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One can verify that the quantum-mechanical arrtp/i
tudes F;„and F,„,of Eq. (15), evaluated on the p peak
(m=rn, ), have essentially the same form as the prob
abilities E;„and E,„t.

Some results obtained with these equations are listed
as follows for p=2. 7 GeV/c (we have used o.,N=30 mb,
Fo——125 MeV, and If.= 1.302I"F):

E/IVor

We note that the discrepancy between the analog
to the DT result, Eq. (A1), and X;„+IVo &

——IV, is
remarkably small even at this very low energy, and,
what is perhaps more surprising, very slowly varying
with A. The most important reason for the small

departure of IV/IVoT from unity is that the absorption
mean free path 1/ts, is small compared to R. Hence in

medium weight and heavy nuclei, photoproduced p's

predominantly originate from the "downstream end"
of the nucleus, where the p has relatively little difhculty
in escaping before decay. Furthermore, some of the
decay poins from interior decay also manage to escape,
and are counted as p events.

The statistical argument does not provide a mass
distribution for interior decays. Above all, it does not
take the quantum-mechanical coherence of interior
and exterior decay into account. Nevertheless, it
serves as a useful supplement to the correct calculation
described in the text.
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We make a systematic test of soft-meson-theorem predictions for both elastic and inelastic pseudoscalar-
meson-baryon threshold scattering amplitudes. The predictions are obtained by using an extrapolation
procedure developed by Fubini and Furlan and by ourselves. Our results give considerable support to a
theory of SU(3) &&SU(3) symmetry breaking proposed recently by Gell-Mann, Oakes, and Renner, and
imply that, in the absence of symmetry breaking, the mass of the J&=-',+ baryon octet would be approxi-
mately that of the physical nucleon.

I. INTRODUCTION
' 'N this paper we use the experimental values of the
~ - real parts of 13 elastic and inelastic pseudoscalar-
meson —baryon (P 8) scattering amp—litudes,

P +8;~Pe+BI,
evaluated at threshold, to test soft-meson theorems. A
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brief report of some of our preliminary results has al-
ready been presented elsewhere. '

The primary interest in the soft-meson theorems is
that, at the moment, they afford us the best opportunity
for testing experimentally forms which bave been pro-
posed for equal-time cornmutators of axial-vector
charges with each other and with their time derivatives.
Thus they allow us to test both the SU(3)XSU(3)
charge-algebra hypothesis and the hypotheses concern-
ing the nature of SU(3)XSU(3) symmetry breaking.

The difhculty in making these tests originates in the
fact that the soft-meson theorems 6x the values of the

'F. von Hippel and I. K. Kim, Phys. Rev. Letters 22, 740
(1969).
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)It should perhaps be emphasized here that, because
the 3-momenta are zero, the matrix elements of the
axial charge densities and their time derivatives are
equal, except for a factor (2')'5'(q& —q;), to those of
the corresponding charges and their time derivatives.
Consequently, our results will test the commutation
relations of the charges only, not those of the current
densities. )

The problem of confronting theories of the commuta-
tors with experiment therefore becomes one of obtain-
ing from the on-mass-shell scattering data a reliable
"experimental" estimate of the off-mass-shell amplitude
at the soft-meson points.

Recently an extrapolation procedure has been de-
veloped by ourselves' and by Fubini and Furlan' which
makes a large step in this direction. This procedure
yields for elastic-scattering amplitudes the approximate
sum rule

Re~tgresh= ~~+~op
" dv' ImalZg 0(v')

(1.4)

scattering amplitudes at points og the meson mass
shells. They 6x the scattering amplitude at the "soft-
meson points" where all external particles are at rest
in the lab frame and one of the mesons has zero mass.
Near these points the amplitude becomes a linear corn
bination of the matrix elements:

~o—= &&el LQs'(0) 8-'(o)7l &')/P'-~s) (1 2)
and

"experimental" determination of these 0- terms which
gives us new information about the nature of SV(3)
XSU(3) symmetry breaking.

In Sec. III the result (1.4) obtained for elastic
amplitudes is generalized to include inelastic amplitudes
using the Low-equation approach of Fubini and Furlan. ~

We discuss the theoretical questions related to the con-
vergence of this dispersion relation and also the justih-
cation for the approximations used in evaluating the
cut contributions.

In Sec. IV the hypotheses for the equal-time com-
mutators appearing in (1.2) and (1.3) are summarized.

Finally, in Sec. V we present our numerical results
and our conclusions.

II. SOFT-MESON THEOREMS

In this section we show that, if the scattering ampli-
tude for (1.1) is expressed in terms of local meson 6eld
operators and the Geld operators are in turn defined o8
the meson mass shells as being proportional to the di-
vergences of the corresponding axial-vector currents,
then at specific "soft-meson points, " where the 4-
momentum of one of the off-mass-shell rnesons is zero,
the amplitude may be written as a linear combination
of the commutator matrix elements (1.2) and (1.3).

The soft-meson theorems are customarily obtained
starting with the formal Lehmann-Szymanski-Zimmer-
mann (LSZ) expression for the scattering amplitude,

&&Arly'-&') = —(v~' —I ~')(v-' ~-. ')

d4x d4y e'« ~'~ '

as well as corresponding results' for inelastic amplitudes.
Here OR&h„,h is the physical threshold amplitude,
Im DR&=0(v') is the imaginary part of the physical s-wave
scattering amplitude at a total c.m. energy W= p'+M,
HEI is the mass of the target baryon, p that of the meson,
and Wo—=F0+M the energy of the lowest direct channel
threshold. As both Re BR&h„,I, and Im OR~ 0 are experi-
mentally measurable, Eq. (1.4) gives us a way of ob-
taining an "experimental" estimate of BR +pro.

In Sec. II the derivation of the soft-meson theorems
for a general scattering amplitude of type (1.1) is pre-
sented. Our derivation goes beyond the original dis-
cussion of this type4 in that it applies to inelastic as
well as elastic scattering amplitudes'and we carefully
keep the previously neglected "o- terms, "OR, . It is our

2F. von Hippel and J. K. Kim, Phys. Rev. Letters 20, 1303
(1968).

3 S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968};
see also A. de Alfaro and C. Rossetti, Nuovo Cimento Suppl. 6,
575 (1968).

4 A. P. Balachandran, M. Gundzik, and F. Nicodemi, Nuovo
Cimento 44A, 1275 (1966); Y. Tomozawa, ibid. 46A, 707 (1967);
S. steinberg, Phys. Rev. Letters 17, 616 (1966).

X(&pl &4p(y)4. (x) I&,)' (21a)

&~p I &-)= (2~)'(2~-)4-~'(e —e-), (2.1b)

&24I &*)= (2~)'(~'/~') hr'~'(e —a') (2 1c)

The formal expression (2.1) is often used as a starting
point for the proof of dispersion relations. It is given
additional content when we de6ne the continuation of
the meson Geld operators off the meson mass shells
using the partial conservation of axial-vector current
(PCAC) identifKation

y.(x)—= a„A I"(x)/(F p '). (2.2)

Here the P's are the meson 6elds and the subscripts
P, n, f, i, are SU(3) subscripts for the external particles
indicated in (1.1). The t; subscript to the matrix ele-
ments indicates that we are concerned only with the
contribution of the connected diagrams to the 5-matrix
element. Furthermore, we use covariant normalization
for our single-particle states:



NATURE OF SU(3) XSU(3) SYMMETRY BREAKING i53

Here A & is an axial-vector current whose charge Q '
will, by hypothesis, be one of the generators of the
SU(3)XSU(3) symmetry; F is a constant determined'
for the pions and kaons by using the identification (2.2),
in calculating the I' leptonic decay rates from the

current-current theory of semileptonic weak inter-
actions.

