2.50) by a functional /i function

p(x) = P e(wm ~ x/Ls(m)
Vm

(3.12)
6[y(x) —8(x—x&)]. (3.15)

Evidently, on an E-particle space we would write

where we have chosen (r=+V, a convention we will
maintain hereafter. The coefficients z(m) are now re-
garded as independent variables of integration. Then
one "defines" the functional integral as a limit of a
multiple integral

C'*{p(x) }+{p(x) }~{p(x) }&p(x) =
n1, n2, na~cc

8Lp(x) Z ~(x x')]
z=l

in place of Eq. (3.15). Putting these observations
together, we see that the inner product (3.11) can be
obtained from equations like (2.50) by simple tran-
scription according to Eqs. (3.14) and (3.15). On an
S-particle space, the result is just

X C'{s(—n), . . . , s(n)}e{s(—n), . . . , .(n) }

Xo{s(—n), . . . , s(n)}ds(—n) . ds(n), (3.13)

as the number of independent Fourier coefficients goes
to infinity. Thus, we make the identification

X)p(x) =g ds(n), (3.14)

and we see that X)p(x) is actually independent of x. Of
course, this "definition" does not tell us much until one
says what one means by the limit and describes some
situations in which the limit gives a sensible result. The
points we would like to make now are these. First,
inspection of the inner products defined by Eqs. (2.50)
or (2.52) shows that these formulas are formal defini-
tions, in the sense of Eq. (3.13), of functional integrals.
Secondly, the work of Sec. II D, and more especially
that of Goldin, ""shows that in the present case, where
we are dealing with systems having a 6nite number of
degrees of freedom, the resulting integrals do make
sense; these inner products make the space of func-
tionals %{z},or 4{p(z) },into the Hilbert space I,'{z}.

Next, let us see how the one-particle measure
o.&{z}X)z, Eq. (2.50), is translated into the p(x), 8/»(x)
language. Here, the point to note is that Eq. (2.50)
implies that the inner product is zero unless

S(m) e imam ~ xi/L—

for each m. Combined with Eq. (3.13), this means that
the inner product will be zero unless

p(x) =8(x—xt).
'6 Our discussion of this point follows D. Lurid, Particles grId

Fields lWiley-Interscience, Inc. , New York, 1968},p. 484.

(4 0)= C*{p(x)}@{p(x)}

XL&(p(x) —Q (/(x —x )) g d'x, ]SP(x) . (3.16)

Next we wish to display the form of the Hamiltonian
in the functional representation. This is obtained
immediately by substituting Eq. (2.3) for (rs(m) and the
inverse of Eq. (3.7) for (}/Bs(m) into Eq. (2.61) to find

+&{p(x)}= d'xd'y —',8(x—y) V(,»(x). V(„&
»(y)

5—p(x) V(,) V(„l»(x)»(y)

+p(x)p(y)l (x—y) +{p(x)} (3 17)

One could have tried to obtain the Hamiltonian by
substituting Eq. (3.3) directly into Eq. (1.6). This
procedure, however, masks the fact that one must
evaluate the derivatives in the second term of Eq.
(3.17) before taking the limit x —+ y.

In Sec. IID we discussed the question of which
operators are actually well defined when applied to
vectors in the Hilbert space used here. It was explained
that the combinations of s(n) and ci/c/s(n) occurring in
the expressions for J(n) and II are well defined, but that
the operators c//Bs(n), or simple linear combinations of
such operators, are not. That is, although one can calcu-
late with c//Bs(n) in the usual way when it appears
multiplied by s(n) in J(n) or H, one gets paradoxical
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results if one tries to work with cl/c/z(n) by itself. "'7 The
implication of this for the functional representation is
that the functional derivative 5/fip(x), like r)/c/z(n), is
just a formal operator and not well de6ned. This follows
immediately from Eq. (3.7). However, the specific
combinations of p(x) and 5/8p(x) which occur in J(x)
and II are, as before, well defined.

