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The Continuous Dispersion Sum Rule and the NAE: Coupling Constant*
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A continuous dispersion sum rule is used to estimate the NAE coupling constant. Together with the recent
zero-range E-matrix parametrization of low-energy EN scattering, the sum rule yields g„z&' 6.9 and gives
excellent results for ux+v —-,'ax+ (ax+v ——ReCx+v/ImCrc+v) at high energy. Until the real part of the scat-
tering amplitude is known more accurately in the intermediate region, the present calculation does not
absolutely favor or disfavor the multiple-channel effective-range parametrization.

~ 'HE continuous dispersion sum rule (CDSR)
first given by Liu and Okubo' is a powerful

generalization of ordinary dispersion relations. In
particular, the real part in the sum rule appears well
above the physical region. Without this restriction,
both the power and simplicity of the CDSR are lost.
For example, ' if we merely consider Ct &(v)/(v' —tt')t&

without the factor e' &, the resulting sum rule mill not
only look different, but will be extremely difFicult to
verify, owing to a vast unphysical region involved for
the ReC& &(v).

The real part of the scattering amplitude is auto-
matically given when the amplitude itself is known.

We have, for example, the parametrization of the Regge
pole model at high energy, the partial-wave analysis
in the low- and intermediate-energy regions, and the
effective-range theory near the threshold (for elastic
scattering). The CDSR is useful under any one of
these circumstances.

In this note we make use of the experimental informa-
tion on Eg scattering» to perform an additional
calculation of the EAR coupling constant, ' a value
which challenges conservation or violation of SU(3)
symmetry. ' Our calculation is based on the following
CDSR'
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4 S. Goldberger et al. , Phys. Rev. Letters 9, 135 (1962); V. J.
Stenger et al. , Phys. Rev. 134, 31111 (1964).

'The most recent calculations can be found in B. R. Martin
and M. Sakitt, Phys. Rev. 183, 1352 (1969); A. D. Martin,
N. M. Queen, and G. Violini, Phys. Letters 293, 311 (1969).
For an excellent review on E(E)E forward sum rules, see N. M.
Queen, M. Restignoli, and G. Violini, Fortschr. Physik 17, 467
{1969).

6 In this expression, v is the laboratory energy of the incident
kaon, ntx is its rest mass, Cx+v(v), e.g., is the forward E+p elastic
scattering amplitude with the normalization ImC~+~(v) = (1/4m)
X (v' —ntx')'"a&r+v(v), and P is a continuous parameter varying
within the range 0&p&1. A similar equation with v0 taken below
m~ rather than above it was first given by C. H. Chan and F. T.
Meiere, Phys. Rev. Letters 20, 568 {1968).The reason for our
approach is given in the text. For the derivation of this CDSR
see also Y.-C. Liu, Phys. Rev. 178, 2243 (1969); 172, 1564
(1968).
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(m, is the mass of the particle x.) In Eq. (1), vs can be
any energy greater than mz. However, we cut off ~0 at
vs ——mrr+95 MeV (corresponding to an incident kaon
momentum of 300 MeV/c), because the amplitude
Reef+&(v) has been determined with fair accuracy up
to this energy in Ref. 4. Then all terms on the right-
hand side are experimentally accessible, except the

* Work supported in part by the National Research Council
of Canada.

Y.-C. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967).
'This was first achieved by W. Gilbert, Phys. Rev. 108, 1078

(1957), and was emphasized by Okubo.' Notations used same as those of Ref. 1.

j.

where Cf+&(v) =Catv(v) —0.5 Ctr~„(v), and (F=tl. in second one, which involves the imaginary part in the
this case) unphysical region only, and where results on the

determination of g„~~' have differed. ' Note that
between vx and vx, Cf &(v) is purely real, so that the
unphysical cut actually starts from s z .
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First, for simplicity, we adopt the same input as
Martin and Sakitt (MS)r to the sum rule Eq. (1).
The numerical result is displayed in Table I. In one of
the limiting cases (P=1), the sum rule reduces to the
ordinary dispersion relation evaluated at v=m~. In the
other limiting case (P=O), the subtraction point is
located at vo. The over-all analysis gives

gvgrr' 6.9(&2.7),

a value signi6cantly smaller than the predj. ction of
SU(3) symmetry. If we had used the multiple-channe el
effective-range (MER) parametrization for low-energy
KE scattering, ' the second term would be much larger,
so that g g~' would become correspondingly larger. "

Accepting the value given in Eq. (2) and the data of
MS, r we may set P=O and move the subtraction point
vp to calculate ReCir+„(vp) —0.5 ReCrc~„(vp) at high
energies. The dispersion sum rule Eq. (1) now reads
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TABLE I. Numerical result of the continuous dispersion sum
rule (CDSR), Kq. (1). Input data are taken from Ref. 7, except