Making the substitutions (2.2) for @,@p in (2.1) and
integrating the divergences by parts (y first), (2.1)
becomes

( FsBrl F- B'& = —[(qs' —~s') (q
' —~ ') /(F-~ 'Fs~s')1 ~'* ~'X &'" " "'(B~

I (qs).(q-) TAs"b)A-"(&)

—[As'(y) 8 A "(*)j3(y' —~') —i(qs)ZA&'(y) A '(z))3(y' x')
I B'&, (2.3)

where the equal-time commutators come from time derivatives operating on the 8 functions in the time-ordered
product.

In order to consider the soft-meson theorems most conveniently, we will consider the kinematic configuration
which in the lab frame is associated with all three-momenta being equal to zero

q =qp=q;=qy=o, E;=M, , Fg=3IIg. (2.4a)

Ke will consider the matrix element as a function of the energy of one of the oQ-mass-shell mesons along this
curve in the limit

and/or» ~ 0.

[The "and" in (2.4b) will apply only when allowed by energy conservation,

5Jjf/I—=3Eg —3f .

(2.4b)

(2.4c)

i.e., when 8, and Br have equal masses. ]
We have specified the soft-meson limit (2.4) carefully by first taking all 3-momenta equal to zero and then going

to the limit (2.4b) in order to avoid having to consider the baryon. Born poles in the time-ordered product terin.
Because of the odd parity of the mesons, these Born poles are in the p-wave part of the scattering amplitude
and do not appear along the curve (2.4a) where the amplitude is entirely s wave. Consequently, along this curve
the time-ordered product term in the matrix element has zeros at the points (2.4b) and at these "soft-meson
points" (SMP) the scattering amplitude may be represented as a sum of matrix elements of equal-time commutators

(Fs f I F-B'&. :
I (1 » /w )(I —(v '/li, ')/(F—.Fp) j(2w)'3'(qq+qx —

q
—q;)

X(Bf
~
[Qs'(O), ~sA. '(0) I+i~s[Qs'(0), A.'(o)1

~
B;&.. (2.5)

In (2.5) we have integrated over x and y, taking advantage of the fact that all 3-mornenta are zero in order to drop
the space derivatives in B„A &.

It will be noted that the expression in (2.5) no longer has explicit/y the original invariance of (2.1) under simu-
taneous interchange of rr and P indices of the operators and of q and —qp. The reason is that our procedure in
going from (2.1) to (2.3) involved the asymmetrical step of integrating the y variable by parts first. We could have
equally well integrated the x variable by parts first and obtained a form with the asymmetry reversed. The equality
of these two forms implies certain relations between the equal-time commutators appearing in (2.3).r For con-
venience we will restore the symmetry by averaging the asymmetric forms. If we define an invariant scattering
amplitude BR such that

(PpBI
~

P 8;&,=i(2rr) 4b4(qp+qg q q;) OR, — —
the averaged OR assumes the form' at the SMP (2A)

L(1 »'/—~s') (—1 ~-'/I -')/(F-F~) j(Bf I s(»+~-) [Q-'( )OAs'(0) 1

+-' ([Q '(o),~oA-'(o)1+[Q-'(o), ~oA '(o)31&'&.
=L(1—»'/w') (1—~-'/f -')j[s(~s+~-)oR9+ oR.l
=—BR, when ~ =0—= BRp, when a)p=0.

(2.6)

(2.7)

5 We have used the values F =0.69@ and Ii~=0.87IJ. , corresponding to a Cabibbo angle with tanog=0. 2|.
The last two conditions in Eq. (2.4a) are listed just to remind the reader that the baryons are on their mass shells. It should be

obvious also that our discussion refers to a particular reference frame only for pedagogical reasons.
r See, e.g. , T. K. Kuo and M. Sugawara, Phys. Rev. 163, 1716 (1967).We would like to thank Perry Shers for bringing this work to

Our attention.
We note here that it is not necessary to explicitly antisymmetrize the 6rst commutator since, at zero momentum transfer, the

matrix elements of As'(0) are proportional to those of Qs'(0).
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This completes our proof of the soft-meson theorems.
We will discuss particular forms which have been sug-
gested for the equal-time commutators in Sec. IV. It
should be noted here, however, that in the familiar
elastic scattering case AM=0 and both mesons have
zero 4-momentum at the same point, (2.4). At this
point on the curve (2.4a), the time-ordered product
term in (2.3) has a second-order zero and (2.7) fixes
both OR and its first derivative there.

III.EXTRAPOLATION TO PHYSICAL THRESHOLD

In Sec. II we discussed how the scattering amplitude
may be continued off the meson mass shell. It was shown
that the amplitude so constructed could be written at
the SMP in terms of the matrix elements of the equal-
time commutators. In this section we show how this
information may be combined with an o6-mass-shell
dispersion relation to arrive at certain approximate sum
rules for the on-mass-she/l s-wave amplitude in terms
of the same equal-time-commutator matrix elements.

We will take the values of OR at the points (2.4) to
be given by (2.7). The case when these two points are
coincident will not be considered separately below be-
cause it can easily be obtained by taking the limit
~M —+0. Because of the energy-conservation require-
ments (2.4c), OR is a function of a single variable
along the curve (2.4a). We will use the symmetric
variable

where

OR=(qs' —
I i')(q-' —~-')

&&ilA(z) l~&&~le-(o) I&'&
X d'~ 5„

v p~+ze

&+f I4 (o) I~&&~
I A(z) I~'&

p +v~+4 e

where

i „—=W„—',(E;+—Ef) .

(3.3a)

(3.3b)

It is obvious that for fixed 3-mornenta (and therefore
fixed E;, Er, and nil —pp ) OR is a function of i only and
that all the v dependence occurs in the denominators and
in the inverse propagators. If lV, and 8', are the small-
est values of the energy 8'„ for nonvanishing contribu-
tions to the first and second terms, respectively, it will
also be seen that OR as a function of v has poles or cuts
only for s real and

Q—=—:(qs+q-), ~=——:(~f—J'') = l(q- —qs) (3 2b)

Introducing a complete set of states In) with energies
W„between P and Pp, integrating over ss with con-
vergence factors' e+'" for s'+~0, and taking into ac-
count the fact that in our applications Q=~=O,
QP=i, and d, p

——-,'AM, (3.2) becomes

—=-'( + ) ~ (3.1) i &~W, —,'(E;+Er)— (3.4a)
We will extrapolate along this curve because it passes
not only through the SMP but also through the physical
threshold for elastic reactions and near both physical
thresholds for the inelastic reactions which concern us in
this work.

Low Equation

Fubini and Furlan' have pointed out that OR satisfies
a dispersion relation in v along the curve (2.4a). The
dispersion relation is simply the Low equation in the lab
frame and may easily be derived by starting with the
form (2.1). Doing one of the four-dimensional integra-
tions, we obtain with (2.6)

OR= i(qp
' Iis')—(q ' -—p') d's —e'i@ ~"

X(~f1 2 ps(s)y. (o)
I
~'&,

or

i ~& W+ ,'(E~+Er) .——(3.4b)

Asymptotic Behavior

In order to write a dispersion relation, however, it is
also necessary to have bounds on the asymptotic be-
havior of OR. As Fubini and Furlan' have pointed out,
one may discuss this behavior using a technique de-
veloped by Bjorken. ' Thus one may formally obtain
the leading terms in an asymptotic series for OR by
expanding the denominators in powers of v '. For
reasons which will become apparent, we expand here in
powers of (v —hp) ', obtaining from (3.3) the form

Thus OR has analyticity properties which will allow
it to satisfy a dispersion relation in z.

