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Electromagnetic corrections to wa scattering for spacelike ¢2 are calculated to see whether they can be used
to determine 7. The low-momentum ¢ dependence of the off-shell strong amplitude used in this calculation
is determined with the help of crossing symmetry, current algebra, and the hypothesis of partially conserved
axial-vector current. The relativistic corrections are found to be just as important as those which are also
included in nonrelativistic treatments. When only the nonrelativistic terms are used, the large value of 7,
(2-3 F) obtained recently from n*a scattering is reproduced. Including the relativistic terms brings the
resulting value of 7 down to approximately 1 F. This is consistent with the values obtained by using inelastic
electron-proton scattering; however, the 7*« results are quite sensitive to the details of the wa nuclear inter-
action and to the relativistic effects, which are only roughly approximated.

I. INTRODUCTION

FEW years ago Sternheim and Hofstadter! pro-
posed that the electromagnetic structure of the
pion be studied by considering the scattering of 7% on
zero-isospin nuclei such as *He. (Table I shows deter-
minations of the pion charge radius based on other
techniques.) A formalism was developed by Schiff? for

calculating the nonrelativistic Coulomb effects of elastic
m*a scattering to first order in the fine-structure con-
stant without the use of Coulomb wave functions. (See
Appendix A for a review of Schiff’s formalism and
methods of adapting it to experimental data.) It was
demonstrated that even in nonrelativistic theory first-
order Coulomb effects arise not only from the Born

TABLE I. Predicted and measured values of 7r.

Source 7z (F) Comments
Theoretical
Nambu,* Sakurai,?
Gell-Mann and Zachariasen,®
and Gell-Mannd 0.6 Vector-dominance model
Salecker® 0.82 Disperson relation and J =T =1 == effective-range expansion
Cocho and Ar-Rashidf 0.4 Current algebra excluding 41 meson
Cocho and Ar-Rashidf 14 Current algebra including 4; meson
Efremov® 0.3 Approx. to equation based on minimal electromagnetic coupling
Baruth 1.7 Electromagnetic current in 0(4,2)
Arnowitt et al.t 0.6 SU2)®SU(2) current algebra and meson dominance
Roos and Pisuti 0.628+-0.004 Analysis of et+e~ — 747~
Roos and Pisuti 0.7 Analysis of e+p — e~+n+4nt
Shrauner ef al.k 0.3640.12 Self-consistent multiple-quark = scattering analysis
Oyanagi! 0.83 Veneziano-type formula
Experimental
Allen et al.m <4.5 7 +e" — 77 +¢", ¢*=0.00004 to 0.004 (GeV/c)?
Cassel® <33 7 +e" — 77+¢7, ¢2=0.003 to 0.01 (GeV/c)?
Akerlof et al.c 0.8+0.1 e +p— e +ntrt, ¢2=0.05 to 0.4 (GeV/c)?
Mistretta et al.p 0.864-0.14 e+p— e +ntrt, ¢2=0.04 to 0.2 (GeV/c)?
Auslander et al.a 0.6320.009 et+e — rt+7", ¢?=—0.4 to —0.8 (GeV/c)?
Augustin et al.* 0.628+-0.003 et+e — at477, ¢¢=—0.4 to —0.7 (GeV /c)?
Devons et al.® <19 7 +p — ntette, ¢?=—0.002 to —0.02 (GeV /c)?

a Y, Nambu, Phys. Rev. 106, 1366 (1957).
b J, J. Sakurai, Ann, Physik 11, 1 (1960).
¢ M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961).
d M. Gell-Mann, Phys. Rev, 125, 1067 (1962).
e H, Salecker, Z. Physik 164, 463 (1961).
( 1G.) Cocho and H. Ar-Rashid, Progr. Theoret. Phys. (Kyoto) 36, 1150
1966).
g A. V. Efremov, Zh. Eksperim. i Teor. Fiz. 53, 732 (1968) [English
transl, : Soviet Phys.—JETP 26, 455 (1968)].
b A, O. Barut, Nucl. Phys. B4, 455 (1968).
i R. Arnowitt et al., Phys. Rev. 174, 2008 (1968).
iM. Roos and J. Pisut, Nucl. Phys. B10, 563 (1969).

* Work supported by the U. S. Atomic Energy Commission.

k E. Shrauner et al., Phys. Rev, 181, 1930 (1969).
1y, Oyanagl Report No. UT-16 1969 (unpublished).
m J, Allen et al., Nuovo Cimento 32, 1144 (1964).
n D, G. Cassel, thesis. Princeton Umverslty, 1965 (unpublished).
°o C. W, Akerlof ef al., Phys. Rev, 163, 1482 (1967).
» C. Mistretta et al., Phys Rev. Letters 20, 1523 (1968).
aV. L. Auslander ef al., Phys. Letters 25B, 433 (1967).
r J. E. Augustin et al., Phys, Rev. Letters 20, 126 (1968) ; Phys. Letters
28B, 508 (1969).
S, Devons, P. Nemethy, and S. Nissim-Sabat, Report No. INFN-
ROME-202, 1968 (unpublished).

1 M. M. Sternheim and R. Hofstadter, Nuovo Cimento 38, 1854 (1965).
2 L. L. Schiff, Progr. Theoret. Phys. (Kyoto) Suppl. Extra Number 400 (1965) ; Progr. Theoret. Phys. (Kyoto) 37, 635 (1967).
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Fic. 1. First-order Coulomb Born amplitude, 4 ¢,s.

amplitude (Fig. 1), but also from distortion of the pion
wave function by the nuclear interaction. The non-
relativistic distortion terms arise when the pion, in the
process of a Born Coulomb interaction with the «
particle, also experiences a nuclear interaction, as shown
in Figs. 2(e) and 2(f). [Since the nonrelativistic Cou-
lomb potential acts instantaneously, it does not include
the purely relativistic diagrams shown in Figs. 2(a)-
Z(d), Z(g)_z(n)7 and 3:'

Three w*a scattering experiments have been per-
formed at Rochester,® Northwestern,* and Berkeley,®
and there are at least three different methods of adapt-
ing Schiff’s formalism to the data due to West,%?
Block,?® and Auerbach et al.® The results, given in Refs.
3-9, of applying these methods of analysis to these sets
of data are listed in Table II.10.1!

If we keep in mind the prediction #,~0.63 F of the
vector-dominance model,*? we find several disconcerting
features concerning these results. The first experiment,
at Rochester, contained only eight data points, and
fits to these data are not good statistically, principally
because of one apparently anomalous point. However, if
this point is omitted, the upper limit on 7, is much
larger than 1.5 F.

The second set of data, from Northwestern, contains
such large experimental errors that it is difficult to see

( 31\/.[). E. Nordberg and K. F. Kinsey, Phys. Letters 20, 692
1966).
4 M. M. Block ef al., Phys. Rev. 169, 1074 (1968).

5 K. M. Crowe, A. Fainberg, J. Miller, and A. S. L. Parsons,
Phys. Rev. 180, 1349 (1969). See also A. Fainberg, UCRL Report
No. UCRL-19208, 1969 (unpublished).

6 G. B. West, J. Math. Phys. 8, 942 (1967).

7 G. B. West, Phys. Rev. 162, 1677 (1967).

8 M. M. Block, Phys. Letters 25B, 604 (1967).

9 E. H. Auerbach, D. M. Fleming, and M. M. Sternheim, Phys.
Rev. 162, 1683 (1967).

10 Ingoring distortion entirely, the Rochester data give r,=1.8
+08 F.

17f the Kisslinger model rather than a Gaussian potential is
used, a better fit is obtained, giving 7, =2.263-0.16 F.

12The vector-dominance model gives (ignoring T',) Fi(¢?
=1/(14¢2/m,?), which implies a mean pion charge radius of
7x=(1/6)/m,=0.63 F; see M. Gell-Mann, Phys. Rev. 125, 1067
(1962). The storage ring e*e” — m+r~ measurements at timelike
momentum transfers [—0.75¢2S —0.4 (BeV/c)?] fit this form
fairly well, but suggest »»=~0.8 F: J. E. Augustin e al., Phys.
Rev. Letters 20, 126 (1968); V. L. Auslander ez al., Phys. Letters
25B, 433 (1967). The inelastic electron-proton scattering ¢ p —
e nwt measurements at spacelike momentum transfers [0 <¢2<0.5
(GeV/c)?], after considerable interpretation, seem to suggest
7-=~0.860.14 F: C. W. Akerlof ef al., Phys. Rev. 163, 1482
(1967); C. Mistretta et al., Phys. Rev. Letters 20, 1523 (1968).
The electron-pion scattering measurements at spacelike ¢? are
easier to interpret but less accurate, giving only <3 F: J. Allen
et al., Nuovo Cimento 32, 1144 (1964).
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F16. 2. First-order external terminating corrections. The dia-
grams in which one or two legs of the strong interaction are off
shell contribute to the off-shell correction terms C;; or C; as in-
dicated. The on-shell term Bi; comes from (a), (g), and (i), and
B 13 comes from (k) and (1), and similary for the other Bi;’s and
Bij’s.

any F.(¢? effect in all the noise. In fact, some best fits
to this data are obtained for negative values of 7,2

Finally, the most complete (60 points) and most ac-
curate (=39, errors in do®)/dQ) experiment, at
Berkeley, using the method of analysis which fits the
data best, yields astonishingly large values for 7,.

In order to determine whether or not these results
indicate that the vector-dominance model (which ap-
pears to be valid near ¢*~ —m,?) fails to extend to
spacelike ¢% it is necessary to reexamine the effect of
Fr(¢? upon n+a elastic scattering.

The basic problem involved in extracting =7y vertex
information from e scattering data is that of calculat-
ing the distortion amplitude corresponding to all dia-
grams involving both strong and Coulomb interactions.
Two questions concerning this calculation have received
inadequate attention. The first problem concerns the
validity of applying a nonrelativistic calculation to data
involving momentum transfers in the order of the pion
mass. (The value of ¢2 in the three experiments ranged
from 0.34m,2 to 1.22m,2.) The relativistically complete
set of first-order distortion diagrams is given in Figs.
2 and 3.1 The nonrelativistic calculation uses only the
low-momentum limits of Figs. 2(e) and 2(f).

The corrections in which the photon terminates on
external lines, those shown in Fig. 2, can be computed
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Fi1c. 3. First-order internal terminating corrections.

¥ We treat the o particle as an elementary particle, defining
elastic scattering as leaving the & unexcited.
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TABLE II. Pion charge raidus 7. (in F) based on nonrelativistic =*a scattering analyses. Indicdted error
ranges are 1 s.d. (standard deviation) unless otherwise specified.