20 GeV, the contribution from the third and the sixth terms is—0.05.

First Second
P F(P) term term

1.0 —0.193 —4.98 11.80
0.9 —0.190 —4.93 11.69
0.8 —0.187 —4.89 11.58
0.7 —0.184 —4.84 11.47
0.6 —0.181 —4.80 11.36
0.5 —0.178 —4.76 11.26
0.4 —0.175 —4.71 11.15
0.3 —0.173 —4.67 11,05
0.2 —0.170 —4.62 10.95
0.1 —0.167 —4.58 10.84
0.0 —0.165 —4.54 10.74

Third Fourth
term term

—8.57—8.51—8.44—8.39—8.32—8.27—8.21—8.15—8.10—8.04—7.98

0.23
0.20
0.17
0.12
0.06
0.00—0.09—0.22—0.46—1.17—0.29

Fifth Sixth
term term g„g~'

1.37 1.55 7.0
1.34 1.57 6.9
1.32 1.60 6.9
1.32 1.64 6.9
1.32 1.68 6.9
1.31 1.73 6.9
1.31 1.81 6.9
1.30 1.93 6.9
1.29 2.16 6.9
1.28 2.80 6.9
1.27 1.95 6.8

' B.R. Martin and M. Sakitt (Ref. 5), especially Sec. 4.
We are not interested in the errors in a CDSR; therefore, we

h f ll d the error estimate of MS. Their value is 5.0+ . .
"eirs arisesThat our calculation does not quate agree wath theirs

bl from diferent approaches to the evaluation of the
principal value, and our integrataon varaable eing gy
than momentum. This latter condition permits an easier manipula-
tion of the singularities when P ~ 0 and 1.

By using the extrapolation obtained from the measured
t t 1 cross sections" rather than from the Regge-pole
modelr' for the asymptotic amplitude ImC (v), we
0 Mnbtain values'3 e~+ —0.5n~+ which decreases from
—0.19 at 8 GeV/c to —0.14 at 18 GeV/c, in goo
agreement with the analysis of Barger and olsson. "
This shows a sense of consistency for the zero-range
E-matrix parametrization in describing low-energy
KX scattering here. If the MKR' " theory is used, t e
contribution from the unphysical region [the third
term on the right-hand side of Eq. (3)7 would be
larger. However, the coupling-constant term (t e
second term) would then be larger and opposite in
sign, resulting in a compensation. As a consequence, the
knowledge of the amplitude ReC'+i(v) at high energy

does not favor one parametrization over the other in
the present analysis.

We have seen that the sum rule Eq. (1), which is
insensitive to the high-energy data, may allow one
value of g zz' for each input of low-energy KE scatter-
ing. On the other hand, the sum rule Eq. (3), which
supplies information at high energy, is more or less
insensitive to the low-energy parameters. They are
disconnected. An obvious improvement is to let the
subtraction area [the range in which the ReC&+& (v) lies7
cover the intermediate region (0.6-3 GeV), so that the
sum rule may be reasonably sensitive to both the low-
and high-energy data. This should permit us to select
among different existing approaches toward the low-

er y KN scattering while maintaining good results
at high energies. Unfortunately, a thorough theoretica
analysis in this region is lacking at present.

In conclusion, we have examined a simp e R
for kaon-nucleon elastic scattering amplitude w ichich
shows the violation of SU(3) symmetry. The violation
arises from the smallness of the value of g„q~', which in
turn arises from a zero-range E-matrix parametrization
of low-energy KE scattering. The latter input has
predicted good results on the real parts in the high-
energy region, tending to show a good and consistent
parametrization. However, the same prediction can
also be achieved by the MER parametrization. There-
fore, more data are needed on the real parts in the
intermediate energy region (0.6—3 GeV) in order for
the CDSR [Eq. (1)7 to be sensitive to both the iow-
an ig-d high-energy data to be able to distinguish various)

ieldsets of low-energy E1V parameters, and finally to yie
a more reliable value of g~q~'.

' J. K. Kim, Phys. Rev. Letters 19, 1074 (1967)."J.K. Kim, Phys. Rev. Letters 19, 1079 (1967)."W. Galbraith cI, cl., Phys. Rev. 138, 8913 (1965)."R.J.N. Phillips and W. Rarita, Phys. Rev. 139,81336 (1965).
"~Jr+„=ReCrr+„/ImCrr+„, and s—imilarly forn~+„. We have used

the fact that ImC~+~~ImC~+ at high energies."V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966).


