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A continuous dispersion sum rule is used to estimate the VAK coupling constant. Together with the recent
zero-range K-matrix parametrization of low-energy KN scattering, the sum rule yields gps?~~6.9 and gives
excellent results for axip,—3axin (ex1p=ReCkyp/IMCk,y,) at high energy. Until the real part of the scat-
tering amplitude is known more accurately in the intermediate region, the present calculation does not
absolutely favor or disfavor the multiple-channel effective-range parametrization.

HE continuous dispersion sum rule (CDSR)
first given by Liu and Okubo! is a powerful
generalization of ordinary dispersion relations. In
particular, the real part in the sum rule appears well
above the physical region.? Without this restriction,
both the power and simplicity of the CDSR are lost.
For example,® if we merely consider C©(v)/ (32 —pu?)8
without the factor "8, the resulting sum rule will not
only look different, but will be extremely difficult to
verify, owing to a vast unphysical region involved for
the ReC ™) (»).
The real part of the scattering amplitude is auto-
matically given when the amplitude itself is known.

We have, for example, the parametrization of the Regge
pole model at high energy, the partial-wave analysis
in the low- and intermediate-energy regions, and the
effective-range theory near the threshold (for elastic
scattering). The CDSR is useful under any one of
these circumstances.

In this note we make use of the experimental informa-
tion on KN scattering* to perform an additional
calculation of the NVAK coupling constant, a value
which challenges conservation or violation of SU(3)

symmetry.® Our calculation is based on the following
CDSR®:
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where C® (») =Cgyp(¥)—0.5 Cgyn(v), and (¥V=A in
this case)

X(Y)=[(my—my)*—mx*]/4my?,
vy=(my*—mny*—mg?)/2my,

Vyr= [(my-{—m,r)? —mNz—mKﬂ/ZmN .

(m. is the mass of the particle x.) In Eq. (1), », can be
any energy greater than mx. However, we cut off », at
vo=mxg+95 MeV (corresponding to an incident kaon
momentum of ~300 MeV/c), because the amplitude
ReC ™) () has been determined with fair accuracy up
to this energy in Ref. 4. Then all terms on the right-
hand side are experimentally accessible, except the
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2 This was first achieved by W. Gilbert, Phys. Rev. 108, 1078
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3 Notations used same as those of Ref. 1.
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second one, which involves the imaginary part in the
unphysical region only, and where results on the
determination of gpax? have differed.’ Note that
between va, and vz,, C)(v) is purely real, so that the
unphysical cut actually starts from vz,.

4S. Goldberger et al., Phys. Rev. Letters 9, 135 (1962); V. J.
Stenger et al., Phys. Rev. 134, B1111 (1964).

5 The most recent calculations can be found in B. R. Martin
and M. Sakitt, Phys. Rev. 183, 1352 (1969); A. D. Martin,
N. M. Queen, and G. Violini, Phys. Letters 29B, 311 (1969).
For an excellent review on K (K)N forward sum rules, see N. M.
?ueer;, M. Restignoli, and G. Violini, Fortschr. Physik 17, 467

1969).

6 In this expression, » is the laboratory energy of the incident
kaon, mx is its rest mass, Cx4,(»), €.g., is the forward K+ elastic
scattering amplitude with the normalization ImCxgyp(v) = (1/4)
X (*—mg®)V2og,p(v), and B is a continuous parameter varying
within the range 0<B<1. A similar equation with »¢ taken below
mx rather than above it was first given by C. H. Chan and F. T.
Meiere, Phys. Rev. Letters 20, 568 (1968). The reason for our
approach is given in the text. For the derivation of this CDSR
see g%so Y.-C. Liu, Phys. Rev. 178, 2243 (1969); 172, 1564
(1968).
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First, for simplicity, we adopt the same input as
Martin and Sakitt (MS)? to the sum rule Eq. (1).
The numerical result is displayed in Table I. In one of
the limiting cases (8=1), the sum rule reduces to the
ordinary dispersion relation evaluated at v=mxg. In the
other limiting case (8=0), the subtraction point is
located at »y. The over-all analysis gives®

gprz’:6.9(i2.7) , (2)
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By using the extrapolation obtained from the measured
total cross sections,! rather than from the Regge-pole
model? for the asymptotic amplitude ImC& (v), we
obtain values® ax;p—0.5aki+. which decreases from
—0.19 at 8 GeV/c to —0.14 at 18 GeV/c, in good
agreement with the analysis of Barger and Olsson.*
This shows a sense of consistency for the zero-range
K-matrix parametrization in describing low-energy
KN scattering here. If the MER®10 theory is used, the
contribution from the unphysical region [the third
term on the right-hand side of Eq. (3)] would be
larger. However, the coupling-constant term (the
second term) would then be larger and opposite in
sign, resulting in a compensation. As a consequence, the
knowledge of the amplitude ReC™(») at high energy

