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Strong Pion —Alpha-Particle Scattering with Electromagnetic Corrections
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Electromagnetic corrections to xn scattering for spacelike q' are calculated to see whether they can be used
to determine r . The low-momentum t dependence of the off-shell strong amplitude used in this calculation
is determined with the help of crossing symmetry, current algebra, and the hypothesis of partially conserved
axial-vector current. The relativistic corrections are found to be just as important as those which are also
included in nonrelativistic treatments. When only the nonrelativistic terms are used, the large value of r
(2—3 F) obtained recently from n+n scattering is reproduced. Including the relativistic terms brings the
resulting value of r down to approximately 1 F.This is consistent with the values obtained by using inelastic
electron-proton scattering; however, the m+a results are quite sensitive to the details of the xa nuclear inter-
action and to the relativistic effects, which are only roughly approximated.

I. INTRODUCTlON

A I'"EW years ago Sternheim and Hofstadter' pro-
posed that the electromagnetic structure of the

pion be studied by considering the scattering of ~+ on
zero-isospin nuclei such as 'He. (Table I shows deter-
minations of the pion charge radius based on other
techniques. ) A formalism was developed by Schiff' for

calculating the nonrelativistic Coulomb sects of elastic
x+m scattering to first order in the fine-structure con-
stant without the use of Coulomb wave functions. (See
Appendix A for a revievr of Schiff's formalism and
methods of adapting it to experimental data. ) It was
demonstrated that even in nonrelativistic theory first-
order Coulomb effects arise not only from the Born

TA@Lz I. Predicted and measured values of r .

Source r- (F)

Theoretical

Comments

Nambu, ' Sakurai, b

Gell-Mann and Zachariasen, '
and Gell-Mannd

Salecker'
Cocho and Ar-Rashidt
Cocho and Ar-Rashid'
Efremov~
Barut"
Arnowitt et al. '

Roos and Pisut2

Roos and Pisut&

Shrauner et al."
Oyanagi'

Allen et al.
Cassel"
Akerlof et al.'
Mistretta et alP
Auslander et al.&

Augustin et al.'
Devons et al.'

0.6
0.82
04
1.4
0.3
1.7
0.6

0.628~0.004
0.7

0.36+0.12
0.83

&4.5
&3.3

0.8+0.1
0.86&0.14

0.632&0.009
0.628&0.003

&1.9

Vector-dominance model

Disperson relation and J= T= 1 xw effective-range expansion
Current algebra excluding Ai meson
Current algebra including Aq meson

Approx. to equation based on minimal electromagnetic coupling
Electromagnetic current in O(4,2)
SU(2) SSU(2) current algebra and meson dominance
Analysis of e++e —+ m++m.

Analysis of e +p~ e +m+7'+
Self-consistent multiple-quark mp scattering analysis
Veneziano-type formula

Experimental
v- +e ~ n +e, q'=0.00004 to 0.004 (GeV/c)'
n. +e ~ n +e, q'=0.003 to 0.01 (GeV/c)'
e +p -+ e +n+n+, q'= 0.05 to 0.4 (GeV/c)'
e +p ~ e +n+n+, q'=0.04 to 0.2 (GeV/c)'
e++e ~ 7r++n, q'= —0.4 to —0.8 (GeV/c)'
e++e —& n++n q'= —0.4 to 0.7 (GeV/c)'—
n. +p -+ n+e++e, q'= —0.002 to —0.02 (GeV/c)'

a Y. Nambu, Phys. Rev. 106, 1366 (1957).
b J.J. Sakurai, Ann. Physik 11, 1 (1960).
I M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961).
~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
& H. Salecker, Z. Physik 164, 463 (1961).
& G. Cocho and H. Ar-Rashid, Progr. Theoret. Phys. (Kyoto) 36, 1150

(1966).
&A. V. Efremov, Zh. Eksperim. i Teor. Fiz. 53, 732 (1968) t English

transl. :Soviet Phys. —JETP 26, 455 (1968)].
h A. O. Barut, Nucl. Phys. B4, 455 (1968).
& R. Arnowitt et al. , Phys. Rev. 174, 2008 (1968).
j M. Roos and J. Pisut, Nucl. Phys. B10, 563 (1969).