' Method of analysis
Experiment [(GeV/c)2] West Block Auerbach
<0.1 (1s.d.) <1.0 (1.s.d.)
Rochester® 0.005-0.03 <1.5 <09 (2s.d.) <2.0 2s.d.)
Northwestern 0.005-0.08 <0.9 (1s.d.)
<2.1 (2s.d)
Berkeley 0.005-0.09 <1.20 (1 s.d.) 1.294-0.82 2.884:0.37
<1.77 (2 s.d.) b

a Reference 10,
b Reference 11.

by standard techniques once the off-shell 7% strong-
interaction elastic amplitude, which we denote by Asr,
is known. [These calculations are simplified by treating
the external a legs as so massive that, with maximum
momentum transfer in the order of m,, they remain
essentially on shell,* i.e., A(pE=q)=A(p), where p is
the on-shell @ momentum, over the range of photon
momentum ¢ giving the dominant contribution to the
distortion. ] We find that Figs. 2(b) and 2(c) are just
as important as Figs. 2(e) and 2(f), while the rest of
the external terminating corrections are negligible.

A complete computation of the corrections in which
the photon terminates on internal lines (Fig. 3) re-
quires knowledge of the off-shell amplitude 4, for
ma— may (at least up to a scalar constraint). Given
Ast, using Ward’s identity, and noting the absence of
infrared divergences for internal terminating diagrams,
we are able to determine 4, up to terms of order ¢ in
the photon momentum. This is sufficient to enable us
to show that Fig. 3(f) is negligible for the momentum
transfers and resolutions involved in the experiments of
interest. However, we need 4, up to a scalar constraint
to know the hard-photon contributions to the p#4, parts
of Figs. 3(a)-3(e). It appears that without strong-
interaction information beyond the 7% elastic ampli-
tude, computation of these contributions must involve
additional unknown parameters. To avoid this problem
we assumed soft-photon dominance of the integral over
prA, [see Eq. (49) below].

It turns out that the purely relativistic contributions
add to the distortion effect obtained using only the non-
relativistic terms. (Ignoring hard internal terminating
photons, this result is independent of the model and of
the over-all phase of the amplitude, and arises purely
from the relative phase conventions of Feynman dia-
grams.) Qualitatively, this provides the pion with more
ways of interacting electromagnetically with the « par-
ticle, thereby making it possible to reproduce the ob-
served electromagnetic distortion of the strong inter-
action using a smaller pion charge radius. With only
nonrelativistic terms, on the other hand, a larger pion

14 More precisely, we keep a legs external to the strong inter-
action on shell everywhere in our formulation except in propagator
terms [(ps,4q)2—m 2 L

charge radius must be used to explain the magnitude of
the distortion.

The second problem concerns the sensitivity of the
value of 7, extracted from the data to the detailed struc-
ture of the strong interaction. The philosophy of the
calculation is that the cross-section average data are
used to fix Agr and this is used together with cross-
section difference data to determine 7,. However, the
constraint that the form used for the strong amplitude

* Agr fit the average data leaves certain leeway in Agy

which can affect 7. There are features of Agr to which
7x is sensitive, but the average cross section is not. The
over-all phase of Agris an example, and is easily handled
by simply including it as a parameter in the 7, determi-
nation (cross-checking this against what total cross-
section data there are via the optical theorem). But
there are more serious difficulties. Higher partial waves
(!=3 and higher) could possibly affect the phase of
Agr, thereby influencing 7., and yet not be seen in the
average data. Also, the off-shell behavior of 4gr, which
can only be crudely estimated from the average data,
can affect 7,. .

Except for the unlikely possibility of higher partial
waves contributing only to the phase of Agr, there ap-
pears to be no evidence for the presence of /=3 or higher
waves of sufficient amplitude to influence 7, signifi-
cantly. Also, if the on-shell behavior of the off-shell
amplitude used is taken as indicitative of the accuracy
of the amplitude off the mass shell, then the resulting
error in 7, is small. However, there is presently no way
of estimating the actual error off the mass shell. If the
off-shell behavior is significantly more in error than the
on-shell behavior, the resulting uncertainty in 7, can
be quite large.

II. FIRST-ORDER ELECTROMAGNETIC
EFFECTS

A. General Considerations

The order-a! corrections to any strong-interaction
process can be grouped into three categories. First
there are the Coulomb Born terms in which photons
link otherwise disjoint parts. The first-order Coulomb
Born term for elastic w%a scattering occurs only in the
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¢t channel (Fig. 1),
Acp=—3%L(s—u)/tJF(¢)F (¢, 1)

where ¢=+/(—1)=2ksin}0, z,=+1 for =%, the a-
particle form factor!s is F,(¢?) =exp(—#7.%¢?), and we
write the pion form factor'® as F.(¢?)=1/(143r.%).

Second, there are those corrections in which the extra,
photon line terminates only on hadrons external to the
strong interaction (Fig. 2). In some of these [Figs.
2(a)-2(j)] the extra photon is virtual, whereas in others
[Figs. 2(k)-2(n)] it is a real infrared photon. Both the
real and the virtual photon terms can be split into a
part which depends only on the on-shell strong ampli-
tude and a part which depends on its off-shell behavior.
The on-shell parts of the real and virtual photon con-
tributions have compensating infrared divergences.!
The finite residue of these on-shell parts contributes,
in first order, a factor 14-2a(B4ReB) to the strong
scattering cross section, where the real photon contribu-
tion B and the virtual photon contribution B are given
by Yennie, Frautschi, and Suura.'® The real and virtual
off-shell parts, which we will call C and C, cannot in
general be expressed as a simple multiplicative con-
tribution to the strong scattering, since their structure
is dependent upon the details of the strong-interaction
model used.

Finally, there are the terms, which we will call D and
D, corresponding to diagrams in which at least one’end
of the extra photon (real or virtual) terminates on a line
internal to the strong interaction (see Fig. 3). These
terms also have a model-dependent structure.

All these first-order corrections considered, the 7%«
elastic scattering cross section is

doe@® 4 —
=—{[AST|2[1-}—2a(B+ReB)]
aQ s
+2a ReAsT*(A c_B+C+D)
w<AE 3o
-+ — C+D 2}, 2
aé: / (21r)32wq! | @

where Agr is the strong scattering amplitude and AE
is the mimimum detectable photon energy in the par-
ticular experiment.

We next separate the terms which contribute to the
cross-section difference do™ —do ™), where (%) is the
pion charge, from those which contribute to the average.
To do this we let 4, 7 be hadron leg indices (taking
i=1, 2, 3, 4 as labeled in Fig. 1, and letting =0 repre-

15 Fo(¢%) has been experimentally found to be Gaussian with
ra=1.66£0.04 F for 0.07<¢2<5.7 F~2 (1 F~2 corresponds to
197.32 MeV?): R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956);
H. Frank, D. Haas, and H. Prang, Phys. Letters 19, 391 (1965).

16 Neither theory nor experiment presently suggests what the
structure of F> may be like beyond the ¢2 term, so we use the pole
form rather than, for example, the exponential exp(— 7.%?).

17 E. Corinaldesi and R. Jost, Helv. Phys. Acta 21, 183 (1948).

18D, R. Yennie, S. C, Frautschi, and H. Suura, Ann. Phys.
(N. Y.) 13, 379 (1961).
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sent any internal line), specifying where the photon
terminates:

B=3" By, (3a)
i<j

B=% By, (3b)
<7

C=% Cy, (30
<J

D=Z D;. (3d)

We omit C and D, since these will be shown to be
negligible. Also, Bao=Bs+ReBss and Coo=Csy will
be found to be negligible.

In general, B,,=DB3+ReBy; and C,,=Ci; contrib-
ute to the cross-section average; the remaining com-
ponents B, and C,, contribute to the difference. The
matter is less definite for the internal terminating cor-
rections D. Assuming soft-photon dominance in these
terms, we will be able to show that D,=D;+ D; con-
tributes to the average, that D,=D,+ D, contributes
to the difference, and that the real internal-line brems-
strahlung D; is negligible. In summary, to first order,?

1Irde™® do©
L]
2L dQ aQ
4
=~[ I AST ] 2(1+2aB1r1r)+2a ReAST*(C1r1r+D1r)
S

+a?|dcsl7],
1 do-(+) do-('—)
2[ iQ 4o :]

4
=—[2aRedsr*(4dcn+Brad s1+CratDo)], (4b)
S

(4a)

where we have now removed the z, dependence from
Ac,s and the distortion terms.

Once B, Crr, and Dy are calculated (C and D being
dependent upon Agt) and a strong-interaction model is
chosen to fix the functional form of Agr, then experi-
mental cross-section average data can be fitted to deter-
mine the parameters in Agr. (The electromagnetic
contributions to the average are small, so the value
chosen for 7, is not crucial here.) Then a calculation of
Bra, Cra, and D, will make it possible to determine 7,
and other remaining parameters by fitting cross-section
difference data.

B. Photon Terminating on External Lines
(Hadrons on Shell)

As pointed out in the preceding section, the first-
order electromagnetic corrections with the strong ampli-

19 The squared Born term is included, since it is significant near
the forward direction even though of second order in a.
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tude left on shell contribute, after canceling infrared divergences, a factor 1+ 2a(B+ReB) to the cross section.
In this section we compute the terms B;;+ReB;; and show that they can be neglected.

Using Egs. (C4) and (C8) of Ref. 18, we can write

1 pz/2
ot [ et G B =D —pe
x -1

mim;

bdx _ 1 dx 2720(x4x-)
X/ —zGij(x)+%Pi'P;']0;+0j||:f —— Inx2+

- ZieiZjGj (Ak)z Ldx (Ak)z
Bij+ReBij=— { - +3pipi| —n
2w iy -1 P=
19
where

2p.=(1+x)pit+(1—2)p),

T[(i’i'Pj)Z—mﬁmjz]x/g ]] , (9)

-1 px’2

2. =(H0)p0— (100,

gﬁ(x)zE"—lp”l 1n<Ez+lpxl)+ln(Ez+|pzl>’

2{p.|

Ex_lpzl

2E,

—(m—mP)£2[ (ps: pi)* —mimi* ]/

X4 =

2

m+mi+2pi p;

0;=+1 if the sth particle is outgoing, —1 if incoming,
and Ak is the minimum detectable infrared photon
three-momentum (about 2 MeV/c¢ for the Berkeley
experiment?’),

In the low-energy limit k<<, it is simply a matter of
algebra to show that the contributions to the cross-
section average Brr and B, are of order

B.r=~k%/m,? and Bga= B (m./m,) for kZm,. (6)

It is immediately clear that B,, can be neglected in
comparison with B,,.