OR: (.—~,) (.+i1,) d's S.{L&a,ly, (z) l~&&~14.(O) Ia,&
—&a, ly. (0) l~&&~ly, (z) la,&V(.—~,)

—
I (Ei —E-)&2~f I 4m(z) I ~&&~ I4-(O)!&'&—(E-—E') &&r I 0-(o) I ~)&~ I A(z) I ~'&0/(~ —~p)'}

= (~—imp)'(~+~p)' d's(Pb
I LA(z), 4-(o)1 I &')./(~ —Ap)+s&fIr I LA(z)A-(o)l I &')./(~ —~p)'}+o(") (3 3)

The convergence factors are necessary because we are taking matrix elements between plane-wave states. If we took superpositions
corresponding to matrix elements between wave-packet states, the dependence of SK upon e would disappear as e-+ 0.

'P J. D. Bjorken, Phys. Rev. 148, 1467 (1966l.
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In order to restore syminetry with respect to interchange of n and p, we average this form with the corresponding
one obtained by expanding in powers of (v+t) 0) ', obtaining

: (v-2~M)(v+ 2M) d,(a, lvLq, (z),q.(0)~i2~(Lq. (z),@,(O) )+LA(z) @.(0)1}IIl ).
—= (v —-', AM) (v+-', AM) (vc

—+c+)+o(v'), (3.6)

where we have used 60 ——-', AM and the explicit defi-
nitions of c, c+ may be found in Eqs. (A1) of the
Appendix.

It will be seen that, if we assume the existence of the
commutators (3.6) as nonsingular operators, our as-
sumption implies that the summation over it in (3.3)
converges sufficiently rapidly to allow the asymptotic ex-
pansion, i.e., that the discontinuity in OR grows less
rapidly than v'. Consequently, OR satisfies a dispersion
relation along the curve (2.4) subtracted at each of the
SMP once the leading asymptotic terms have been
separated off:

ReOR(v) =-', (OR.+ORp)+ (OR.—ORp) (v/aM)

j.
+(v —2&M)(v+-', &M) c v+c++ P—

dv' ImOR(v')
X —

, (3.7)
(v'+-', AM) (v' ——',AM) (v' —v)

where we have taken advantage of the fact that the
leading asymptotic terms (3.6) have zeros at the SMP.
In our tests below of the sum rules obtained from (3.7)
when s =p, we will find quite satisfactory agreement of
theory with experiment if c+=c =0. These conditions
would be satisfied if the p and p defined by (2.2)
satisfied canonical commutation relations, i.e., have c-
number commutators. It would be premature to con-
clude from our results that the axial-vector current di-
vergences do satisfy canonical commutation relations,
however, because it may be that c+ and c are so small
that their "signal" are not observable above the "noise"
of our experimental and systematic error. This indeed
would be the case (see the Appendix) if we were to
define the ineson fields by (2.2) in the free-quark model
with an average quark mass of 70 MeV (a mass ob-
tained from our results below when the nucleon is
assumed to be a three-quark state). If the average mass
of the quark is increased much above 350 MeV, our
agreement with experiment starts to worsen.

Applications to Inelastic Reactions

We have seen that OR does indeed satisfy a disper-
sion relation along the curve (2.4a) and that if we knew
the constants OR, ORp, c+, c, and the discontinuity
ImOR, it would be possible to predict in the elastic
scattering cases the real part of the physical threshold
amplitude.

Estimation of Cut Contribution

We now turn to a discussion of the procedure by
which we have estimated ImOR in the integral. As
pointed out by Fubini and Furlan, ' the cuts in the off-
mass-shell dispersion relation (3.7) come from two
types of intermediate states in (3.3): (i) states which
would contribute to the cuts of an on-mass-shell for-
ward scattering dispersion relation (Fig. 1), (ii) states
which are accessible only because P and Pp are off
their mass shells (Fig. 2). Type-(ii) intermediate states
appear because along the curve (2.4)

q-'= (v+2~M)' qs'= (v —2~M)'; (3.9)

i.e., as v increases, the masses of the mesons become
greater and greater until decay thresholds are reached.
The cuts of type (ii) nearest to the SMP are due to the
disassociation of P or Pp into three mesons at v=p
+2p —-', AM and v= ps+2p +-,'6M, respectively.

For purposes of orientation we display in Fig. 3 in
the v, q' plane the locations of the nearest branch points
of both types for (KAr)r 0 scattering. The kinematics
have been fixed so that the direct-channel c.m. energy
Ii'= v+M, and t=0, q

'= qp'= q'. On the v axis we in-
dicate v= pic, v= p~+pz p~, v= px, corre—s—ponding
to thresholds of type (i): the elastic K-X scattering

Although the curve (2.4a) runs through physical
threshold only for elastic scattering amplitudes, wc will

apply (3.8) to appropriate inelastic amplitudes as well.
The right-hand side of (3.8) for v= p ——,'AM (i.e., at
the c.m. energy appropriate to initial threshold) will

be compared to the experimental value of the physical
scattering amplitude at initial threshold.

That an approximation is involved here is easily seen.
At initial threshold on the curve (2.4a), we have

q
'= p ', qp'= (p —6M)'. (3 8)

Therefore (unless p =ps —hM) I's is off its mass shell
at this point. Strictly speaking, in order to get the
physical threshold amplitude it would be necessary to
extrapolate OR from qp'=(p —AM)' to qp'= ps'. 0«
assumption is that OR is fairly constant in this interval.
In practice our approximation appears reasonable in
our applications because this distance is quite small
compared to the distance where the nearest important
cuts in qp' are expected to appear. As a partial verifica-
tion of the approximation, we note that our predictions
agree with experiment for the inelastic amplitudes al-
most as well as they do for the elastic amplitudes.
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FrG. 2. Unphysical processes giving rise to cuts in the off-meson-

mass-shell amplitude. These cuts cannot be estimated by use of
on-mass-shell experimental data.

FIG. 1.Physical processes giving rise to cuts in the off-mass-shell
amplitude. The cuts are estimated near the external thresholds by
use of on-mass-shell experimental data.

threshold, the 7r-Z unphysical threshold, and the
(crossed) threshold for E-N' scattering, respectively. On
the q' axis we indicate g'= (prc+2p )', corresponding
to the threshold for a process of type (ii) in which either
the initial or 6nal off-mass-shell meson decays into a
physical, Ter state. Along the heavy lines at q'= pz',

we have the direct and crossed cuts of the mass-shell
forward scattering amplitude.

Of necessity we will neglect cuts of type (ii). Our
experience below with cuts of type (i) tends to support
this approximation. We 6nd for type-(i) cuts that the
integral in (3.7) has essentially converged for t within
a neighborhood of p of the P —8; threshold. Because
cuts of type (ii) will be suppressed near their thresholds
by three-body phase space, we expect them to contribute
only at a considerably greater distance.

!
( K K7T7T 1

&THRESHOLD&
!