& E. Shrauner et al. , Phys. Rev. 181, 1930 (1969).
& V. Oyanagi, Report No. UT-16 1969 (unpublished).
m J. Allen et al. , Nuovo Cimento 32, 1144 (1964).
& D. G. Cassel, thesis, Princeton University, 1965 (unpublished).
o C, W. Akerlof et al. , Phys. Rev. 163, 1482 (1967).
& C. Mistretta et al. , Phys. Rev. Letters 20, 1523 (1968).
& V. L. Auslander et al. , Phys. Letters 25B, 433 (1967).
& J. E. Augustin et al. , Phys. Rev. Letters 20, 126 (1968); Phys. Letters

28B, 508 (1969).'S. Devons, P. Nemethy, and S. Nissim-Sabat, Report No. INFN-
ROME-202, 1968 (unpublished).

*Work supported by the U. S. Atomic Energy Commission.
'M. M. Sternheim and R. Hofstadter, Xuovo Cimento 38, 1854 (1965).' L. I. Schiif, Progr. Theoret. Phys (Kyoto) Supp. l. Extra Number, 400 (1965); Progr. Theoret. Phys. (Kyoto) 37, 635 (1967).
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(a) c, (b) c,„ (c) ca3 (d) ca
/
(e) Cia

/
(f) Cs4 (g)

Pro. 1. First-order Coulomb Born amplitude, A(;, Ii.

(k) c, (/) c, (m) ca (A) c,
aznplitude (Fig. 1), but also from distortion of the pion
wave function by the nuclear interaction. The non-
relativistic distortion terms arise when the pion, in the
process of a Born Coulomb interaction with the n

particle, also experiences a nuclear interaction, as shown
in Figs. 2(e) and 2(f). )Since the nonrelativistic Cou-
lomb potential acts instantaneously, it does not include
the purely relativistic diagrams shown in Figs. 2(a)—
2(d), 2(g)-2(n), and 3.j

Three ~+a scattering experiments have been per-
formed at Rochester, ' Northwestern, 4 and Berkeley, 5

and there are at least three different ynethods of ada, pt-
ing Schiff's formalism to the data due to %Vest,

Block, s and Auerbach et al. ' The results, given in Refs.
3—9, of applying these methods of analysis to these sets
of data are listed in Table II ""

If we keep in mind the prediction r =0.63 F of the
vector-dominance model, "we find several disconcerting
features concerning these results. The 6rst experiment,
at Rochester, contained only eight data points, and
6ts to these data are not good statistically pllnclpally
because of one apparently anomalous point. However, if
this point is omitted, the upper limit on r is much
larger than 1.5 F.

The second set of data, from Northwestern, contains
such large experimental errors that it is dificult to see

'M. E. Nordberg and K. F. Kinsey, Phys. Letters 20, 692
(1966).' M. M. Block et al. , Phys. Rev. 169, 1074 (1968).' K. M. Crowe, A. Fainberg, J. Miller, and A. S. L. Parsons,
Phys. Rev. 180, 1349 (1969).See also A. Fainberg, UCRL Report
No. UCRL-19208, 1969 (unpublished).

6 G. B.West, J. Math. Phys. 8, 942 (1967).
' G. B.West, Phys. Rev. 162, 1677 (1967).
s M. M. Blo~k, Phys. Letters 25$, 604 (1967).' E.H. Auerbach, D. M. Fleming, and M. M. Sternheim, Phys.