At higher momenta it is easier to simply do the inte-
grals numerically. This is also true for the contributions
to the cross-section difference

B.o=2(Bis+ReB1s)+2(Bis+ReByy). 7

Some values of 2a(B;;+ReB;;) for angles near which
Agr is a minimum?! are given in Table I1I.

From these results, it is evident that in all these cases
2a(B;j+ReBy)) is of the order of 0.01 or less. We shall
see later that the total distortion amplitude, including
the C;; and D; terms, is in the order of 109, of Agr.

TasBLE III. Values of the on-shell electromagnetic correction
factors 2a(Bij+ReBy;) for w*« scattering near the strong-inter-
action minimum.

Tleb=24 MeV  Tlb=51 MeV Tlsb=75 MeV

G.9) Oom.=769°  Oom.=72.7°  Bom =73.0°
1,3) 0.00345 0.00680 0.01012
2,4) 0.00004 0.00007 0.00012
1,2) 0.00128 —0.00501 —0.01023
1,4) —0.00540 —0.00021 0.00482

20 K. M. Crowe (private communication).
*! The effects of distortion upon 7, are most pronounced in this
region, which is where the Born Coulomb term, which dominates

the forward direction, competes with the distortion terms, which

dominate the backward direction.

Thus B, and B,, turn out to be only a small part of
the total distortion.

C. Photon Terminating on External Lines
(Hadrons off Shell)

Next we turn to the off-shell parts of the external
terminating diagrams. Letting {p;} be the set of on-
shell momenta, p;*=m,? we write these corrections in
terms of the difference

Ast(py,pe 05, pd) — Ast(Pr,p2,05,04)

where the momenta {p;/} are off shell and Agr is the
strong amplitude written in a form which permits us
to take the momenta off shell.

1. Virtual Photons

The electromagnetic corrections involving one virtual
photon with both ends terminating on a line external
to the strong-interaction subdiagram are shown in Fig.
4. In those diagrams in which both ends terminate on
the same line, the strong amplitude Agr is on shell. In
those in which the virtual photon connects two different

6;p;

(a) (b)

Fic. 4. Virtual photon terminating outside Agr.
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external lines, Agr is off shell. Explicitly,
dq
(2m)*g?
(20:pi+q)- (20;p;—q)
LOspitq)*—mZIL(0:p5—9)*—m;*]
X Asr(pi— pit0ig, pi— pi—0ig). (8)

A ¥ =4miabiz0;z; /

Now we add and subtract the on-shell Ag7 inside the
integral. The on-shell term, together with the Fig. 4(a)
diagrams, gives us the standard infrared correction?®

RONALD A. CHRISTENSEN 1

ticle this can be taken as simply F,(¢?), since we assume
external « legs remain approximately on-shell. However,
here we must consider all ¢%, even large timelike values.
The form exp(—3i74%?) runs into difficulty for large
negative g% So (to assure convergnece), rather than the
Gaussian, we will use the pole form

Fao(¢)~1/(14+3rs¢") . (13)

For the wry vertex with one pion off shell (as well as
the photon) we assume that for the momenta of interest
it is approximately given by the on-shell value,??

—ie{F(g%q-$)(2p—Q)u
+[(g*—2¢- )/ *1(F(¢%q- p) —1)qu}

By bo ©) ~ el () %)y (14)
where ’ The amplitude 4 gy with pion legs off shell is derived
B —i()-z 0.7 ﬁ in Sec. IIT A. Using the expansion to second order in

g ¢ momenta, we have
X[(Zﬁiei—@u ; (2Pi0i+9)n]2 (10) 1520102 [ d*q —2Bag: ps+Cal ¢°—2q- (p1—ps)]
T . 21= — -
¢*—=2q-pb:  ¢*+2q-ps0; 32t J ¢ (¢*429- p2)(¢*—2q- 1)
The remainder, which we denoted above by C, is the XFa(g?)(2p2t9) F(@) 2p1—0)u, (152)
correction due to the off-shell behavior of the amplitude. i dq 2BJLg*—q- (pr+ps)]
It is given by Cay = =
aC=aY Cyj, (11) 64wt S g* (¢°—2q- ps)(g*—2q- p1)
i .
where XF(g%)(2p1—q)*Fx(q*) (2p3—q)u. (15b)
i dYq  (20:pi4q)- (20;p;—q) Thus, using Cas=Ca(p2<> —ps), we can compute
Cij=—9i2i9jzj/ Cra=2(Ca1+C23) and Crr=C3.2% To calculate Cy, we
4m? q* (¢*+2q- p:0:)(¢*—2q- p:9;) define
X[ Asr(pi— pitbig, pi— pi—0ig) —Asr]. (12) P=—=2Bps—2C(p1—13), (16)
=2 —_ 17
Of course, this assumes point Coulomb interactions, O=2(=pa), {”
so to be correct we must insert the appropriate form M 4,a*=6/7r.4" (18)
factors Fi(g%0:9- p;) before integrating. For the o par- Then
i d'q 4(pr- p2)g- P+(q- P)(q- Q)+4C(p1- p2)g*+¢%¢- (C.Q—P) —Cag?
Cy=— szMaz - ) (19)
32x* g* (M g% (M P17 (P42 $2)(4* =29 p1)
e [eas [yt pe P e PO
= o[ idu | dyi[4(pr pa)(g g P)g [ — )
32x? 0 0 Ma2\—'g2 _g2+yMa2

1 ( 1 1

|
T

MA—M\—gyM,t —gityM 2

><<

):l'r s r[4Cs(P1‘P2)+g‘(CsQ—P)—ngﬂ
M2—M,2

1

_g2_|__yMﬂ_2

- 2+ sz
+2C, 1ni—y——]}, (20)

—gyM a2> —gyM?

22 The form of the left-hand side follows from Lorentz invariance and Ward’s identity. Note that the right-hand side involves two
assumptions: that F(g2,¢- p) =~ F(¢? and that the g, contribution is negligible. (If we included the g, term, it would be necessary to
dampen Agr at high momenta to overcome an ultraviolet divergence.)

28 Strictly speaking, when calculating Cs; and Cy it is necessary to use the values of B, and Cs corresponding to s= (p1-+p2—q)? rather
than s= (p1-+p2)2. However, we assume B, and C; are slowly varying over the range of ¢ dominating the integral (cf. Table V).
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where
g=(1=x)p1+(y—2x)p:. (21)

Numerical calculation of the double integral for
typical values of the parameters shows that C,, is in the
order of 10%, of Agt.2* This (together with D, to be
computed in Sec. IT D) contains the bulk of the dis-
tortion effects in the cross-section difference.

2. Real Photons

In this section, we show that the off-shell contribu-
tion of the real photon correction is of the order

w<AE g3 32 Ak R/ m.Ak
£ [ Sl — (1=
(2m)*20, T Myt t

X | Asr+0(maar)|?,

where Ak=AE is the experimental limit of resolution
and az, is the 7% scattering length. In the experiments
conducted to date, |¢| >%m,2 and Ak~2 MeV/c. Under
these circumstances, the real photon contributions are
negligible. (So long as Ak<5 MeV/c, these contribu-
tions make up less than 19, of the total cross section.)

The real external terminating corrections (Fig. 5),
in which the photon carries off energy w,<AE, are not
coherent with the virtual photon corrections because of
the additional external line.

Let us write the amplitude for these processes as

(22)

Ay =2 (41, (23)
where? 26:p5+0) @
(A= _egmw_i
20:pivq
XAsr(ps— pit0:0). (24)

The second term in the numerator vanishes, since
gue"(@)=0. . . .

We use the trick of breaking this up into on-shell
and off-shell parts:

(AL)i= (AL")em+(4L)Cm, (25)
where @
(Ail)i(on) = —eB;zgp‘ & Q)A ST, (2())
piq
(A7)0 = —eﬂlzf—l——ei(@
pirq
X[Asr(ps— pit0:9) —Asr]. (27)

% The double numerical integration also shows that the C,¢*
term can be neglected. This is of practical importance, since the
y integration for the other terms can be done analytically, leaving
only the x integration to be done numerically when curve fitting.

2% The photon polarization vector can be written

. = +cosf—1 sin2@ cose sing
ex*(1(0,9))= V2 (0’ cos?0-}-sin%0 cos2p  ’
. sinf(d=cosp-+7 cosd sing)
b T cos9-sin cos’p
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Fic. 5. Real photon terminating
outside Agr.

If we look at (4.");°™ alone and "compute’its con-
tribution to the cross section, we obtain the standard
infrared correction'®

B=Y By, (3b)
i<j
where
_ 1 wg<AE d%q
Bi,-=—0izi0,~zjz:/ —_—
s w ) (e
pies(q) pirex()|
% + _ AR (28)
Pirq Pi'q
The off-shell-dependent remainder is
wgAE
Z/ {12(44):t0]2
(27r)3wq A
(29)

2 Re[ 2 (45):€10%- 3 (44);V ]} -

Thus the off-shell contributions due to real infrared
photons of momenta less than Ak=AE are (using the
Asr given in Sec. IIT A) related to (dropping ¢* com-
pared with ¢- p1,3)

Z(Ai')i(()ff)z'ez_"[Bsq' (i?gpl‘ ei—I—Plps‘ 6:|:>
i 8 p1q psq
€ P3
+Cug (1 m)( 9] o
prrq  psq

while the on-shell contributions come from

Z(A:I:,)i<on) =ez,,<p1. éi—P3. 6:|:>AST .
i Prq  pag

(31)

Since (A44))s=(4.")1(ps<> —p1), it is sufficient to
consider only the p;-ey terms. Further, observe that
when we compute | 4’ @) |22 Re(A’ ©iN* 4’ om) wewill
have terms of the form 1+4p;5-q/p1-q or 14p1-q/ps-q
Now wi=w;3 and |p1| = |ps|. Thus, for purposes of mag-
nitude estimation we will assume ps-g/p1-¢ is of order
unity, and so neglecting it will not decrease the order of
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magnitude of the result. Therefore

| AL/ ©0[2=(a/16m) | Co(pr-er) |2, (32)
(prex)|?
A:E'("“)*Ai'(‘m):%afii—cs*z‘lsrp. (33)
p1°q
Since | 4-e+| < |A], this gives the upper bounds
[A44" 0| S (o/16m) | Cs| %2, (34)
1 Ioff)y* 4 1 ( )l< a k2
A4'C £ S
32 | psq|
X lCs*[(ZBs_Ca)mwz_'(Ba_Cs)t]| . (35)
For the first term in (29), the integral is simply
w<AE  J3g 4
] Y7 DN
(2m)w,  (2m)3
For the second term it is
w<AE gig 1 Ak w—Fk
/ —_—= In 37
2m)%wq ps-q @2m)? k wtk
2 Ak
= — for k<m,. (38)
@) my

Thus the contributions to the cross section, doing the
sum Y4, are of the orders

RONALD A. CHRISTENSEN 1

Finally, to obtain the desired result, Eq. (22), we
add Egs. (39) and (40) and use the relation

A ST Mol — (maaL/Zm,,2+Cs/327r)t s
to be derived in Sec. III A.