We shall use the functional representation extensively
in subsequent work. The results of this section are
extended to include spin and statistics in the following
paper, ' and they will also find application in our work
on the "E/V limit. ""

p(n) p(0)&
—km x/L (4.1)

with p(0) =1.
To find J(n), we work with the single-particle PJ

identity

J(m+n) =J(m) p(n)+(ns/2L) p(m+n) . (2.16)

IV. SCHRODINGER REPRESENTATION

As we have repeatedly emphasized, the formulation
of nonrelativistic quantum mechanics in terms of cur-
rents must be equivalent to any of the usual formula-
tions. In this section we shall show how the 6rst-
quantized, or Schrodinger, formulation of quantum
mechanics can be obtained in a simple and direct
fashion from the work of Sec. II.

To see this, we begin by recalling that. in Sec. II we
found, for a single particle, that

[X/,P&] =if/s/ ~ (4.4a)

Using Eqs. (2.8a) and (2.8c), one can show in a
similar way that

[Xs,X&j=0

[Ps,P&]=0.

(4.4b)

(4.4c)

We note in passing that one can use Eq. (4.4a) to
write Eq. (4.2) in the symmetrized form:

J(n) —i[Ps—i~x ~/L+e —i~x ~/LP]

Next, let us look at the form of the kinetic-energy
operator in this representation. We note that when

J(n) is given by Eq. (4.2), J(x) is written as

J(x)=Pp(x)+ (1/2i) Vp(x) . (4 6)

The kinetic part of the Hamiltonian (1.6) then becomes
(with M =1)

II= — [Vp(x) —2iJ(x)] [Vp(x)+2iJ(x)]d'x
8 p(x)

Next one uses Eqs. (4.2), (2.8a), and (2.14) to obtain

LP(m), Pi]P(n) = (w/L)~/P(m)P(n) (4 3)

Finally, we differentiate Eq. (4.3) with respect to tr//„

use Eq. (2.26) to eliminate the derivatives /cp(m)/ icia/,/

and evaluate the resulting equation in the limit m~ ~ 0
to find

For m=0, this equation becomes

J(n) =Pp(n)+(n /2L) p(n) (4.2)

1
(—2ip) [2VP(x)+2ipp(x) jd'x.

8
(4 '7)

where we have defined P =J(0).
It is natural to interpret X as the position operator of

the particle, and P as its momentum operator. One can
show that X and P satisfy the usual canonical com-
mutation relations. This follows from Eqs. (4.1) and
(4.2) and the fact that p(n) and J(n) satisfy the algebra
(2.8). To obtain the [X,pj commutator, for example,
one starts from Eq. (2.8b):

[p(m), J&(n) $= (w/L)t&s/p(m+n) . (2.8b)

"Another example of such a situation would be the following.
In one dimension, a complete set of operators for a single spinless
particle arel and p. On any fixed-parity subspace, however& one
can also choose as a complete set the operators (see Ref. 2} A =P
and 8= —

4 (9p+pl), which satisfy the algebra PA, A/ =0,
PA, A] = iA, $8,8—]=0. This algebra admits two faithful
inequivalent representations (see Ref. 27). One of these repre-
sentations can be realized on a space of square-integrable func-
tions, satisfying f(k)=0 for k&0, as follows (see Ref. 27):
A f(k) =kf(k) Bf(k)= ', i(1+2kd/dk) f(k-) The operators .k and
kd/dk are both well defined. However, the operator d/dk by itself
is not well defined. If it were, one could form g(k) =e' '""f(k)
= f(k+a), which is not necessarily zero for negative k, an obvi-
ously contradictory result.

"The representations of this algebra have been studied for a
long time, beginning with the work of I. Gel fand and M. Naimark,
Dokl. Akad. Nauk SSSR 55, 570 (1947). However, the presenta-
tion we are", following here is due to E. W. Aslaksen and J. R.
Klauder, J. Math Phys. 9, 206 (1968).