PHYSICAL KN

SCATTER IN 6

2 I

PHYSICAL KN
SCATTERING

CROSSED

THRESHQLDS

Z KN

(p,~+ MX- MN) pg

DIRECT v

THRESHOLDS

FIG. 3. The extrapolation curve for the (E1V ~ ItiV)r=p amplitude in the (v, q') Dab meson energy, meson (mass)'g plane. On the v
axis, we show the positions of the direct vrZ and KÃ thresholds and the crossed JÃ threshold corresponding to the lowest thresholds
in the classes indicated by Fig. 1. On the q axis, we show the threshold for E~E ~m, corresponding to the lowest threshold in the class
indicated by Fig. 2.
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Returning now to cuts of type (i), we recall the
important property of the curve (2.4) that, because in
the lab frame all 3-momenta are equal to zero along it,
the connected part of ImBR is associated entirely with
s-wave scattering of the off-mass-shell mesons. Our
estimate of Im5R is therefore obtained by approximating
the cuts of the off-mass-shell scattering amplitude (there
are no s-wave poles) by the corresponding s-wave cuts
of the on-mass-shell amplitudes at the same c.m. energy
B~:

1m'(v') =Im5Kt (P(W=M+v')

for the direct-channel cut and

(3.10a)

Threshold, Curve

Perhaps it would be appropriate to pause here to dis-
cuss more fully our reasons for choosing the curve (2.4)
to extrapolate along from the SMP to physical-meson
points. It will be apparent from our derivation of the
Low equation that (2.4) is only one of a family of curves'

q.=qts=O, q;=qr =—q,
& =(M"+ Iqi')"' &r=(Mr'+ Iql')"' (3»)

"=s (~~+a'p) ~ ~~ ~S= &f

which pass through the SMP, along which the ampli-
tude satisfies a Low equation in v for 6xed q, and which,
for elastic scattering, pass through points where both
mesons are on their mass shells. The particular "thresh-
old" curve (2.4) is characterized by q=0. The reason
that we have chosen it is that along it the scattering is
entirely s wave and the s partial-wave amplitude is

ImDR(v') = ImDRi=ox(W =M —v') (3.10b)

on the crossed-channel cut. Here M—= -,'(M~+M~), and
5R& sD and BR~=ex denote the physical (on-mass-shell)
s-wave scattering amplitudes in the direct and crossed
channel, respectively.

The approximation is indicated by the arrows on
Fig. 3, where the cut on the integration curve at the
tails of the arrows is approximated by the s-wave part
of the cut at their heads. The arrows are shown in the
intervals of v over which the integrals in (3.7) converge.

There are two ways in which we justify (3.10): (i)
The approximation is self-consistent in the sense that
we find that the dispersion integral in (3.11) converges
near threshold where the mesons are near their mass
shells; (ii) as independent evidence of the unimportance
of far-away singularities in BR, we find that, in those
cases (m-N, E N) where s-w-ave scattering is small near
threshold, the experimental scattering lengths are close
to their "soft-meson approximation values, " i.e., the
values which are obtained by neglecting the integral in
(3.7) entirely at threshold. It will be seen from Fig. 3
that the extrapolation is much less serious for kaons
than that involved in the customary treatment of the
corresponding Adler-Weisberger sum rule where a cut
at q =0 is approximated by that at q'= pz'.

less sensitive to extrapolation off the mass shell than
other partial waves. This may be seen quite simply by
noting that centrifugal barrier considerations require,
for example, that when the c.m. kinetic energy in the
initial state,

is small,
Im5Rt PV) ~ (T,)"'.

(3.12a)

(3.12b)

This means that, for kinematic reasons alone, all ex-
cept the 1=0 partial wave are extremely sensitive to
variations of g in the energy region with which we are
concerned. One might attempt to correct the various
on-mass-shell partial-wave amplitudes for these o6-
mass-shell centrifugal barrier effects, " but we 6nd it
far simpler and more elegant to stay with our curve
(2.4).

between states of zero three-momentum. LFor conveni-
ence we will pretend here that n, P, i, and f are members
of the usual self-conjugate basis of SU(3). Linear com-
binations appropriate to the physical particles are taken
at the end. j Upon substitution of (4.1) into (1.2), we
obtain

V„.y, I V,(0)1a,&/(F',F.) .

For 8; and B~ both at rest, (4.2) is proportional to the
matrix element of the charge between 8; and B~. Ac-
cording to the Ademello-Gatto theorem, "SU(3) sym-
metry breaking sects these charge matrix elements
only in second order. Ke therefore take

&&r I
I'.'(0)

I &'&=if'.'
e TefQ1S

Consider next the equal-time commutators which
appear in the o. terms, (1.3). As pointed out by Gell-
Mann, Oakes, and Renner, ' these commutators may
be reexpressed in terms of the SU(3)XSU(3) sym-
metry-breaking Hamiltonian density K» by making

' See, e.g. , S. L. Adler, Phys. Rev. Letters 14, 1051 (1965);
Phys. Rev. 140, B736 (1965); and C. H. Chan and F. T. Meiere,
ibid. 175, 2222 (1968), where the effects of such corrections are
estimated for Adler-Keisberger sum rules."M. Gell-Mann, Phys. Rev. 125, 1067 (1962)."M. Ademello and R. Gatto, Phys. Rev. Letters 13,264 (1965).

'4 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 {1968);see also J. Ellis, Nucl. Phys. $13, 153 {1969).

IV. HYPOTHESES ABOUT MATRIX ELEMENTS
OF COMMUTATORS

Charge Commutators

One of the hypotheses which we will test here is that
of Gell-Mann, "who has proposed that the equal-time
commutation relations of the axial-vector charges
satisfy exact SU(3) &&SU(3) equal-time commutation
relations. This hypothesis yields
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the substitution

A '(0) —+ —i d'@LA '(x),Ksa(0)]

il:Q--'(0),~'~(0)) (4 6)

In order to proceed further, it is necessary to specify
the transformation properties of XsB under SU(3)
XSU(3) transformations. Gell-Mann et al."point out
that the octet-type symmetry breaking of SU(3) and
other available evidence suggests the assignment of
Ksn to either the representation (8,1)+(1,8) or (3*,3)
+(3,3*). (At the conclusion of their discussion, these
authors give strong arguments in favor of the latter
choice. Here, however, we will consider the consequences
of both hypotheses. )

Consider first the consequences if we were to choose
3Cs~ to be the V=O, I=O member of the representation
(8,1)+(1,8) (as in the Sugawara" model):

XsB g8 ~ (4 7)

Our assumption concerning the representation of
SU(3)XSU(3) to which gs belongs implies that it is
part of an octet of scalar densities g~ which can be
rotated into one another by a double commutator with
two axial-vector charges

LQ-' LQp' g ])= fp.sf-vsg—s (4 8)

When Eqs. (4.6)—(4.8) are inserted in (1.3), we obtain

(fpsyf ps+ f svfpvs)(B f I gs I
B'&/(2~-~p) (49)

A '(0) =i d'xLKss(x), A '(0)]

We note that

LÃsa(x), A 8(0)]=e ' '*Loess(0),A~ (—x))e'+'*, (4.5)

where the P are the 3-momentum operators. Con-
sequently, for matrix elements such as BR, between
states of zero 3-momentum, we may take

be made up of a linear combination of the two F=O,
I=0 members of the SU(3) XSU(3) representation
(3,3*)+(3',3),

BCsg = —Np —AS (4.13)

I:Q-'(0),~v(0)) = —iD-v»8(0) . (4.16)

LHere D 78 is equal to the usual SU(3) structure con-
stant d 78 for n, p, y=1,2, . . ., 8, equals Qs for one
index zero and the other two equal, and is zero other-
wise. ")Inserting (4.16) in (4.6) gives us

A.s —+ —L(g-', )+cd...]v, nx8. (4.17)

(We have dropped the additional term which occurs
when P' or I'p is an g meson because we will not be
concerned with such reactions here. ) The v's may be
converted back into I's by a second commutation rela-
tion with the axial-vector charges,

as in the free-quark model, " or cr model. "Here np is
the singlet member and N8 the octet member of the
SU(3) nonet of scalar densities, and c is initially treated
as an unknown constant. These authors argue, following
Nambu, '~ that the eight axial-vector charges are con-
served in the limit that the pseudoscalar meson masses
go to zero and that conversely the entire masses of the
pseudoscalar meson are due to SU(3)XSU(3) syrn-
metry breaking,

p.'= V'.
I Xsn(0) I

~.& (4.14)

(when I' is at rest). Equation (4.14) allows a deter-
rnination of c in terms of a ratio of (mass)' splittings
over average (mass)'.

c= —v2Lprr' —p.s)/Qrr'+-', p.']= —1.25 (4.15)

where the expression has been simplified using the Gell-
Mann —Okubo mass formula.