(41

D. Photon Terminating on Internal Lines
1. Virtual Photons

Consider the off-shell amplitude 4 ,»(p1,p2,p3,P4,9) in
which one virtual photon of momentum ¢ and polariza-
tion u is emitted either by an external line (n=1,2,3,4)
or an internal line (#=0). For n=1, 2, 3, 4 we can calcu-
late explicitly (using the exact wmy and aay vertices
with one hadron off shell)

quAu"(plyP%P&P‘hQ)
=20€q*[ Fa(q% —0ng- p2)(2pn+0n9)u
Gu(g?, —0ng- $)gu] 42
+Galg q- )4l o) (42)
A n n+0n

(patbng)?—ma?

where 2,¢ is the charge of the #th line.
Defining

we will know ¢#4,9 if we know ¢*4,. When all the ex-
ternal lines excluding the added photon are on shell,
pud=m,? n=1, 2, 3, 4, current conservation tells us
that ¢#*4,=0. However, we need ¢*4, with off-shell
hadrons. This is given by off-shell current conservation
expressed in the generalized Ward identity?®

S[20/(4m)*1(AR)%?| C | 2 (39)
and
S[4a/(@m)*1(Ak/me)k?| CH[(2Bs—C)my®
—(B,—Cyt]|. (40)
2 —ma.?)A 1—¢, P2, P3,P4
qMAﬂ(pI;p2)P3)P4)Q)=Zre[(P1 " ) ST(p 27 ? p)
(pr1—q)*—m,*

(ps—mzt) Ast(pr,p2,ps+4, P4):|
(p3+9)2—'m1r2

+Zae|:(1’22"maz)AST(Pl,Pz-‘q, p3,p40) (P42—ma2)AST(Pb?z,Ps,Ptz‘f‘Q)]' )

(p2—Q)2—ma2

Therefore
¢*A 0= zre[ Ast(p1—q) — Asr(pstq)]
+aae[ Asr(pa—q) —Asr(patg)]. (45)

Leaving the external a particles on shell and taking
Agr to second order in the momenta, we have

q* A= (3:¢/8m) Bog- (prtps) . (46)

From this it follows that the amplitude for Fig. 3(f),
permitting the photon and the pions to go off shell, is

A 0= (2:6/8m)By(pr+ps)utR, (47)

where the remainder satisfies R,g#=0, i.e., given any

(petq)*—ma®

four-vector V, we can construct R,= (g,—q.q,/q?) V.
However, bremsstrahlung from internal lines produces
no infrared divergences, so 4,° is not singular as ¢ — 0.
Hence R, is of order ¢.?” So for soft photons,

A0~ (2,6/87)By(p1t+ps)u for |g?|<<m,?. (48)

2 E. Kazes, Nuovo Cimento 13, 1226 (1959). Although the
identity is proved only for Feynman diagrams involving spin-0
and spin-§ particles (as well as the photon), we assume it to be
true for elastic r« scattering whatever intermediate states may be
involved.

% See F. E. Low, Phys. Rev. 110, 974 (1958); E. M. Nyman,
ibid. 170, 1628 (1968). This argument of course fails for external
terminating photons, so we could not determine 4,¢ from ¢#4 ¢
for 2=1, 2, 3, 4. [The leading terms for the next order in e are
examined by T. P. Cheng, sbid. 176, 1674 (1968).]
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Denoting by aD, the contributions of Figs. 3(a) and
3(b), and by aD, the contributions of Figs. 3(c) and
3(d), we have

dq

CMD.,r () = —iez,, (a)f
@m)tq?

[(2P1<2) +9)* 4. (p1vy — prvy+q)
(Pr@+9)?—mr(?
) (2p30y—)* A (p3y = p3wy—q)

(P3y — Q)2 — Mz (a*

This formula shows that we do not need to know 4,°
completely. We only need ¢#4,° and p#A4,°% the first of
which we already know. To get the second we would
need two more independent scalar constraints on 4,°,
i.e., we would need to know A4,° up to one scalar
constraint.

If we assume that the soft-photon (¢2&m,2) part of
the integral dominates, we can caclulate the p#A4,°
terms completely. In this case, D, is proportional to 2.
and hence contributes only to the cross-section average.
(We will find later that all radiative corrections to the
average are small.) However, if the hard-photon part is
significant, D, may contribute an important part to the
cross-section difference, which we could not calculate
here even if we knew the off-shell 7% elastic amplitude
exactly. If we separate the hard-photon part of 4,° into
a part which depends on 2, and a part which does not,
we get

Fi(¢?)

Fs<4)(112):|- (49)

A= AMOI soft BMO(ZW)+CMO ’ (50)

where B,%(z,) and C,° are of order ¢; the omitted con-
tributions to the cross-section difference come from the
terms

Cu0p1,3* (51a)
and

B“O(Z,)Pz,a" (5 lb)

in D, and D,, respectively.
If we make the soft-photon dominance assumption
for p#A4,0, our second-order expression for D, becomes

7 dq \
«= —@;Bs(;bl‘ws)u/ ?F,,(q )

(2pat+9)*  (2pa—q)*
X[ f ] (52)
P*+2q P2 ¢*—2q ps
If we take Fo(¢?)=1/(14§7.%?), the integral can be
done easily, giving

.

B"( ) ' (1+2)

—U

(2‘”)43 fo X X

1n[1————6—x———:| (53)
% (1—2)2(rama)?

0.056 s —1| t
2 mei=5)
w? t M2

Do=

(54)
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where we have used 7,m,=31.4 and the approximation
AST%maaL——(maaL/m,,2+Bg/167r)t, (55)

to be derived in Sec. III A.

To calculate the contribution of Fig. 3(c), where both
ends of the virtual photon terminate on internal lines,
we simply reiterate the use of Ward’s identity. Let
A O™(pr, po,pa,pa,q,q ) be the amplitude 4,° with an
additional photon of momentum ¢’ and polarization »
inserted in line 7. Following the same procedure as be-
fore, we get

P Aw"=2:e[A(p1—¢) — A, (ps+)]
+2.6L4,(p2—¢) = A (pat¢)].  (56)

Putting the « particles on shell and taking the soft-
photon limit, we have

¢4, —aB,g,'. (57

From the nonsingularity of 4,,° as ¢’ — 0, we have
A= —aB+0(g,q). (58)
The desired amplitude is now obtained by setting
¢'= —g, inserting the photon propagator, and integrat-
ing over the photon momentum. However, the inte-

grand depends only on ¢, so the integral vanishes be-

cause of spherical symmetry of the kernel
OLD(): 0. (59)

Here also we have omitted the hard-photon contribu-
tion, the full term being of the form

dq
(2m)*g?
X Fwag"”[Buv“ (Z,,) + Cuvoo:] ’

where the unknown terms B,,%(zr) and C,% are of
first order in ¢g= —¢’, and contribute to the cross-section
difference and average, respectively.

aD0=aD0|soft_7:/

(60)

2. Real Photons

The amplitude for emission of a real photon from an
internal line [Fig. 3(f)] is simply

A,0¢" = (e2,/8m) (B, —2C) (p1—pa)ue™,  (61)

where we can neglect terms O(g) because we restrict
the integral to infrared photons. The contribution which
this term alone makes to the average cross section is

©<AE  g3g 4o
> / A0 |25 ——(aky
n (27r)3wq[ g (4r)?

X | Bs—2C,| %*(1—cosb)

(62)

which is of the same order of magnitude as the real
photon contribution from external lines, hence negligible.
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III. STRONG = SCATTERING: LOW-ENERGY =«
ELASTIC AMPLITUDE WITH EXTERNAL
PIONS OFF SHELL

The invariant 7a— 7a amplituded (see Fig. 6)
with both pions off shell is defined by?2?

im(a(ﬁ‘t):"rﬁ@?') 5 a(ﬁz) yWa(Pl))Cﬂm1r2a'1r
= (mwz _P32) (mrz_Plg)/dlix emiree

X{a(ps) | T(9pA o*()25(0)) | (p2)) 5

where po?=p2=m,?% v is the pseudoscalar field, a, is
the wo-field normalization constant (0]2.(0)|ms(p))
=a,0,8 (s0 v is related to the pion field ¢ by v=0a.¢),
A* is the axial-vector current, and ¢, is the PCAC
proportionality constant 8,4 4= ¢c,m,%p. Also, @z = catx?
and ¢, =myg4/G.nn=~0.60m,.

We now integrate by parts, and use the equal-time
commutation relation

(63)

I:QGA;'Z"B(O)]: 1'5“;90'(0) ) (64)

where
Qo= fd“x A (x)8(x0) (65)
o(x)=(v3uot+(V3)us, (66)

and # is the scalar field. Then, going to the limit of
small 1,2 we have

,1}330 NUa(pa),ma(pa); a(p2),malpr))
= —mz2(mz2—ps?){a(ps) | o(0) | a(p2))

X (Baﬂ/crmw2a7r) . (67)
Py \ A
\
\
\
N\
\
t —
/
/
//
7
/ s
; "y

Fi6. 6. ma nuclear amplitude.

28 That this is a valid off-shell definition is shown by the LSZ
formalism, which demonstrates that it approaches the on-shell
amplitude as p1,s* — m,2: H. Lehmann, K. Symanzik, and W.
Zimmerman, Nuovo Cimento 1, 205 (1955).

2 In general, as p1 and p3— 0, Mpe— Mg —2(gv/cx)?
Xp1+ pa(T'x) ga(T a) +poles+O(p12,p1p3,p3?), where M is propor-
tional to Feaa: S. Weinberg, Phys. Rev. Letters 17,616 (1966) ; A. P.
Balachandran et al., in Proceedings of the Conference on Particle
Physics, Boulder, Colo., 1966 (unpublished). Because the « particle

RONALD A. CHRISTENSEN 1

The matrix element {a|o|a) is just the caa vertex

(a(p) |0 (0) |a(p2))=F saalps®, p2%,(ps—12)D, (68)

which gives, at threshold (s=#k=_;m?, t=u=0), the
coupling constant

Gvaa: Fﬂaa(ma2;ma2’0) . (69)

Because the « particle is an isosinglet, we may write®?