II =-'P P. (4 8)

The above results can readily be generalized to the
X-particle case. The equations for p(n) and J(n),
corresponding to Eqs. (4.1) and (4.5), are

N

p(n) P s iwx(~& ~ n/L— (4.9)

N

J(n) = i P [P(~&e—i~xi~& &/L+e —i~xi~& &/LP(&&1 (4 1P)

Here X& & and P& ) are, respectively, the position and
momentum operators of the o.th particle, and they
satisfy the commutation relations

[X&& &,Xsl»j=p, (4.11a)

[X& ')Ps&s& j=if//kf/ //, (4.11b)

[P&(~& Ps(s& j—P (4.11c)

as a consequence of Eqs. (4.9) and (4.10) and the current

The integral J'Vp(x) d'x vanishes because of the
periodic boundary conditions imposed, and for a single
particle J'p(x)d'x = 1, so Eq. (4.7) reduces to the
expected form
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algebra (2.8). The kinetic-energy operator is

i p p(n). p(n) (4.12)

as well as the two-particle pp identity (2.18). The fact
that p(n) satisfies Eq. (5.4) instead of

p(n) p(m) =p(n+m)

One easily verifies that Eqs. (4.9) and (4.10) satisfy
the E-particle pp and pJ identities. %hi1.e it is a con-
sequence of the 1V-particle identities that p(n) and J(n)
can be written in the form (4.9) and (4.10), it is im-

portant to realize that one cannot express the co-
ordinates X& & of the individual particles in terms of the
observables p(n) and J(n). In the case of two particles,
for example, the best one can do is to obtain expressions
for the center-of-mass coordinate,

—',(X("+X"')= (iL/22r) lim V„p(m),
m-+0

(4.13)

a fact which rejects, of course, the indistinguishability
of identical particles in quantum mechanics.

Finally, we remark that one can obtain Eqs. (4.9) and
(4.10) immediately using the Fock representation for
the fields P(x) and Pt(x) and the definitions (1.3)
and (1.4).

V. OTHER REPRESENTATIONS

In Secs. II—IV we have shown how to construct
irreducible representations of the current algebra which
correspond to the ordinary I ock representation of the
underlying field theory (1.1)—(1.2). However, as men-
tioned in Sec. II C, there are other representations of
the current algebra (2.8). These occur because the
connection from the current algebra back to an under-

lying held is not unique, at least in the nonrelativistic
case.

As an example, we consider the representation

p(n) =2e 'xn'/~

J(n) =Pe—ixn x/r+e —inn x/rP

(5.1)

(5.2)

with Lxi,pg=ibii, which differs from the representation
(4.1) and (4.5) by an over-all factor of 2 in p(n) and

J(n). The kinetic-energy operator in this representa-
tion is

and the square of the relative coordinate,

(g (1) g (2))2

L)' 8 p2(m) Bp(m) '
2 ——- -, (4.14)

a'm, am( =0

shows that the representation (5.1)—(5.2) is unitarily
inequivalent to the single-particle representation we
have considered up to now, and it is likewise clear that
it is unitarily inequivalent to the two-particle repre-
sentation considered in Secs. II C and IID. Hence,
Eqs. (5.1)—(5.2) define a distinct, irreducible representa-
tion of the current algebra.

The reason for the existence of additional representa-
tions of this kind is very simple. If the single-particle
representations considered in Sec. II are associated with
a particle of "charge" Q and mass M, the representation
(5.1)—(5.2) corresponds to a single-particle representa-
tion for a particle having charge 2Q and mass 2M. Thus,
while second-quantized theories of identical spinless
particles all lead to the same current algebra, whatever
the mass and charge of the particles, the form of the
A-particle identities that one abstracts from these
theories di6er, and so one Ands different irreducible
representations.

An amusing, but not quite correct, way to view the
representation (5.1)—(5.2) is the following. One notes
that one can obtain this representation by starting
from the representation of p(n) and J(n) on the two-
particle sector of the charge-Q mass-M theory and then
identifying the coordinates x& and x2. One would like to
interpret the resulting representation (5.1)—(5.2) as
arising when two mass-3f particles are bound together
so tightly that they behave exactly like a single
charge-2Q ma, ss-2M particle. The reason this "bound-
state" interpretation of the representation is not right
is, of course, that no well-defined potential can bind the
particles tightly enough for this picture to be strictly
correct. The easiest way to see this is to recall that no
interaction will take one from a given irreducible repre-
sentation of the current algebra to another, unitarily
inequivalent, one for systems with a finite number of
degrees of freedom.