Rev. 162, 1683 (1967).
~o Ingoring distortion entirely, the Rochester data give r =1.8

+0.8 F.
~~ If the Kisslinger model rather than a Gaussian potential is

used, a better Gt is obtained, giving r =2.26&0.16 F.
'2The vector-dominance model gives (ignoring P,) E (qs)

=1/(1+q'/et, '), which implies a mean pion charge radius of
r =(/6)/nt, =0.63 F; see M. Gell-Mann, Phys. Rev. 125, 1067
(1962). The storage ring e+e ~ 2f-+x measurements at timelike
momentum transfers [—0.7&q'& —0.4 (BeV/e)sj fit this form
fairly weD, but suggest r =0.8 F: J. E. Augustin et al. , Phys.
Rev. Letters 20, 126 (1968);V. L. Auslander et at. , Phys. Letters
258, 433 (196'/). The inelastic electron-proton scattering e p —+
e av+ measurements at spacelike momentum transfers LO &q2 &0.5
(G~eV/c)sj, after considerable interpretation, seem to suggest
r =0.86~0.14 F: C. W. Akerlof et al. , Phys. Rev. 163, 1482
(1967); C. Mistretta et al. , Phys. Rev. Letters 20, 1523 (1968).
The electron-pion scattering measurements at spacelike q' are
easier to interpret but less accurate, giving only r (3 F:J. Allen
et a/. , Nuovo Cimento 32, 1144 (1964).

FIG. 2. First-order external terminating corrections. The dia-
grams in which one or two legs of the strong interaction are oB
shell contribute to the oB-shell correction terms C;; or C; as in-
dicated. The on-shell term B&s comes from (a), (g), and (i), and
B~~ comes from (k) and (l), and similary for the other Bg's and
Bsg S.

any F„(q') effect in all the noise. In fact, some best fits
to this data are obtained for negative values of r '.

Finally, the most complete (60 points) and most ac-
curate (=3% errors in do t+&/dQ) experiment, at
Berkeley, using the method of analysis which fits the
data, best, yields astonishingly large values for r .

In order to determine whether or not these results
indicate that the vector-dominance model (which ap-
pears to be valid near q'= —m, ') fails to extend to
spacelike q', it is necessary to reexamine the effect of
F (qs) upon vr+n elastic scattering.

The basic problem involved in extracting ~x7 vertex
information from x+a scattering data is that of calculat-
ing the distortion amplitude corresponding to all dia-
grams involving both strong and Coulomb interactions.
Two questions concerning this calculation have received
inadequate attention. The first problem concerns the
validity of applying a nonrelativistic calculation to data
involving momentum transfers in the order of the pion
mass. (The value of qs in the three experiments ranged
from 0.34m ' to 1.22m, '.) The relativistically complete
set of erst-order distortion diagrams is given in Figs.
2 and 3."The nonrelativistic calculation uses only the
low-momentum limits of Figs. 2(e) and 2(f).

The corrections in which the photon terminates on
external lines, those shown in Fig. 2, can be computed

(0 } Di

FIG. 3. First-order internal terminating corrections.
3 We treat the a particle as an elementary particle, defining

elastic scattering as leaving the ~ unexcited.
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TAsr, z II. Pion charge raidus r (in F) based on nonrelativistic ir n scattering analyses. Indicated error
ranges are 1 s.d. (standard deviation) unless otherwise specified.

Experiment

Rochester*
Northwestern

Berkeley

qR

L(GeVl~)']

0.005—0.03
0.005-0.08

0.005—0.09

West

&1.5

&1.20 (1 s.d.)
(1.77 (2 s.d.)

Method of analysis
Block

&0.1 (1 s.d.)
&0.9 (2 s.d.)
&0.9 (1 s.d.)
&2.1 (2 s.d.)
1.29+0.82

b

Auerbach

&1.0 (1. s.d.)
&2.0 (2 s.d.)