TasLE I. Numerical result of the continuous dispersion sum
rule (CDSR), Eq. (1). Input data are taken from Ref. 7, except
that we used the unit mx=1. vo=mx+95 MeV~>~1.182. Above
20 GeV, the contribution from the third and the sixth terms is

S.

~—0.

First  Second Third Fourth Fifth Sixth
B F(B) term term term  term term term gpax®
1.0 —0.193 —498 11.80 —8.57 0.23 137 155 7.0
09 —0.190 —493 11.69 —8.51 0.20 1.34 1.57 6.9
0.8 —0.187 —489 1158 —8.44 0.17 132 1.60 6.9
0.7 —0.184 —484 1147 —-8.39 0.12 132 1.64 69
06 —0.181 —4380 1136 —8.32 0.06 132 168 6.9
0.5 —0.178 —4.76 11.26 —8.27 000 131 1.73 6.9
0.4 —-0175 —4.71 1115 —8.21 —0.09 131 181 69
03 —0.173 —4.67 1105 -—-815 —0.22 130 193 6.9
0.2 —0.170 —4.62 1095 —810 —0.46 129 216 6.9
0.1 —0.167 —4.58 1084 —8.04 —1.17 1.28 2.80 6.9
0.0 —0.165 —4.54 10.74 —7.98 —0.29 127 195 6.8

7 B. R. Martin and M. Sakitt (Ref. 5), especially Sec. 4.

8 We are not interested in the errors in a CDSR; therefore, we
have followed the error estimate of MS. Their value is 5.041.9.
That our calculation does not quite agree with theirs arises
presumably from different approaches to the evaluation of the
principal value, and our integration variable being energy rather
than momentum. This Jatter condition permits an easier manipula-
tion of the singularities when 8 — 0 and 1.
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a value significantly smaller than the prediction of
SU(3) symmetry. If we had used the multiple-channel
effective-range (MER) parametrization for low-energy
KN scattering,? the second term would be much larger,
so that gpax? would become correspondingly larger.1
Accepting the value given in Eq. (2) and the data of
MS,” we may set 3=0 and move the subtraction point
vy to calculate ReCgyp(vg) —0.5 ReCxin(ve) at high
energies. The dispersion sum rule Eq. (1) now reads
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does not favor one parametrization over the other in

the present analysis.

We have seen that the sum rule Eq. (1), which is
insensitive to the high-energy data, may allow one
value of g,ax? for each input of low-energy KN scatter-
ing. On the other hand, the sum rule Eq. (3), which
supplies information at high energy, is more or less
insensitive to the low-energy parameters. They are
disconnected. An obvious improvement is to let the
subtraction area [the range in which the ReC™ (») lies ]
cover the intermediate region (0.6-3 GeV), so that the
sum rule may be reasonably sensitive to both the low-
and high-energy data. This should permit us to select
among different existing approaches toward the low-
energy KNV scattering while maintaining good results
at high energies. Unfortunately, a thorough theoretical
analysis in this region is lacking at present.

In conclusion, we have examined a simple CDSR
for kaon-nucleon elastic scattering amplitude which
shows the violation of SU(3) symmetry. The violation
arises from the smallness of the value of g,ax?, which in
turn arises from a zero-range K-matrix parametrization
of low-energy KN scattering. The latter input has
predicted good results on the real parts in the high-
energy region, tending to show a good and consistent
parametrization. However, the same prediction can
also be achieved by the MER parametrization. There-
fore, more data are needed on the real parts in the
intermediate energy region (0.6-3 GeV) in order for
the CDSR [Eq. (1)] to be sensitive to both the low-
and high-energy data, to be able to distinguish various
sets of low-energy KV parameters, and finally to yield
a more reliable value of g,ax®.
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