The assumption that the I's transform as members
of the SU(3) XSU(3) scalar nonet (3,3*)+(3*,3) im-

plies that they may be transformed into a pseudoscalar
nonet by using the axial-vector charges as generators:

To lowest order in the symmetry breaking the matrix
elements of g8 are fixed by the measured mass splittin
of the baryon octet,

LQp'(0), ~-(0))= iDp-VIV(0) (4.18)

~~'= (B' I ~sB(0) I
B '& = (B '

I gs I B'&

g
Equations (4.17) and (4.18) inserted in (1.3) then give

(4.10)

for B; at rest. (d,M; is the difference between the mass
of B;and the average mass of the baryon octet. ) SU(3)
symmetry then fixes (Bf I gs I B;& as

(B, l g, l
B,&=a(if„,)+Dd.„, (4.11)

m. ,= L(&8)+ ', c(ds..+-dspp)](Bg
I
Dp.,g, l

B,),
n, P/8. (4.19)

The analog of (4.10) in the present case is

ncV;= —(B;Icusl B,&, (4.20)
where

Ii = (3I~ M„-.)/v3, D= y'/3—(3fg —Mg) . (4.12)
which Lusing SU(3)) determines the matrix elements of
the u~ for y= 1, 2, . . ., 8 as

Thus we see that hypothesis (4.8) results in parameter-
independent predictions of the o. terms.

We next consider the consequences of taking BCs~ to

' H. Sugawara, Phys. Rev. Letters 21, 772 (1968).

(Br I ~. I
B''& = ~ 'L~(sf~.')+Dds. '], (4»)

with F and D given again by (4.12).

"M. Levy, Nuovo Cimento 52A, 23 (I967).
'7 Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
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TABLE I. Real parts of the threshold amplitudes in fermis. Column 2 gives theoretical values calculated by assuming that Xss trans-
forms as a member of a (3,3*)+(3*,3) representation of SU(3) XSU(3), that its contribution to the average baryon octet mass is 0.215
BeV, and that asymptotic terms may be neglected; column 3 lists experimental values; column 4 lists contributions to the theoretical
values due to charge-(charge density) commutators; and column 3 lists contributions to the theoretical values due to charge-(charge
density) commutators and the rescattering integrals.

(Reaction) r Theor. value Exp t. value
Soft-meson Soft-meson estimate plus

estimate rescattering integral

Elastic

( N)
(-N)
{EN)p

(ZN)
(~r) 1

{~Z)p

(EN) 1

(EN) p

Inelastic (at initial threshold)

(EN Z),
{~Z~ KN) 1

E(N ~)
{EN~ ~Z)p
(~Z ~ &N)p

0.20&0.01
—0.14~0.01
—0.01a0.01
—0.28&0.01

0.19&0.10
0.86~0.14

—0.13~0.04
—2.45~0.18

—0.49~0.07
—0.51~0.13

0.44~0.11

1.21~0.11
—1.08~0.23

0.18+0.02
—0.1I&0.01

0.00&0.04
—0.29&0.02

0.39&0.07
1.09~0.23

—0.12&0.02
—1.65+0.04

—0.39&0.01
—0.50&0.07

0.28&0.01
0.90&0.01

—1.50a0.38

0.22
—0.11

0.00
—0.35

0.22
0.44
0.17
0.52

0.05
0.01
0.07
0.07
0.01

0.24~0.01
—0.10&0.01

0.02&0.01
—0.15&0.01

0.22~0.10
0.89&0.14

—0.05~0.04
—2.28+0.18

—0.22 &0.07
—0.31&0.13

0.65&0.11
1.55+0.11

—0.84&0.23

Thus there is only one free parameter left in 5R„—
that which occurs in the matrix elements of uo ~

(4.22)

We have defined the parameter p, o so that it represents
the contribution to the average mass of the baryon octet
due to the symmetry-breaking term in the Hamiltonian.
One of the more intriguing results of our numerical
analysis in Sec. V is the value which we obtain for po.

V. RESULTS AND CONCLUSIONS

In column (2) of Table I we present theoretical esti-
mates of the real parts of 13 threshold amplitudes. The
contributions to these estimates will be discussed in
detail below. 3rieAy, both charge-commutator and o--

term contributions to the subtraction constants in the
Low equation are included. The o- terms are obtained
on the assumption that the symmetry-breaking term
in the Hamiltonian density, 3C», is a Lorentz scalar and
belongs to the SU(3)+SU(3) representation'4 (3,3*)
+ (3*,3) with the one adjustable parameter ps set equal
to 0.215 BeV. The rescattering integral is estimated as
discussed in Sec. III and the asymptotic terms are as-
sumed to be absent or negligible.

In column (3) of Table I we present the experimental
values (T,„'")of the real parts of the same 13 threshold
amplitudes. "It will be seen that there is a rough cor-
respondence between the two sets of numbers.

"For the mN scattering lengths, see V. K. Samaranayake and
W. S. Woolcock, Phys. Rev. Letters 15, 936 (1965). It should be
remembered, however, that there is considerable disagreement
among diRerent groups, especially as to the I=

& scattering length.
For the (EN)1 scattering length, see S. Goldhaber, W. Chinowsky,
G. Goldhaber, T. O'Halloran, T. F. Stubbs, G. M. Pjerrou, D. H.
Stork, and H. K. Ticho, Phys. Rev. Letters 9, 135 (1962).For the
(E'N)p scattering length, see J. K. Kim (unpublished) and for the

Our purpose in this section will be to see what we can
learn from this correspondence. We will also present our
reasons for concluding that BC» is not primarily in the
representation (1,8)+(8,1) of SU(3) &&SU(3), and that
the contributions of the asymptotic terms are small.
We discuss erst the experimental numbers and then
add up one by one the contributions to the theoretical
number.

Experimental Threshold Amplitudes

The threshold amplitudes have been normalized ac-
cording to the prescription

T= ((M iVr)"'/$4~(M+p ))}OR~

(For elastic scattering, T is just the scattering length. )
The uninitiated reader may be surprised when he

finds in this list "experimental values" for the (m-Z)

scattering lengths and for the amplitudes ~Z —+ KÃ at
~Z threshoM. These threshold amplitudes are, of course,
not directly accessible to experiment. Rather, they have
been derived from a coupled-channel effective-range
parametrization of the experimental s-wave amplitudes
for the reactions

(~Z) and (EN) scattering lengths and the inelastic amplitudes, see
J. K. Kim, Phys. Rev. I etters 19, 1074 (1967), and Refs. 1 and 2.
It is possible to obtain from Kim s coupled-channel expansion also
the values of the m.Z —+ ~A. amplitude at ~Z threshold and a number
of threshold amplitudes at ~A. threshold. The first amplitude is
not well determined because of the comparatively poor data on
KN —+ ~A. upon which it depends. The ~A threshold amplitudes
are not well determined for the additional reason that to get to
this threshold requires an extrapolation of 175 MeV below K-N
threshold versus 100 MeV for the ~-Z threshold.
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from KiV threshold to 150 MeV (c.m. kinetic energy)
above threshold. The coupled-channel effective-range
expansion automatically incorporates the constraints
imposed on these amplitudes by analyticity and
coupled-channel unitarity.

Unlike the elastic amplitudes, whose imaginary parts
are required to be positive definite by unitarity, the
signs of the inelastic amplitudes cannot be determined
experimentally without some theoretical input. The
theoretical input we have used is the assumption that
the Z(1385) is predominantly a inember of an SU(3)
decuplet. "This assumption fixes the signs of the re-
sonant inelastic p-wave amplitudes for cVK —+ x.Z and
KS ~mA. The observed interference of these known
amplitudes with the s-wave amplitudes then determines
the signs of the latter.