2.88+0.37

+ Reference 20.
b Reference 22.

by standard techniques once the oR-shell x'n strong-
interaction elastic amplitude, which we denote by ABT,
is known. LThese calculations are simplified by treating
the external n legs as so massive that, with maximum
momentum transfer in the order of m„ they remain
essentially on shell, " i.e., A(p&g) =A(p), where p is
the on-shell n rnornenturn, over the range of photon
momentum q giving the dominant contribution to the
distortion. ) We find that Figs. 2(b) and 2(c) are just
as important as Figs. 2(e) and 2(f), while the rest of
the external terminating corrections are negligible.

A complete computation of the corrections in which
the photon terminates on internal lines (Fig. 3) re-
quires knowledge of the o6-shell amplitude A„ for
s-n —+imp (at least up to a scalar constraint). Given
AST, using Ward's identity, and noting the absence of
infrared divergences for internal terminating diagrams,
we are able to determine A„up to terms of order q in
the photon momentum. This is sufficient to enable us
to show that Fig. 3(f) is negligible for the momentum
transfers and resolutions involved in the experiments of
interest. However, we need A „up to a scalar constraint
to know the hard-photon contributions to the p&A„parts
of Figs. 3(a)—3(e). It appears that without strong-
interaction information beyond, the x n elastic ampli-
tude, computation of these contributions must involve
additional unknown parameters. To avoid this problem
we assumed soft-photon dominance of the integral over
p&A„Lsee Eq. (49) belowj.

It turns out that the purely relativistic contributions
add. to the distortion eRect obtained using only the non-
relativistic terms. (Ignoring hard internal terminating
photons, this result is independent of the model and of
the over-all phase of the amplitude, and arises purely
from the relative phase conventions of Feynman dia-
grams. ) Qualitatively, this provides the pion with more
ways of interacting electromagnetically with the n par-
ticle, thereby making it possible to reproduce the ob-
served electromagnetic distortion of the strong inter-
action using a smaller pion charge radius. With only
nonrelativistic terms, on the other hand, a larger pion

~4 More precisely, we keep o. legs external to the strong inter-
action on shell everywhere in our formulation except in propagator
terms P(p2, 4&g)' —m 'j '.

charge radius must be used to explain the magnitude of
the distortion.

The second problem concerns the sensitivity of the
value of r extracted from the data to the detailed struc-
ture of the strong interaction. The philosophy of the
calculation is that the cross-section average data are
used to fix AST and this is used together with cross-
section diGerence data to determine r . However, the
constraint that the form used for the strong amplitude
A» fit the average data leaves certain leeway in A»
which can aRect r . There are features of AST to which
r is sensitive, but the average cross section is not. The
over-a11 phase of A gT is an example, and is easily handled
by simply including it as a parameter in the r determi-
nation (cross-checking this against what total cross-
section data there are via the optical theorem). But
there are more serious difficulties. Higher partial waves
(l=3 and higher) could possibly affect the phase of
A», thereby influencing r„, and yet not be seen in the
average data. Also, the oR-shell behavior of AgT, which
can only be crudely estimated from the average data,
can aRect r, .

Except for the unlikely possibility of higher partial
waves contributing only to the phase of AsT, there ap-
pears to be no evidence for the presence of l= 3 or higher
waves of sufficient amplitude to inQuence r signifi-
cantly. Also, if the on-shell behavior of the off-shell
amplitude used is taken as indicitative of the accuracy
of the amplitude off the mass shell, then the resulting
error in r is small. However, there is presently no way
of estimating the actual error off the mass shell. If the
off-shell behavior is significantly more in error than the
on-shell behavior, the resulting uncertainty in r can
be quite large.

II. FIRST-ORDER ELECTROMAGNETIC
EFFECTS

A. General Considerations

The order-n' corrections to any strong-interaction
process can be grouped into three categories. First
there are the Coulomb Born terms in which photons
link otherwise disjoint parts. The first-order Coulomb
Born term for elastic x+n scattering occurs only in the
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f channel (Fig. 1),

A c.n = l—s-L(~ I—)If jF-(q') F-(q'),

where q=Q( —t)=2k sin-', 8, s.=&1 for 7r+, the n-
particle form factor" is F (q') =exp( —srr 'q'), and we
write the pion form factor" as F (q') = 1/(1+err sq').