NMUa(pa),ms(ps) 5 a(pe),ma(pr))
= M(s,t,u; P12)P22;P32:P4Z) 60!5 d

Keeping the external « particles on shell, suppose we
take s+u, s—u, pi*+ps?, and p;2—ps® as independent
variables in terms of which we expand M. Then crossing
symmetry (s <> u, p1% <> p3?) says that in first order the
s—u and pi2—ps? terms are absent. (More generally,
the crossing-symmetric expansion can be immediately
written to any order by taking ?¢, pi>+ps?, su, and
p1*ps? as the independent variables.) Thus, to second
order in the momenta,®' we have

(70)

M =a+bi+-c(pr®+ps?) (71)
—— at(Otops. (72)

Equating this to our previous result as p;— 0, we
obtain

M (maP,tyme?; 0,ma’ t,ma?)
m"2 —P32

= —_——_"Fﬂaa(mazimazyt) )
Cﬂ'aﬂ'

(73)

and assuming that F,qq(m4%ma20) =G e for small £,32
we have a= —m,%(b+-c). Thus, redefining the constants,
we get

M=2Bp1- ps+C(t—m,?). (74)

Unlike the case of 77 scattering, here we do not have
an additional relation to reduce further the number of
constants. On the mass shell this becomes

M= —(C;—2B;)m.*+(C.—B,)t, (75)

is an isoscalar, if the o-type terms are omitted, the scattering length
is zero, since the charge commutator gives an antisymmetric
contribution to Mgq.

3 In the notation used previously, M= —16w4dsr, where
S=1+422n)%Ag18(ps— py), s0 S=1—4n*M5(p;— py).

31 Qrdinarily the problem of s-channel poles would have to be
considered in going beyond the zeroth-order term. However, here
crossing symmetry says that the s dependence must appear in the
form of an su dependence, so the question of s-channel poles
does not arise till we carry the expansion to fourth order in the
momenta. It is this fortunate circumstance which permits us to
say anything at all about the off-shell amplitude.

32 See N. N. Khuri, Phys. Rev. 153, 1482 (1967). For small ¢,
F(ma?mat) =Goaa[1—Js(ms2—1)], where Jo=~ar/6wma, the
scattering length being given by maar=Agr(threshold). This
induces a correction which is negligible for small scattering lengths.
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4

He

Fi1G. 7. Isobar diagram, 4 =4. All energies are plotted vertically in MeV and referred to the mass of ‘He without taking into account
the neutron-proton mass difference of the Coulomb energy. Values of total angular momentum J, parity, and isobaric spin 7' which
appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. Levels which
are presumed to be isospin multiplets are connected by dotted lines. Two possible arrangements of the 7’=1 levels are shown. [Re-
produced from W. E. Meyerhof and T. A. Tombrello, Nucl. Phys. A109, 39 (1968).]

which gives
Y| STMAL— (m,,az,/mﬁ-i— Bs/167r)t
=maar—1(maar/m2+C,/167)t.

(55)
(41)

The expansion of M to second order in momenta is
equivalent to an off-shell partial-wave expansion for
I=0, 1. It is known that a good fit to the 7« data re-
quires inclusion of the d wave. However, going to the
next higher order in the expansion of M includes an s
dependence as well as a #2 dependence, and this rasies
the question of s-channel poles. Naively expanding M
to fourth order in the momenta, setting po2= p2=m,?2,
and imposing crossing symmetry gives

M =a+bi+c(pr®+ps?) +d2+esu+ fi(p1*+ps?)
+g(p12+ps?)2-+-hpi?ps?
— atemet - (b4-c) ps? (A [+ pst.

(76)
(77
Using the condition that lim,, .o M <m,2—ps? we
find that
atemyt=—m2(b+c) and d+f+g=0.
On the mass shell, this gives an amplitude of the form
M (on shell) = const+ (b+2m,2f)i+di2+esu. (78)

Although at fixed s (for any 7' in the region of
interest 24-75 MeV) this formula gives a fairly good
fit to the ¢ dependence for 30°< fe.m. S150°% it cannot
be expected to represent the sz dependence very well.
The reason for this is the relative closeness of s- and

u-channel singularities to the region of interest, in con-
trast to {-channel singularities.

The lowest {-channel singularity is the 27 branch
point at {=4m,?% so a power expansion is good if ||
<4m.? converging faster for smaller |#|. In the region
of interest —2m,2<¢<0.

No such favorable circumstances pertain to the s
and # channels. Consider, for example, poles® at
max~mq+25 MeV (see Fig. 7) which contribute

1 1

! —
| =
s—me*? u—me®  su—[2(med+mi?) —tIm 2 m

2m,,2——t<1 Su )‘1
mat met)
This is approximately proportional to 14-su/m,* only if
| su|<<m . However, in the region of interest |su| is of
the order of m.* or larger.

Thus, the s dependence of M in the region of interest
cannot be represented satisfactorily by a power expan-

sion in the momenta. For M (on shell) this can be
handled simply by writing

M (on shell) = a,+ b+ c,t?

2(medtmp2—ma+2) —1

(79)

(80)

and experimentally determining a,, b,, and ¢, for each
value of s. However, there is no such easy way out for

3 The o particle is a scalar isosinglet 4He(3728.5). The two
lowest sets of poles in the w*a system are the isotriplets
[*H(3752.5), ‘He(3752.8), 4Li(3753.0)] and [*H(?), *He(3753.1 or
3755.0), 4L1(3753.7 or 3756.2)7, with JP=2" and 07, respectively:
W. E. Meyerhof and T. A, Tombrello, Nucl. Phys. A109, 1 (1968).
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n the fourth-order expansion of M (off shell). For the
present we will have to live with the inherently less

accurate
M (off shell)=2B,p;- ps+Ci(t—m.?),  (74)

/ where the constants B, and C, are determined for each

s by fitting M (on shell) = —(C,—2B;)m.*+ (C,— B,)t.

The amount of inaccuracy in a second-order expansion

relative to a fourth-order one can be observed by com-

0 / paring the average cross-section fit of Fig. 8 (second

EI%} L order with X,,2=3033) with that of Fig. 9(f) (fourth
5 order with X,,2=068).

] {mb)
<

T+ 1 / T
blg 4 IV. NUMERICAL RESULTS

©|T

TN s . A. Fitting Nuclear Parameters

/ Three sets of experimental m+a scattering data are
2 - . available (see Appendix B): (a) Rochester,? eight points
at 24.0 MeV (1 s.d. errors =~ 109, in av cross sections);
! N 7 (b) Northwestern,* nine points each at 50, 58, and 65
] MeV (1 s.d. errors =20% in av cross sections); and
0 0 08 05 O 02 0-02-04.08 080 (c) Berkeley,® 15 points each at 51.3, 59.7, 67.6, and
cos @ 75.0 MeV (1 s.d. errors =3%, in av cross sections).
Frc. 8. Second-order expansion fitted to A least-squares search for values of the complex

60-MeV average cross section. parameters a,, bs, and ¢, which minimize

i [O.S(da(—)/dﬂi-l—da‘+’/d9,-)m¢—0.5(da(">/d9i+do(+>/dﬂ,~)0,10]2
Xov?=

=1

(81)
(expt error in average);

was performed at each energy by using the fourth-order approximation to the on-shell strong amplitude
A sST= ds+ bst+ G,lz 3 (82)

where the calculated average cross section is given by

Ao dg™
0.5( + ) =diagram in Fig. 10
dQ dQ cale

= (4/8)[]/13'1" 2+20£ REAST*(CW,+DW)+Q2IAC,B| 2] . (83)

Using the fact that the C,. and D, terms are small relative to 4gr, we omitted them in our initial determination
of the strong-amplitude parameters.?* Since the average cross section in this approximation is independent of the
over-all phase of Agr, there were five parameters to determine. The results are shown in Table IV and displayed
in Fig. 9.

It was also necessary to perform a similar least-squares search using the less accurate expansion

Agr=(1/167)[(Cs—2Bs)m,2—(Cs—Bs)t] (84)
in order to determine values for the second-order approximation to the off-shell amplitude. These results are
given in Table V. (See Fig. 7 for a plot of the 60-MeV curve.)

B. Pion Form Factor

We now adjust the remaining parameters—r, and the over-all phase of 4gr—to minimize

N [ (Ao /dQi—da ™ /dDRs) expr— (da(—>/d9;-—da(+)/d9,-)ca1.,]2

Xaige? =

(85)

(expt in error diff);

% Furthermore, since 4 ¢, is very small compared with 4 gr, the exact value of 7. used for the average cross-section fit is unimportant.
So we used 7=0.63 F. For this same reason, the cross-section average fit was not used to determine the phase of 4gr relative to 4 c,s.
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where the leading terms in the calculated cross-section difference are

do)  do)

aQ a2

= —(4/s)a Redst*[Ac.n+CratDa]- (86)
(We have dropped the 2, in Dy, and D,.)

=djagram in Fig. 11
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Fi6. 9 (cont.).
The term D, is calculated in Sec. II D:
D,=(0.056/167%)Bs(s—u). (87)

The term C,, is given in Sec. IT C:
Cra=2[CatCau(pa> —pa)], (88)
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TasLE IV. On-shell fourth-order nuclear parameters for Eq. (82).

Tl=b b‘ Cs Xav?
(MeV) Qs (107t MeV—?) (107° MeV™) Xav? (expected)

Rochester

240 —2.498—0.963: —0.020—0.010% 0 1.5 2
Northwestern

50 —6.608—0.9264 —2.597+40.475; —0.020—0.0107 5.8 3

58 —9.959—0.413% —4.708+4-0.212; —3.723—1.248; 0.3 3

65 —11.975—0.8907 —4.228+40.4575 —2.138—0.194; 1.9 3
Berkeley

51.3 —6.837—0.917; —3.5674+0.471% —2.0274-0.659; 26 9

59.7 —8.649—0.450; —3.865+0.231% —2.842—0.912; 68 9

67.6 —9.648—0.5384 —3.706+0.2761 —2.329—0.496s 27 9

75.0 —11.270—0.495; —3.933+4-0.254; —2.557—0.534; 44 9

Ay 2 Ay b 3 \ \:
Fic. 10. Principal contributions to \ A B! \ 2
average cross section. l }{ ' +20Q Re [ }{] [ i:r< + €;< + %( ] +q? I I)vv<‘
/ ’ / / 4
Fic. 11. Principal contributions t A *“, < A % § ) NN
F16. 11. Principal contributions to cross- _ \
section difference. Q Re [ /I< ] [/ + E + / + ﬁ + g:E{ + /’g + /)‘{ ]

where, dropping the C,¢* contribution,? we get

M2 ! z 1 /1 1
Coy~ — f dx/ dy[[4(p1-1)2)(g'P)+(g-P)(g-Q)][ \~ >
327% /o 0 M\ g—yM?