The m.Z threshold lies 100 MeV below KE threshold,
but Kim has found that the parameters in the coupled-
channel effective-range expansion are fixed well enough
by experiment so that estimates of the amplitudes there
for (s Z -+ m'Z) p i and (~Z ~E1V)p i may be obtained
by extrapolation from the physical region. "

Theoretical Threshold Amplitudes—
Soft-Meson Estimate

In column (4) of Table I we present the "soft-meson
estimates" (T@) of the same threshold amplitudes. This
estimate is the traditional one, 4 obtained by neglecting
the time-ordered product and the 0--term equal-time
commutator terms in the matrix element Li.e. , by keep-
ing only the last equal-time commutator in (2.3), which
is then evaluated by use of the SU(3)XSU(3) charge
algebra). "It will be seen that all five of the soft-meson
estimates for the inelastic amplitudes differ from the
experimental values in order of magnitude, and two out
of the eight soft-meson estimates for the elastic ampli-
tudes differ in sign from experimental values. In brief
the agreement is, to say the least, far from impressive. "

"Our SU(3) phase conventions are those of J. J. deSwart,
Rev. Mod. Phys. 35, 916 (1963).

20The quoted errors do not include systematic uncertainties
due to the truncation of the effective-range expansion. We would
expect the numbers for the I=0 amplitudes to be the more reliable
because only two channels are involved and interference with the
d wave A(1520) helps pin down the s-wave amplitudes 100 MeV
above threshold.

"Equivalently, the soft-meson approximation would be ob-
tained from Eq. (3.7) by approximating all terms on the right-
hand side by zero with the exception of the subtraction constants
BR and BRp, which are evaluated by keeping the contribution
of SR' and dropping that of BR,.

22 These failures in the soft-meson approximation were antici-
pated by the authors who originally applied them (Ref. 4). It was
understood that, only if direct- and crossed-channel s-wave scatter-
ing were small, would the contribution of the time-ordered product
term in (2.3) be small at threshold. Furthermore, it was obvious
that the argument based on the Adler consistency condition, from
which it was concluded that the 0. term was small, only held when
the external meson (masses)' were small compared to the (mass)'
of any possible s-wave P-P sects—a condition only satisfied by
P and Pp being both pions.

Rescattering Corrections

In column 2 of Table II we show our "rescattering
corrections" (ReT,), i.e. , the estimates which we have
described in Sec. III of contributions of nearby cuts to
the time-ordered product terin in (2.3) Lthis has become
the integral term in (3.7)j. In columns 3 and 4 are the
separate contributions of the direct and crossed s-wave
scattering to the total rescattering correction. In
column 5 are the "experimental" values of the rescatter-
ing corrections, i.e., the values required to bring theory
into agreement with experiment. If our calculations of
DR@ and Bii:„and neglect of the asymptotic terms (and
extrapolation corrections in q for the inelastic ampli-
tudes) were all exactly correct, this column would
represent an experimental measurement of the contribu-
tion of the integral in (3.7) to the threshold amplitude.

E/asti c Scat te~i ng

The rescattering corrections have been calculated
using s-wave amplitudes obtained either from the
literature or from Kim's coupled-channel effective-
range analysis. "

In general the elastic rescattering corrections are not
sensitive to the s-wave imaginary parts where they are
not well established. Thus, for example, although we
are forced to neglect the I= 2 contribution to the crossed
cut in ~Z elastic scattering, owing to lack of experimen-
tal information, the small values of the other crossed-
cut contributions to the xZ rescattering corrections and
small I= 2 s-wave phase shift expected on various theo-
retical (including soft-meson) grounds convince us that
this omission is not serious. Similarly, one 6nds that
uncertainties in the s-wave amplitudes in the xZ and
KE channels more than 150 MeV above KE threshold
are not important. '4 The greatest sensitivity to syste-
matic experimental error might be expected for the
(n.Z)i, direct-channel rescattering correction. A prin-
cipal-value integral is involved in this case whose pole
is located at m.Z threshold. Because of the resulting
cancellation between the contributions to this integral,
it might be expected to be sensitive to Im5R in the
interval from mA. to ~Z threshold, where neglected higher
order terms in the effective-range expansion could be
important. Evidence for the sensitivity of this direct-
channel rescattering integral can be seen in the change

"The s-wave amplitudes were taken in each case from the same
reference as the threshold amplitudes (see Ref. 18). The only ex-
ception was the 7t.-N case, where the rescattering correction is small
and the parametrization of L. D. Roper, R. M. Wright, and B.T.
Feld LPhys. Rev. 138, 8190 (1965)g was most readily available.

'4 Because Kirn's analysis stopped 150 MeV above EE thresh-
old, the contributions to the rescattering integral from above this
interval were estimated by keeping the phase shifts fixed at the
values which they attain at its upper end. Unitarity bounds on the
partial-wave amplitudes force very rapid convergence on the re-
scattering integrals with the result that these high-energy con-
tributions to the rescattering corrections are small $0.04 F and
less except in the (E1V)p case, where the correction is 0.09 Fj.The
uncertainties involved in this approach will therefore be unim-
portant.
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TABLE II. Rescattering integrals in fermis. In column 5 are the values which would bring theory into agreement with experiment.

(Reaction) I Total Direct channel Crossed channel "Experimental" values

Elastic

(~X)1(2
( x)„,
(J:x),
(zx),
(~z) &

(~z),
(Ex)
(EX),

0.02 ~0.01
0.01&0.01
0.02&0.01
0.20&0.01
0.00~0.10
0.45&0.14

—0.23a0.04
—2.80&0.18

0.014&0.001
0.008+0.001
0.01 &0.01
0.11 +0.01

—0.01 ~0.10
0.49 ~0.13

—0.23 ~0.04
—2.81 +0.18

0.002 &0.001
0.002&0.001
0.01 &0.02
0.09 ~0.01
0.01 +0.01
0.01 &0.01
0.00 &0.01
0.01 ~0.01

0.00&0.01
0.04&0.01
0.03&0.04
0.20a0.01
0.20&0.07
0.68&0.23

—0.21~0.02
—2.00~0.04

Inelastic (at initial threshold)

(EiV —+ xx)1 —0.27+0.07
( z Ex), —0.32~0.13
E(2v ~ ~x), 0.58a0.11
(Ex z), 1.48&0.11
( z Ex)o —0.85W0, 23

Crossed-
channel

contribution
not

estimated

—0.17&0.01
—0.31&0.07

0.42&0.01
1.17a0.01

—1.31&0.38

from a value of 0.19&0.11 F in a previous treatment, '
where s was the integration variable, to the present
value of 0.00&0.10 F with s as the integration variable.

Inelastic Scattering

In the case of the inelastic scattering amplitudes, we
have not calculated the crossed-channel contributions
to the rescattering correction. This is because no infor-
mation is available on the nearby crossed cuts, i.e., the
unphysical cuts for ~X —+EX and ~E —+Eh.. We can
only hope, in view of the relatively small value of the
crossed-cut contributions to the rescattering correction
in other cases, that the omission will not be serious in
this ca,se. One consideration which tends to reinforce
this hope is related to the fact that, in all these cases,
one of the SMP lies on the nearby part of the crossed
cut. Since the time-ordered product term in (2.3) must
have a zero at this point, ImDR must also have a zero
there which will tend to decrease the integrated effect
of the crossed cut.

In the case of the I=1 (~Z~K1V) amplitude at
x-Z threshold, the question arises whether there is the
same sensitivity of the direct-channel rescattering in-
tegral to systematic errors as has been described above
in the elastic (7') ~ case. We believe that the situation
may be better here. This is because this amplitude, in
contrast to the other, is directly observed above K-S
threshold; i.e., it does not depend solely on the require-
ments imposed by analyticity and coupled-channel uni-
tarity at the K-A threshold.