Second, there are those corrections in which the extra
photon line terminates only on hadrons external to the
strong interaction (Fig. 2). In some of these LFigs.
2(a)—2(j)1 the extra photon is virtual, whereas in others
LFigs. 2(k)—2(n)j it is a real infrared photon. Both the
real and the virtual photon terms can be split into a
part which depends only on the on-shell strong ampli-
tude and a part which depends on its off-shell behavior.
The on-shell parts of the real and virtual photon con-
tributions have compensating infrared divergences. '7

The finite residue of these on-shell parts contributes,
in first order, a factor 1+2n(B+ReB) to the strong
scattering cross section, where the real photon contribu-
tion 8 and the virtual photon contribution 8 are given
by Yennie, Frautschi, and Suura. "The real and virtual
off-shell parts, which we will call C and C, cannot in
general be expressed as a simple multiplicative con-
tribution to the strong scattering, since their structure
is dependent upon the details of the strong-interaction
model used.

Finally, there are the terms, which we will call D and
D; corresponding to diagrams in which at least one end
of the extra photon (real or virtual) terminates on a line
internal to the strong interaction (see Fig. 3). These
terms also have a model-dependent structure.

All these first-order corrections considered, the m+o,

elastic scattering cross section is

d~(+)
I
A» I

'L 1+2cr(B+ReB)3
dQ s

+2a ReA s Te(A c,n+C+D)
coq(5 E j3q—,-IC+Dl, (2)

(2a) s2co,

where AsT is the strong scattering amplitude and 5E
is the mimimum detectable photon energy in the par-
ticular experiment.

We next separate the terms which contribute to the
cross-section difference do'+' —da. i l, where (&) is the
pion charge, from those which contribute to the average.
To do this we let i, j be hadron leg indices (taking
i= 1, 2, 3, 4 as labeled in Fig. 1, and letting i =0 repre-

"F (q') has been experimentally found to be Gaussian with
r =1.66&0.04 F for 0.07&q'&3.7 F ' (1 F ' corresponds to
19732 MeV'): R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956);
H. Frank, D. Haas, and H. Prang, Phys. Letters 19, 391 (1965).

"Neither theory nor experiment presently suggests what the
structure of F may be like beyond the III' term, so we use the pole
form rather than, for example, the exponential exp( —-',r 'q').

'r E. Corinaldesi and R. Jost, Helv. Phys. Acta 21, 183 (1948).
'I D. R. Yennie, S. (.", I"rg,utschi, and H. Suura, Ann. Phys.

(N. Y.) 13, 379 (1961),

sent any internal line), specifying where the photon
terminates:

(3a)B=g Bo,

B=QBg, (3b)

C=Q C;;, (3c)

D=P D;.

=-I
I
A»

I
'(1+2nB .)+2n ReAsT*(C..+D.)

+-IA..I), (4)
1 do-(+' do. ( '

=-L2~ ReA»*(A c,n+B..A»+C..+D.)], (4b)

where we have now removed the s dependence from
A~, g and the distortion terms.

Once B... C „and D, are calculated (C and D being
dependent upon As T) and a strong-interaction model is
chosen to fix the functional form of A~T, then experi-
mental cross-section average data can be 6tted to deter-
mine the parameters in AsT. (The electromagnetic
contributions to the average are small, so the value
chosen for r is not crucial here. ) Then a calculation of8, C, and D will make it possible to determine r
and other remaining parameters by 6tting cross-section
difference data.

B. Photon Terminating on External Lines
(Hadrons on Shell)

As pointed
'

out in the preceding section, the first-
order electromagnetic corrections with the strong ampli-

The squared Born term is included, since it is significant near
the forward direction even though of second order -in «x.