1

1 1 M2
R — | I . . —_ -
M,,?—111,,,2<g2--ym2 g2—yM,,2>:ITMa2—M,,2L4CS(p et (GO P)]<g2—yM,,2 g2—yMa2>}' (89)

The y integration can be done analytically. We define  where
a=m2(1—x)2—2p1- pox(1—x)+m2x2,  (95)

M2?=0, (90)
b=2p1- po(1—x) —2m2x—M ;2, (%6)
—A= 4(1—x)2[(ﬁ1'p2)2—M12M22]+M,'4—4M,~2P1 o, (97)
- pa(1—x)+8M 2ams?,  (91) o=,
. . so that
where =0, 7, or a. Then the relevant integrals are —A=b2—4ac. (98)
® 1 e dy
I i(x)E / dy = / ’ (92) TAsBLE V. Off-shell second-order nuclear
0 g —yM 2 o a+by-+cy? parameters for Eq. (84).
= y 1 |a+bx+cx? Tlab B, C, P
Jilx)= / dy = In|— (MeV) (MeV—?) (MeV—2) Xav? (expected)
0 g—yMs 2 a Rochester
b # 24.0 0.0204 0.0344 —0.00248: 2 4
——Ix), (93) Northwestern
2 50 0.0300 0.0430 —0.00238 6 S
58 00206 00412 —0.00247; 52 5
z y? x b |etbxtcx? 65 0.0370 0.0494 —0.00247; 38 5
Kix)= / dy N 2=_ . In Berkeley
o gyME ¢ X e 51.3 0.0240 0.0346 —0.00212; 471 11
b2 —2ac 59.7 0.0272 0.0381 —0.00192; 3033 11

67.6 00266 0.0361 —0.00192; 1075 11
+——2——L~(x), (94) 75.0 0.0276 00364 —0.00192; 3159 11
2¢
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F1c. 12. Ratio of cross-section difference to average cross section: (a) 24, (b) 50, (c) 58, (d) 65, (e) 51, (f) 60, (g) 68, (h) 75 MeV

Doing the x integration in C,, numerically and fitting elastic as well as elastic) by use of the optical theorem?®

to the cross-section difference data, we obtain the re- 2kr/s
sults shown in Table VI and displayed in Fig. 12. The ImAgr(t=0)=— Trot™el, 99)
over-all phases 6, and 8, are those associated with the 16m
fourth- and second-order expansions of Asr. The measured total nuclear cross sections at 50, .58,

The reasor}ableness of the phases 6 obtalned. can .be 3 The author is grateful to Professor A. Wolfenstein for suggest-
checked against data on the total cross section (in- ing this cross-check.
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Fic. 12 (cont.).

and 65 MeV are quoted* as 87.643.0, 98.242.7, and
123.243.7 mb, respectively. The total cross sections
implied by the phases in Table VI for the Northwestern
data are much smaller than the measured values (59 mb
for the 58-MeV phase). However, the Berkeley data,
which have smaller experimental errors and present

less problems regarding nearly equivalent local minima
to the X2-minimizing search program used to obtain
0, give 54, 81, 127, and 137 mb (with uncertainty about
+209%, not counting effects of theoretical approxima-
tions in the distortion term) as the total cross sections
implied by the phases at 51, 60, 68, and 75 MeV.
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TasLE VI. Pion charge radius, taking the cross-section difference
proportional to Reds1*(4 ¢,8+Cra=Da), where Crq is computed
using an off-shell strong amplitude accurate only to second order
in the momenta and D, is computed assuming soft-photon domi-
nance of the integral over virtual photon momenta. The values
of x? are not intended to reflect these theoretical uncertainties,
which could have a strong effect on 7,.

Tab T 04 0, Xdife?
(MeV) F) (rad) (rad) Xait® (expected)

Rochester

24.0 0.87 0.287 —0.483 11 4
Northwestern

50 146 —0.137 —0.407 13 5

58 1.31 0.297 —0.615 16 5

65 1.00 0.198 —1.437 17 5
Berkeley

51.3 0.85 0.287 —0.483 16 11

59.7 0.66 0.513 —0.757 21 11

67.6 0.99 0.890 —1.502 15 11

75.0 0.99 0.889 —1.502 25 11

1. Sensitivity of 7. to Relativistic Terms

All of the previous computations®=% of the pion
charge radius based on wa scattering measurements
have used nonrelativistic dynamics, i.e., they involved
inserting interaction potentials into either the Schré-
dinger or the Klein-Gordon wave equation. The use of a
wave equation automatically considers the electromag-
netic interaction represented by the potentials to all
orders. Use of the Klein-Gordon equation provides
relativistically correct kinematics. The use of wave-
equation-constrained wave functions properly fitted to
the data assures reasonable off-shell behavior. However,
use of a dynamically nonrelativistic wave equation (as
distinguished from the Bethe-Salpeter equation, for
example) ingores all diagrams in which the interactions
represented by the potentials do not occur in a definite

TaBLE VII. Comparison of relativistic and
nonrelativistic calculations of 7.

Relativistic
(from Table VI) Nonrelativistic
Tlab ¥r Vr 04 (7] 2
(MeV) F®)  xarz &) (rad) (rad) xaits®
Rochester
24.0 0.87 11 1.46 0115 —2.824 8
Northwestern
50 1.46 13 190 —0.013 —0.940 13
58 1.31 16 291 —-0.023 —1.022 15
65 1.00 17 145 —0476 1.042 18
Berkeley
51.3 0.85 16 2.90 0.219 —0.299 21
59.7 0.66 21 2.45 0.420 —0.900 32
67.6 0.99 15 2.39 0.640 0.100 15
75.0 0.99 25 2.39 0.619 0.878 17

88 C. T. Mottershead, University of California Lawrence
Radiation Laboratory Report No. UCRL-19216, 1969 (unpub-
lished). This is the most recent nonrelativistic analysis of the r«
data, and discusses in detail the relative insensitivity of the results
to the model-dependent shape of the nuclear radial wave function.

RONALD A. CHRISTENSEN 1

time sequence. For example, it ignores the diagrams
shown in Figs. 2(b) and 2(c), in which the electromag-
netic and nuclear interactions overlap the same time
interval, and those shown in Figs. 3(c) and 3(d), in
which the electromagnetic interaction overlaps part of
the nuclear interaction.

As we have seen, C,, and D, are the dominant dis-
tortion terms. C,4 is composed of C124-Css, which enters
into nonrelativistic calculations, and also the relativistic
contribution Cyg+Cas. D, does not enter at all into
nonrelativistic calculations. In order to compare this
analysis with previous nonrelativistic calculations, the
7. calculation was rerun with the relativistic terms
omitted. Table VII compares these results to those ob-
tained by using D, and the full C,,.

Two features are of interest. First, compare the re-
spective Xgifs¥’s. If the nonrelativistic terms alone fit
the data poorly, anyone performing a nonrelativistic
calculation would be immediately led to suspect the
importance of the relativistic terms. However, the non-
relativistic terms alone fit the cross-section difference
data about as well as the fully relativistic formulation.
Second, without the relativistic terms, the estimates of
7 are larger, falling in the vicinity of the values for the
Berkeley data obtained by using the Kisslinger model
with the methods of Auerbach ef al. and Block (Table
II), both nonrelativistic methods. (This, incidentally,
provides some evidence that the off-shell behavior of
the amplitude used in computing C,. is probably not
too unreasonable.) Thus, even though the data can be
fitted fairly well by using only the nonrelativistic terms,
the relativistic terms are quite important in determining
the value of 7,.

2. Sensitivity of r. to Nuclear M odel

It is clear that the value of 7, obtained through the
type of analysis performed here is dependent upon the
functional form assumed for the strong ma scattering
amplitude. This is because the estimate of 7, is sensitive
to the nuclear distortion, C,4 and D, are the dominant
parts of the distortion, and both of them depend in
detail upon the form of the off-shell strong amplitude.

In order to get a numerical estimate of the model-
dependent uncertainty in 7, it would appear to be neces-
sary to recalculate C,, and D, by using a variety of
off-shell models. However, we can get a rough idea of
this uncertainty without doing such a set of complete
recalculations.

First, we can simply increase or decrease Crq or D,
by a factor roughly indicative of the error in the
second-order amplitude given by Eq. (84). Looking at
Fig. 8, which shows the average cross section (propor-
tional to the absolute square of the amplitude), we see
that on the mass shell this error is in the order of 109
(what it is off the mass shell is unknown). The calcula-
tion described in Sec. IV B was rerun varying C,. and
D,, by 10% in Eq. (86). The resulting shifts in 7, were
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less than 19, (principally because of A¢,g), and the
increases in Xqi¢s2 were less than 1. (If C,, is multiplied
by 0.5 and D, by zero, which is effectively what is done
when only the nonrelativistic terms are considered, the
shift in 7, for this local minimum in Xg;¢2 is still small.
What happens is that the Xqis? for this local minimum
increases and that for a local minimum at larger r, de-
creases, resulting in the larger 7, having lower Xgits2.)

Second, we can vary the on-shell amplitude Agr in
Eq. (86), leaving fixed the off-shell form used in calcu-
lating Cro and D,. This can be expected to have a more
marked effect on 7,, since the expression in Eq. (86)
is wholly proportional to 4gr. However, we do not have
as much leeway in varying the on-shell amplitudes,
since the /=0, 1, 2 expansion (82) fits the data so well.

Three approaches were tried. First, it was observed
that the average deviations between model and experi-
ment for Agr using the parameters given in Table IV
are: 24 MeV—1.99%, 50 MeV—3.9%, 58 MeV—0.8%,
65 MeV—2.0%, 51 MeV—1.99%,, 60 MeV—1.3%, 68
MeV—1.99%, and 75 MeV—1.49,. (These are half the
percentage deviations in the cross-section average which
is proportional to the square of Agr.) Varying Agr by
these amounts in Eq. (86) produced variations of about
19% in 7,.