It will be interesting to note in this connection that
the most troublesome discrepancy found in the com-
parison of theory with experiment below occurs in the
(7') g amplitude.

In column 5 of Table I,we have added the rescatter-
ing corrections of column 2 of Table II to the soft-
meson estimates in column 4. It will be seen that the
over-all agreement of this set of numbers with the

experimental numbers is not remarkable, but it is
definitely better than without the rescattering correc-
tion. In particular, all the amplitudes have the correct
sign and the correct order of magnitude. One may
check also that for those elastic threshold amplitudes
where the soft-meson estimates are significant, the sum
of the soft-meson estimate and the rescattering correc-
tion is definitely in better general agreement with ex-
periment than the rescattering correction alone. From
these observations, we conclude that keeping the con-
tribution of 5R@ to the subtraction constants and using
our estimate of the rescattering correction gives a better
approximation than is obtained by neglecting either
contribution.

e Terms

We still have taken into account neither the contribu-
tion of OR, in Eq. (1.3) to the subtraction constants OR

and OR~ in (3.8) nor the contributions to the threshold
amplitudes of the asymptotic terms which give rise to
the constants c+ and c . We will compare the predictions
of our hypothesis for these contributions with

6 ReT= ReTe pg
—Tq —ReT~ (5.2)

the discrepancy between theory and experiment when
they are neglected.

This quantity is shown in column 3 of Table III.
(The reader may notice that, in some cases, the errors
on 6 ReT are smaller than those on either ReT, p& ol
ReT,. This is because both ReT, p~ and ReT, are calcu-
lated using the same experimental parameters, i.e., the
errors are correlated. )

It should be emphasized that, in addition to the
experimental errors in 6 ReT, there will be systematic
errors associated (i) with any failure of the approxima-
tions used in the evaluation of T@ and ReT„and (ii)
with any breakdown of the SU(3) &&SU(3) charge
algebra.
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TABLE III. 0 term and asymptotic term contributions to threshold amplitudes. Column 2 lists theoretical o.-term contributions cal-
culated by assuming that 3'.sp transforms as a member of a (3,3*)+(3*,3) representation of SU(3) XSU(3) and that its contribution
to the average baryon mass (p0) is 0.215 SeV; column 3 gives the discrepancy between theory and experiment if 0. and asymptotic terms
are neglected; column 4 lists theoretical p.-term contributions calculated by assuming that Xsa transforms as a member of an (8,1)+(1,8)
representation of SU(3) &(SU(3); column 5 lists asymptotic terms calculated from the free-quark model for pp= 0.215 BeV. (All numbers
in units of fermis. )

(Reaction) I

Elastic

Total

T p(pp =0.215)
(Contribution
proportional

to po)

Trf8 TA

Inelastic (at initial

(EE r,),
{z EA"),
E(E ~)
(Ex z),
( ' Ax),

—0.04
—0.04
—0.03
—0.13
—0.03
—0.03
—0.08
—0.17

threshold)
—0.27
—0.20
—0.21
—0.34
—0.24

(—o.o3)
(—o.o3)
(—o.14)
(—o.14)
(—0.03)
(—o.o3)
(—o.14)
(—o.14)

—0.06+0.02
—0.01~0.01
—0.02+0.02
—0.14a0.02

0.17&0.09
0.20&0.09

—0.07~0.04
0.63+0.19

—0.17~0.07
—0.19+0.06
—0.37+0.10
—0.65&0.10
—0.66+0.15

0.0
0.0
0.05
0.13
0.0
0.0
0.09
0.18

—0.24
—0.17
—0.18
—0.29
—0.20

0.00003
—0.00003
—0.00001
—0.0009

0.00005
0.00008
0.0003
0.0008

—0.0003
—0.0001
—0.0004
—0.0003
—0.0001

L.In columns 2 and 4 of Table III, we give theoretical
values of 6 ReT LT„(Iip) and T„, respectivelyg, both
obtained by assuming that the asymptotic terms pro-
portional to c+ and c in (3.8) are zero, but with differ-
ent assumptions concerning the 0-term contributions
to 3f and Hap.

Symmetry-Breaking Hamiltonian &s

(3,3*)+(3*,3) iYePresentation

In column 2, we have results obtained by assuming
that the SU(3) &(SU(3) symmetry-breaking term in the
Hamiltonian density is a member of a (3,3*)+(3*,3)
representation of SU(3)&&SU(3). In parentheses after
each term we list the contribution to each of the elastic
o terms of the SU(3) singlet density Np for the choice
of the parameter Iip = 0.215 BeV. Because up is an SU(3)
scalar, its matrix elements do not contribute to the
inelastic 0- terms.

It should be noted that the values of T„are small for
reactions in which I' and I'p are both pions. They
would be exactly zero in these cases in the parameter c
in (4.13) and (4.15) were equal to —v2. In this limit,
according to the formulation of Gell-Mann et a1.,

'4 the
pion is massless and the axial-vector charges with the
SU(3) quantum numbers of the pion are conserved. "

The value of Iip used in the T.,(pp) has been fixed by
using the values of 0, ReT which we expected to be (i)
least subject to systematic error and (ii) most sensitive
to po.

"This result is consistent with earlier arguments {see, e.g.,
S. Weinberg, Ref. 4) in which the Adler consistency condition was
used to justify the neglect of 0. terms in reactions in which I'„

The first criterion led us to drop the (s Z) p, i scattering
lengths and the (E1V)p scattering lengths for this pur-
pose. The sensitivity to systematic error of Kim's
parametrization of the (i') i direct-channel rescattering
correction has already been discussed above. We expect,
furthermore, that in the approximation (3.10) of the off-
mass-shell by the on-mass-shell amplitude in the re-
scattering correction the systematic error will be
roughly proportional to the correction itself. This is why
we expect the (EE)p and (m-Z) p, which have the largest
rescattering corrections, to be most subject to syste-
matic error.

Our second criterion, that of sensitivity to po, makes
the m--E scattering lengths less useful by a factor of 4
than the (E-cV)p, t and (E 1V)t scattering l-engths in the
determination of Iip. (Another reason why these last
three scattering lengths seem particularly appropriate
for the determination of p, o is that their differences are
given correctly by T„.) We have therefore determined

pp by adjusting the average value of these three T (pp)
to experiment. The result is

pp=0. 215 BeV, (5.3)

with large systematic uncertainties.
Recalling that po is by assumption the change of the

average mass of the baryon octet due to SU(3) &&SU(3)

and Pp were both pions. [This Adler consistency condition requires
that the scattering amplitude vanish when one of the meson 4-
momenta is zero and the other meson is on its mass shell. I'or the
elastic scattering of pions, the small mass of the pion again plays
a role in that the Adler consistency point is only a distance of
Ig,

2 in q
' or qp' from the soft-meson point. Hence (the argument

goes) the amplitude (OR,) should be small at the soft-meson
point. g
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symmetry breaking, we obtain by subtraction from the
average mass of the physical octet (1.151 BeV) an esti-
mate of the mass of the baryon octet "before the sym-
metry broke. " This mass (0.95 BeV) lies quite close
to the mass of the physical nucleon, indicating that the
nucleon mass is much less affected than the masses of
the strong baryons by SU(3) )&SU(3) symmetry break-
ing effects. Gell-Mann" has pointed out an intriguing
connection between this result and the quark model for
the nucleon: The masses of the nonstrange quark are
unaffected by SU(3) &&SU (3) symmetry breaking in the
limit when c= —W2. This limit Lin which the pion (mass)
becomes negligible in comparison to those of the other
mesons) appears to be almost realized in nature
(e= —1.25). Consequently, if the nucleon transforms
under SU(3)XSU(3) as if it were composed of non-

strange quarks, its mass would be little affected by
symmetry breaking.