Nevertheless, it. is interesting that the current algebra
admits representations in which the particles look
"as if" they were made up of two mass-M charge-Q
particles without entailing the existence of such
particles. This is in spite of the fact that the algebra was
originally abstracted from a second-quantized theory
of the latter kind of particle.

As a final example, we consider the representation

B=p.p. (5.3) p(n) ) e ixxy n/I+(—2 ) )e ixxx n/I— .

p(n) p(m) =2p(n+m), (5 4)

The representation (5.1)—(5.2) does not satisfy the
single-particle pp or pJ identities abstracted from the
field theory (1.1)—(1.2). However, it is clear from Eq.
(5.1) that p(/2) satisfies

J(n) =-,'y{pi e 'xx'n/r }g-,'(2 —) ){p2,e
—'x» n/r } (5.6)

where the operators x; and p; satisfy canonical com-
mutation relations, and P is any positive real number
less than 2. This representation, which is irreducible, is
unitarily inequivalent to any of those which we have
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studied so far. It is an example of a representation
which satisfies none of the E-particle identities derived
in Ref. 14, including the two-particle identity Leven
though p(0) = 2j. Nevertheless, the representation
(5.5)—(5.6) is defined by a pp type of identity, which is
su%ciently complicated as to be uninteresting.

One possible way to look at this representation is the
following. The states contain two different kinds of
particles: one particle has charge XQ, mass XM and the
other has charge (2 —X)Q, mass (2—X)3I. To give a
second-quantized description of such a system, one
would have to work with two distinct fields, each
describing one kind of particle. In working with the
currents, one can use just the operators p(n) and J(n)
satisfying the current algebra (2.8). Alternatively, one
can introduce independent currents p~, J~ and p~, J~
referring to the two species of particles.

In closing, we mention that when one includes spin
and statistics, there will be an even greater variety of
representations describing particles that look as if they
were made out of some combination of particles de-
scribed by an underlying held.
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d'x f(x)h(x)Pt(x) IO). (AS)

J(f)p(g) Ih)=(1/2&i) I v(fgh)+fv(gh)), (A11)

Equations (A6) and (AS) can be written compactly as

APPENDIX: SINGLE-PARTICLE J(f) Ih&=(1/2Mi) I v(fh)+ fvh), (A9)
g J IDENTITY

p(f)lh& =
I fh). (A10)

To derive the pJ identity it is best to work. with
smeared operators and states. Next, we compute J(f)p(g) Ih). Using Eqs. (A9) and

Accordingly, we introduce the single-particle state (A10) one sees that the result is

lh) = d's h(z)gt(z) I0)

and the smeared operators

Ji,(f) = d'x f(x)Ji,(x), (A2)

p(g) = d'y g(y)p(y) . (A3)

It is assumed that the functions f(x), g(x), and h(x)
satisfy periodic boundary conditions on a cube of side
2L, volume V. All surface terms that occur in subse-
quent integrations will consequently vanish.

which can be written

2MiJ(f)p(g) Ih) =
I v(fgh)+ fgvh)+ I fhvg&

=23KJ(fg) I
h&+ p'(f vg) I h) . (A12)

Equation (A12) holds for an arbitrary single-particle
state

I h), and so on the one-particle sector the operators
p(g) and J(f) must satisfy

J(f)p(g) =J(fg)+(1/2Mi) p(f vg) . (A13)

Setting f (x)=e ' '*i~, g„(x)=e ' '*~~, we find

Ji (m)p(n) +(1/2&i) (ir/L) ei p(m+n)
—Ji,(m+n) =0, (A14)

which is the result stated in Sec. II C, Eq. (2.16).