Next, an /=3 term d,® was added to Eq. (82) and the
whole calculation was rerun for the 60-MeV data, since
these quite precise data afforded the best chance of de-
tecting any /=3 contribution. The best fit was obtained
for d;=0, producing no shift in 7,.

Finally, Ast was multiplied by a real 6-dependent
phase ¥(6):

Agr(new)= Agr(old)e¥®, (100)

Clearly this cannot affect X.,? (neglecting the small
correction term 2« ReAgr*Cyrr). Then ¢(0) was set

Y(0)=ed (101)

and Xg4its2(new) was computed as a function of ¢, looking
for the range of 7, for which Xgi2(new)<Xais?(old).
Depending upon the energy, this range covered £=50%,
of r.(old). However, this represents a rather artificial
situation in which many higher partial waves enter in
such a way as to cancel out in the cross-section average
calculations, but strongly affect the cross-section differ-
ence results. It appears to be more physically reason-
able to accept the conclusion that /=3 and higher waves
are neglibible.

V. SUMMARY AND CONCLUSIONS

A relativistically complete examination has been
made of all first-order electromagnetic corrections to
m*a scattering, by use of a low-momentum-transfer ap-
proximation to the off-shell strong amplitude.

For purposes of determining 7., those corrections are
most important which contribute to the difference be-
tween the nte and the =~a cross sections. The Born
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Coulomb term, of course, dominates near the forward
direction. All real infrared photon terms were found to
be negligible in the relevant experiments. Of the remain-
ing corrections, the ones which contribute significantly
to the cross-section difference are those in which a virtual
photon links an external « leg either to an external
pion or to an internal line. Soft-photon dominance was
assumed in showing that if one end of the virtual photon
terminates inside the strong interaction, then if the
other end also terminates internally, the term is negli-
gible, whereas if the other end terminates on an external
pion, the term contributes to the cross-section average
rather than to the difference.

In spite of the fact that a fairly good fit to the cross-
section difference data can be obtained by using only
the diagrams in which a virtual photon links either both
incoming particles or both outgoing particles, the purely
relativistic diagrams were found to be equally important.
Furthermore, when the relativistic terms were included,
the best fits were obtained for significantly lower values
of 7.

Four amplitudes (4st,4¢,5,Cre, and D,) were com-
puted in the process of extracting an estimate of 7, from
cross-section difference data. The forms taken for the
on-shell strong amplitude Agr and the Born Coulomb
amplitude 4 ¢ p are sufficiently accurate for this purpose
when using the most precise of the available data. The
possible sources of error are the estimated form of C;,
(the amplitude for a photon linking an external pion
to an external a particle), the estimated form of D,
(the amplitude for a photon linking an external «
particle to an internal line), and the estimated negligi-
bility of the contributions of D, and Dy to the cross-
section difference. The form taken for C,, uses an off-
shell strong amplitude accurate only to second order in
the momenta, and that taken for D, assumes soft-
photon dominance of the integral in Eq. (49). (The
justification for neglecting D, and D, also assumes soft-
photon dominance.)

Using these forms, C., and D, are of roughly the
same magnitude. In the forward direction 4 ¢,z domi-
nates over them. In the region from roughly 60° to 180°,
Cre and D, contribute more to the cross-section differ-
ence than 4¢,g. Both the C,, and the D, contributions
in this region differ in sign from that of A¢,s, resulting
in a fit to the data at smaller 7,. (Furthermore, all four
components of C,, contribute with the same sign, so if
Cu, Cas, and D, are omitted, the apparent value of 7,
is increased.)

However, before a definitive value for 7, based on r*a
scattering can be quoted it will be necessary to clear
up the following three problems.

(a) The theoretical problem of calculating the hard-
photon parts of virtual internal terminating corrections.
This is the difficult and important problem of extending
the low-energy bremsstrahlung theorem to say some-
thing about O(g) terms in the ab— aby amplitude.
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These terms may turn out to be negligible for purposes
of determining 7,, but there is as yet no way of knowing
whether or not this is the case.

(b) The theoretical problem of finding an off-shell
model of the amplitude valid at least up to terms of
order #2, i.e., fourth order in momentum. That the
second-order approximation used here is sufficiently in-
accurate to affect the determination can be seen by
comparing the on-shell second- and fourth-order
approximations.

(c) The experimental problem of reducing the erorrs
enough to see at least the /=3 waves in the cross-section
average. Information concerning higher waves is neces-
sary because the 7, determination, which uses the cross-
section difference, is fairly sensitive to the detailed
structure of the functional form used for the strong
amplitude.
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APPENDIX A: NONRELATIVISTIC STERNHEIM-
HOFSTADTER PROGRAM

In this appendix we give a brief review of the Stern-
heim-Hofstadter (SH)! program for measuring the pion
electromagnetic form factor as formulated by Schiff,?
together with a summary of three techniques used for
adapting this formulation to analysis of experimental
data.

Schiff’s nonrelativistic formalism begins with Gold-
berger and Watson’s®” expression for the 7-matrix ele-
ment for scattering by the sum of two potentials
U=2un and V=2uv I:u: mrma/(mw—l'ma)])

where® Tri= (¢~ UX)+ (@7, VHit), (A1)
(V-+E2)x=0, (A2)

(V2= D)p=0, (A3)

(ViR — U —V)y=0. (A4)

V is taken to be the Born Coulomb potential, shown
to first order for 7a — wa in Fig. 1. [Thus, in coordinate
space to first order, v is the Fourier transform of
Fr(g®)Fa(q%)/q%] U then represents the total potential
minus V. In the absence of electromagnetic effects, U
is simply the strong potential. More specifically
U=U,—(V—V,), where U, is the purely strong po-
tential and ¥, is the point Coulomb potential.

% M. L. Goldberger and K. M. Watson, Collision Theory
(John Wiley & Sons, Inc., New York, 1964), p. 203.

*8 Superscripts + and — indicate outgoing and incoming plane
waves, respectively. The x represents the initial plane-wave state.
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The expectation is that U, will be the same for #*a
and 7« scattering, and the V’s will differ only in sign.
To first order in the electromagnetic interactions, we
have

do®/dQ= | (¢77,UX;) |
+2 Re[(‘t‘f_y Uixi)*(qsf_y Vi¢i+)] .

Then, using the assumption UF=U,", V= —V", we
have

(AS)

1 da-(+) da-(—)

—[ + ]« @ UX)]2, (A6)
2L dQ asl

]_ dd(+) do-('—)

[ - ]oczRe[(dsf—,Ux,->*<¢,—,v+¢,~+>3. (A7)
2L dQ as

The SH program then is this: Choose a model for
the strong interactions which gives U as a function of
certain parameters. Using experimental data on the
cross-section average, determine values of these param-
eters which give a good fit to the data. These values,
which determine (¢,,U,X;), can then be used together
with cross-section difference data to ascertain param-
eters such as 7, in the first-order expression for
(¢, V¢;t), since the term (¢,~,(V —V)X,) contributes
only in second order.

To formulate the SH program even more explicitly,
Schiff assumed U to be spherically symmetric and let

o(x)= IZ rRy(r)Y(0,9) (A8)

where Ry(r) is the /th partial nuclear radial wave func-
tion. Then

el —1

—P;(cosh) ,
1 (a9)

0

1
fn(0)=——(¢/,UXo) =~ 2 (2i+1)
4 k 1=0 2

where the §; are the hadronic phase shifts, which are in
general complex.
Schiff showed that to first order one can substitute
i+ for ¢+ in the expression (¢,~,V¥i*) and obtain
(defining g= 2% sin6)

(75 Veit) =4 / V() jolgr)dr+dn g (2141)Py(cosh)

0

X / V(r)Le*®1R(r)— j 2(kr) Jr2dr, (A10)

a form in which the Born amplitude is explicitly sepa-
rated out. The amplitude fy= —(1/47)(¢;~,V¥s*) can
thus be written as the sum of the Born amplitude and
the Schiff distortion amplitude:

fr=fon+ fon. (A11)



1 STRONG wa SCATTERING

The distortion amplitude f¢x contains all nonrelativistic
first-order electromagnetic effects not contained in the
first-order Born Coulomb amplitude:

fom=— / V0)ilar)dr, (A12)
fon=— g (2141)Pi(cost) / v
X[e2®tR2(r) — 7:.2(kr) Jr¥dr. (A13)

Because the Coulomb field is long-range, both inte-
grals diverge at the upper limit, so a physically meaning-
ful cutoff must be introduced such as the average sepa-
ration between nuclei in the experimental medium,
beyond which the field from the nucleus of interest is
masked by the surrounding fields. This distance is
ordinarily in the order of 1078 cm.

As an alternative way of avoiding the divergences,
West® uses a different separation based on pulling out
the point Coulomb amplitude,

fr=fc+ fav+fen', (A14)

where
fC’z —_ (an/q2)e—in In sin2(36)+2in0 ,

no=—0.5772n  (A15)

fay=m— / [V () —Volr) Jjolgr)rdr, (A16)
0
fon' = =3 @I+1)Pycost) [ V()
=0 0
2461 1
X[em iR2(r)— j2(kr) __.e_Z_k?r;Jﬂdr . (A17)

Still another breakdown is used by Block,? who shows

that to first order
fV”*"fB‘i‘fD, (A18)
where

1 »
fs= fc'B—{-; lg (2141)Py(cost) (e281—1) (m—n0) (A19)
and

1
fo=- X @+DPicost)enai, (A20)
1=0

with

0

— / V)LRA) — k) dr.  (A21)

Auerbach et al.? used the original breakout

J® = fyt(fecptfen) (A22)
1
=ﬁ:f0+]; zgo QI4-1)Py(cosO)[ (fw)i=(fen):
+(fep—fo)il, (A23)
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and obtain (f); and (fewn): from f;® and (fc,8): via

(fv)i=3LfiD+ f19], (A24)
(fen)i=3L /i =19 =2(fc,8)]- (A25)

In addition to using different techniques for over-
coming the Coulomb potential divergences, these three
approaches also used different models for the nuclear
interaction.

To represent the data satisfactorily, a model of nu-
clear ma scattering must take absorption into consider-
ation.®® In addition, it is known from partial-wave
analyses of other pion-nuclear interactions® that, un-
like the cases of nucleons and « particles scattering on
nuclei, which seem well approximated by local poten-
tials, pion-nuclear interactions apparently cannot be
explained unless nonlocality is employed.

Block? introduced a certain form of nonlocality into
a purely phenomenological Gaussian potential by mak-
ing it spin-dependent:

Ui(r) = U (0)e—3* attrad) (A26)

where the U,(0) were permitted to be complex to simu-
late absorption.