The quality of the agreement of T„(//0= 0.125) with
6 ReT is about what we would expect if in fact the
hypothesis being tested for the cr terms were correct,
and all systematic error originated in the oR-mass-shell

approximation (3.10) used in the rescattering correc-
tions. Thus the agreement is quite good for the first
three inelastic amplitudes, where the 0. terms are pre-
dicted to be rather large and for which the rescattering
corrections are rather small. The quality of the agree-
ment is poor for the last two inelastic amplitudes but
there also the rescattering corrections are quite large.
Among the elastic amplitudes, we find that the quality
is good for (KN) t and (KN)o, t elastic amplitudes, where
the rescattering corrections are small. For the (~N) I/2, 3/2

scattering lengths, we can only say that both theoretical
and experimental numbers are small. Finally, for these
numbers where we expect large systematic errors,
(vrZ)p y and (KN) p, we indeed have poor agreement.

Symmetry-Breaking Hamiltonian in
(8,1)+(1,8) Representation

In column 4 of Table III we give the values of the
0--term contributions to the threshold amplitude ob-
tained by assuming that the SU(3) &&SU(3) symmetry-
breaking term in the Hamiltonian density is a member
of a (8,1)+(1,8) representation of SU(3)&(SU(3). (Re-
call that in this case all parameters are fixed by the
baryon-octet mass splittings. )

It is interesting that, owing to a conspiracy of SU(3)
Clebsch-Gordan coeKcients, the predictions of the two
theories differ by only about 15% for the inelastic
reactions considered here. This difference is well below
the level of our experimental error. For the reactions in
which I' and I'p are both pions, the discrepancy is also
too small to detect —one theory says T is small for
these amplitudes and the other says that it is zero.
It is only for the elastic amplitudes involving E's and
K's that the two sets of predictions disagree substan-

"M. Gell-Mann (private communication).

tially. For those which we expect to be least subject to
systematic error, i.e., those from the (K-N)o, t and

(K-N)t amplitudes, the first hypothesis for the sym-

metry-breaking Hamiltonian seems to be de6nitely
preferred.

Contribution of Asymptotic Terms

It was pointed out in Sec. III that, if the equal-time
comrnutators of the @ with each other and with each
other's time derivations are operators, there may be
terms in the sum rule for the threshold amplitude in

addition to these already considered. It was also noted
that, in any field theory containing elementary pseudo-
scalar fields satisfying the PCAC condition, the com-

mutators are c numbers, hence the additional asymp-
totic terms are zero.

We have seen above that if the symmetry-breaking
Hamiltonian transforms like a member of the (3,3*)
+(3*,3) representation, our results are consistent with

the asymptotic terms being small or absent. (As an ex-

ample of a situation in which they might be small, we

present in the Appendix the predictions of the free-

quark model. ) Nevertheless the issue of the asymptotic
terms remains one of the major uncertainties in our

approach. In this connection it is useful to recall that
there is a complementary approach to ours —the Adler-

Weisberger sum rule approach to the charge commuta-
tors and 0- terms. This approach is applicable in the
cases (mN, K-N, KN) where total cross sections have

been measured.
One advantage of the Adler-Weisberger approach is

that the asymptotic behavior of the sum rule is well

understood. The application to the antisymmetric
amplitudes, proportional to the charge commutators at
the SMP, is well known. It is only recently, however,
that this technique has been applied to the symmetric
amplitudes proportional to the a terms at the SMP. '~

The first results of this approach are inconclusive, but a
more careful treatment of oR-mass-shell corrections,
such as those discussed at the end of Sec. III, may im-

prove matters.

Conclusions

We have presented evidence here that the extrapola-
tion procedure developed by Fubini and Furlan and

by ourselves to exploit the soft-meson theorems is a
useful one. We have used it to test the transformation
properties of the SU(3) &&SU(3) symmetry-breaking
term in the stress-energy momentum tensor and found
the representation (3,3*)+(3*,3) to be favored. Assum-

ing that this was indeed the case we have estimated
the mass of the baryon octet before symmetry breaking
to be approximately the mass of the nucleon.

27 R. W. GrBBth, thesis, California Institute of Technology
(unpublished); see also C. H. Chan and F. T. Meiere, Phys. Rev.
Letters 22, 737 (1969}.
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In order to obtain the commutator appearing on the
right-hand sides of (A4b), we must ijrst calculate Up

in the free-quark model. Using the identification

APPENDIX: CONTRIBUTIONS OF ASYMPTOTIC
TERMS IN FREE-QUARK MODEL we obtain

u =kg(-,'x )g, (A7)

=—u P(g-;)+.d„,]D, , „(O). (A9)

If the results (A4), (A6), and (A9) are combined and we
note that the same operators occur in (A6) and (A9)

(A1a) as occurred previously in the evaluation of OR@ in (4.2)
and OR„ in (4.19), we obtain for the matrix elements

(A1):
c+ =-,'i(73f

I
d's(Ly. (z),yp(0)]

+Bp(z) &-(0)]) t &') (A1b)

As an examPle of a theory in which the asymPtotic z (z) L~ (P) ~ (z)]— P2((Q2)+cd )g 0(z) (Ag)
terms (proportional to c+, c ) in the sum rule (3.7) do
not vanish, we consider here the consequences of de6n- where we have used the quarg model form (4.13) for
ing the g by using the PCAC identification in the free-
quark model. "Since this model contains no interactions
it is, of course, incomplete. Nevertheless, it may suggest
the order o magnitude which nonvanishing asymptotic d3 f. ( ) (p)] $2$(+2)y d ]Lg 5(p) (p)]
terms might have in a more complete theory.

For convenience we write down here once again the
commutators appearing in (3.6) whose matrix elements
determine the constants c+ and c:

From the PCAC identifjcation (2.2), we have

4 =~A~ "/(F & ') ~~o" '/(~. p') (A2)

where the second equality holds on the curve (2.4a)
because the baryon 3-momenta are zero. Combining

(A2) with (4.17), we obtain

fu&l)+ d-]/(J'- -')& =—C- - &g (A3)

The integrals over the commutators appearing in (A1)
may therefore be written as

d's[Pp(z), Q (0)] CpC d'sLvp(z), v (0)], (A4a)

c'= &'H&l)+cd --3L(&:)+cd pp]OlI. ,/-
(p 'yp') . (A10b)

It will therefore be seen that the only new unknown

parameter which appears in this theory of the asymp-
totic terms is the normalization constant k. Although
this normalization constant must in principle be deter-
mined by experiment, a rough estimate of its order of

magnitude may be obtained by assuming that the
baryons are nonrelativistic three quark states. In this
case the value of k may be obtained from the matrix
element (—po) of No Lgiven in (A7)] as

d'sL&p(z), p (0)]—+ CpC d'sLbp(z), v (0)]. (A4b)
(2/27) "'po (A11)

According to the free-quark model,

~-(s)= —~&V(z)v5(kl -)V(z), (A3)

where k is a normalization constant. Using this identifi-
cation, we obtain

d'slav p(z), v.(0)]=k'(ifp.,) U, (0),

where V~ is a quark vector charge density.

The contributions (T~) of the asymptotic terms to the
threshold amplitudes for this value of k in the free-

quark model are shown in column 5 of Table III. The
amplitudes T& are related by the normalization con-
vention (5.1) to

ORg =—p (p —AM)gc++c (p —-', d,cV)]. (A12)

It will be seen that these contributions to the threshold

amplitudes are negligible in comparison to experi-
mental error.