West? and Auerbach ef al.? both used the Kisslingre
model,#! based on the impulse approximation that in-
dividual nucleons in the nucleus behave under impact
like free nucleons which are, however, spread through-
out the nucleus according to a nuclear density function
p(r). This yields a momentum-dependent potential

UKis(r) = — (4m/2u) [bop(r) =V -cop(r) V1. (A27)

In both cases, the original Kisslinger model was
modified by allowing b, and ¢o to be complex to simulate
absorption.4? If Imc,= 0, the differential equation arising
from the model contains a singularity. To avoid this,
West further modified the model by making the

replacement

(1+poc) = (1 —poc)~". (A28)

39 The total elastic and inelastic cross sections have been mea-
sured at 129, 140, and 150 MeV /c for both n*a and e scattering.
In all cases oino1>0e1. Compare with M. Block et al., Phys. Rev.
169, 1074 (1968). The observed absorption modes of low-energy
xe, for example, include ¢d, d2n, and p3n in proportions 30:54:
16%: M. Schiff, R. H. Hildebrand, and C. Giese, ibid. 122, 265
(1961); S. G. Ekstein, ibid. 129, 413 (1963). In addition, there are
three- and five-body channels, the inelastic modes without charge
exchange, 7~ nHe?, w2n2p, and =pH?, and those with charge
exchange, 7'#H? and 79p3n. At 153 MeV, elastic scattering is 36%
of the total, while the three-body modes without charge exchange
are 20, 10, and 4%, respectively, leaving 30% for the sum of the
three-body modes with charge exchange and the pion absorption
modes: Y. A. Budagov ef al., Zh. Eksperim. i Teor. Fiz. 42, 1911
(1961) [English transl.: Soviet Phys.—JETP 15, 824 (1962)].

10 W. F. Baker ef al., Phys. Rev. 112, 1763 (1958); 112, 1773
(1958); M. Ericson, Compt. Rend. 257, 3831 (1963).

41T, Kisslinger, Phys. Rev. 98, 761 (1955).

42 Considering the more detailed results of M. Ericson and T. E.
0. Ericson [Ann. Phys. (N. Y.) 36, 323 (1966)], it may have been
better to introduce complex parameters by writing U(r)
~ — (4n/2u){[bo+Bop (1) Jo(®) =V - Lcot+Cop (@) Jp ®)V}, where bo

and ¢ are real and By and Cp are complex.
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West used a step-function density p(r)=60(R). Auer- TasLe VIIL Rochester data (at 24 MeV).
bach et a.l. used two' different nuclear density function§, o, do*/d9 o do )i .
the modified Gaussian of the shell model and the modi- (deg) (mb/sr) (mb/sr) (mb/sr) (mb/sr)
fied exponential of the Saxon-Woods model. 516 0.27 0.05 0.79 011

61.8 0.38 0.06 0.35 0.08

76.9 0.44 0.05 0.12 0.05

APPENDIX B: mwa SCATTERING DATA 02.0 0.73 0.05 0.33 0.12
. . . 107.0 1.04 0.08 0.75 0.10

The basic 7%« scattering data from Refs. 3-5 are given 121.8 1.53 0.15 1.33 0.13
: 139.3 2.33 0.16 1.75 0.27
in Tables VIII-X. The Northwestern and Berkeley 150.0 248 012 275 022

data, which cover roughly the same energy range,

appear to be inconsistent, even discounting the problem
of uncertainty in over-all normalization (cited as =46 T

and 29, for the Northwestern and Berkeley data, re- 8l _:_ :::,hhe:::er o .
spectively). A plot of the data at constant values of the — Berkeley

scattering angle is shown in Fig. 13. Although experi- E (interpolation)
mental errors are quite large, the Northwestern cross LA
sections appear to increase consistently faster with s
than those measured at Berkeley.

The Northwestern curves in Fig. 13 were drawn
using the center of each (Acosf,Ads/dQ) bin in the
published data. Because of the forward and backward
peaking, the event distribution in each bin was prob-
ably weighted toward the side with greater | cosf|. Thus,
if we use the center of the Ado/dQ range of the bin as T
the cross section for the datum point, we should use a 0 20 40 60 80 100
value of cosf between the center and the larger extreme. T (MeV)

If uz, and uy are the extremum values of cosé for a

Frc. 13. Average cross sections at constant scattering angle.

TaBre IX. Northwestern data.

Oc.m. do*/dQ (do™*/dQ) moa € do—/dQ (do~/dQ) moa [
(deg) (mb/sr) (mb/sr) (mb/sr) (mb/sr) (mb /sr) (mb/sr)
50 MeV
31.8 1.6 1.4 04 7.0 6.7 1.1
45.6 1.8 1.8 0.3 2.8 2.7 0.4
63.2 0.4 0.4 0.1 1.3 1.2 0.2
81.4 0.5 0.5 0.1 0.4 0.4 0.1
95.7 1.5 14 0.3 1.1 0.9 0.3
107.5 2.6 2.5 0.4 2.1 1.9 0.4
120.0 4.1 4.0 0.5 4.4 4.3 0.6
1344 49 4.8 0.5 7.0 6.8 0.8
154.2 7.6 7.5 0.6 7.7 7.5 0.8
58 MeV
31.8 34 3.3 0.5 9.4 9.2 1.1
45.6 2.0 1.9 0.3 4.2 4.1 0.5
63.2 0.7 0.7 0.1 0.8 0.7 0.2
81.4 0.5 0.5 0.1 0.6 0.6 0.1
95.7 1.7 1.7 0.2 2.0 1.9 0.3
107.5 3.0 2.9 0.3 34 3.3 0.5
120.0 3.8 3.7 0.4 5.6 5.5 0.6
134.4 5.8 5.7 0.5 7.2 7.1 0.7
154.2 7.0 6.9 0.5 9.3 9.2 0.8
65 MeV
31.8 43 40 0.8 15.7 15.3 1.7
45.6 4.6 4.6 0.7 L6.4 6.2 0.7
63.2 1.1 1.0 0.2 2.5 2.4 0.4
81.4 0.7 0.7 0.1 0.8 0.8 0.1
95.7 1.3 1.2 0.3 2.0 1.9 0.4
107.5 3.6 3.5 0.5 £4.2 4.0 0.6
120.0 4.8 4.7 0.5 r5.9 5.8 0.6
134.5 7.0 6.8 0.8 8.4 8.2 0.9
154.2 8.8 8.6 0.9 10.3 10.1 1.0
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TaBiLE X. Berkeley data.
Oc.m. dot/dQ € do— /dQ € O.m. dot/dQ € do—/dQ2 €
(deg) (mb/sr) (mb/sr) (mb/sr) (mb/sr) (deg) (mb/sr) (mb/sr) (mb/sr) (mb/sr)
51 MeV 68 MeV
31.5 1.516 0.140 5.192 0.254 31.6 4.031 0.190 7.299 0.273
36.7 1.611 0.136 3.969 0.166 36.8 3.612 0.176 5.312 0.361
419 1.223 0.093 2.978 0.145 42.0 3.247 0.135 4.494 0.164
47.1 1.131 0.093 2.033 0.107 47.2 2.651 0.126 3.082 0.223
62.5 0.434 0.024 0.560 0.025 62.7 0.722 0.025 0.925 0.034
67.6 0.266 0.023 0.371 0.020 67.8 0.437 0.020 0.512 0.026
72.7 0.323 0.020 0.269 0.019 72.9 0.382 0.018 0.366 0.022
77.8 0.375 0.023 0.314 0.020 78.0 0.447 0.019 0.388 0.025
82.8 0.581 0.026 0.427 0.023 83.1 0.692 0.025 0.556 0.030
92.9 0.993 0.050 0.950 0.041 93.1 1.350 0.047 1.180 0.051
102.8 1.610 0.057 1.638 0.053 103.0 2.094 0.063 2.018 0.069
122.5 3.433 0.144 3.715 0.132 122.7 4,011 0.149 4.392 0.142
132.2 4.095 ).164 4.471 0.148 132.4 4.961 0.176 5.098 0.163
141.8 4.764 0.177 4.791 0.147 142.0 5.583 0.213 5.543 0.316
151.4 4918 0.194 5.034 0.156 151.5 5.843 0.267 5.591 0.333
60 MeV 75 MeV
31.5 2.661 0.075 6.712 0.146 31.6 5.940 0.205 9.394 0.236
36.7 2.634 0.071 5.033 0.106 36.9 5.252 0.167 7.080 0.215
41.9 2.327 0.052 3.854 0.076 42.1 4.268 0.141 5.858 0.132
471 1.663 0.046 2.835 0.062 47.3 3.006 0.104 3.979 0.127
62.6 0.534 0.010 0.747 0.013 62.8 0.960 0.025 1.119 0.023
67.7 0.366 0.009 0.436 0.009 67.9 0.623 0.019 0.667 0.017
72.8 0.325 0.008 0.306 0.008 73.0 0.458 0.017 0.488 0.014
77.9 0.375 0.008 0.336 0.009 78.1 0.529 0.019 0.498 0.015
83.0 0.618 0.012 0.521 0.011 83.2 J.776 0.023 0.710 0.018
93.0 1.128 0.021 1.077 0.021 93.2 1.413 0.042 1.325 0.035
102.9 1.928 0.031 1.916 0.031 103.1 2.203 0.057 2.361 0.050
122.6 3.936 0.079 4.232 0.083 122.8 4.508 0.143 4.578 0.103
132.3 4.592 0.104 4.875 0.109 132.4 5.264 0.152 5.379 0.116
141.9 5.422 0.150 5.454 0.153 142.0 6.054 0.175 5.646 0.169
151.5 5.721 0.196 5.924 0.203 151.6 6.114 0.200 6.046 0.203
bin, then (which, looking at the Berkeley data, should be fgirly

o do
.

u—(u) u

linear approximation

o=

ty(do/dQ) (uy) +p(do/d) (uz)

/ / —

Since (do/dQ)(u) is not known a priori, we use the

(do/d) (wv)+(do/dD) (ur)

(B1)

(B

2)

good in the forward and backward directions, where
the problems are), and use the extremes of the Ado/dQ
bin as (do/dQ)(u,) and (do/dQ)(ur). Finally, to keep
the doe ™ and do™ data at the same 6, we transform
the correction from 6 to do/dQ2 by simple proportions
within each data bin. The modified Northwestern data,
also shown in Table IX, are still in disagreement with
the Berkeley data.