We omit C and D, since these will be shown to be
negligible. Also, B =Bs4+ReBs4 and C =Cs4 will
be found to be negligible.

In general, B ~=Bts+ReBts and C ~=Cts contrib-
ute to the cross-section average; the remaining com-
ponents B„and C„contribute to the difference. The
matter is less definite for the internal terminating cor-
rections D. Assuming soft-photon dominance in these
terms, we will be able to show that D =Dt+Ds con-
tributes to the average, that D =Ds+D4 contributes
to the difference, and that the real internal-line brems-
strahlung Do is negligible. In summary, to first order, "
1 dg(+' do. ( '
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tude left on shell contribute, after canceling infrared divergences, a factor 1+2n(B+ReB) to the cross section.
In this section we compute the terms B;,+ReB;; and show that they can be neglected.

Using Eqs. (C4) and (C8) of Ref. 18, we can write

s;8;s;8; (Ak)'
B;,+ReB;,= — —ln +-',p,"p,

2x EE;

' dx (Ak)'
ln +-,'

ps gs
ps

dx ln——+G;,(1)+G,;(—1)—p; p,
8$jmj

where

' dx
— G' (x)+4p' p~ I 8'+8~ I

2—1

' dx 2tr'8(x+x )=lnx'+—
t p." $(p, p;")' m—sm, s5'is

2p. = (1+x)p;+(1—x)p, 2p.'= (1+x)p;8;—(1—x)p;8;,

&*—Il*l B*+ll*l) /&. +I~.l)
Gv(x) =— ln — I+ lnl

2ll. l &*-I~.li E 2E, )'
—(m' —m') a2L(p; p.)'—m, sm, s5'~'

p4 +mj +2pj' pj

8,=+1 if the sth particle is outgoing, —1 if incoming,
and lS is the minimum detectable infrared photon
three-momentum (about 2 Mev/c for the Berkeley
experiment").

In the low-energy limit k(&m„, it is simply a matter of
algebra to show that the contributions to the cross-
section average 8 and 8 are of order

B,=k'/sos„s and B =B (m /tts ) for k((m, . (6)

It is immediately clear that 8 can be neglected in
comparison with 8

At higher momenta it is easier to simply do the inte-
grals numerically. This is also true for the contributions
to the cross-section difference

B 2(Brs+=ReBrs)+ 2(Bt4+ ReBr4) . (7)

Some values of 2n(B;,+ReB,;) for angles near which
Aq~ is a minimum" are given in Table III.

From these results, it is evident that in all these cases
2tr(B;;+ReB;;) is of the order of 0.01 or less. We shall
see later that the total distortion amplitude, including
the C;; and D; terms, is in the order of 10% of AsT.

TABLE III. Values of the on-shell electromagnetic correction
factors 2n(B@+ReB;,) for s.+a scattering near the strong-inter-
action minimum.

Thus 8 „and 8 turn out to be only a small part of
the total distortion.

C. Photon Terminating on External Lines
(Hadrons o8 Shell)

Next we turn to the off-shell parts of the external
terminating diagrams. Letting fp;) be the set of on-
shell momenta, P s=m,', we write these corrections in
terms of the difference

+ST(pl (ps i ps yp4 ) +ST(pl)psyps)p4) y

where the momenta {p,'} are off shell and AsT is the
strong amplitude written in a form which permits us
to take the momenta off shell.

1. Virtu/ Photons

The electromagnetic corrections involving one virtual
photon with both ends terminating on a line external
to the strong-interaction subdiagram are shown in Fig.
4. In those diagrams in which both ends terminate on
the same line, the strong amplitude AST is on shell. In
those in which the virtual photon connects two diferent

(s,i )

(1,3)
(2,4)
(1,2)
(1,4)

T"b=24 MeV
8, =76.9'

0.00345
0.00004
0.00128

—0.00540

T"b=51 MeV
8,.~.=72.7'

0.00680
0.00007

—0.00501
—0.00021

Tlab=75 MeV
8. =73.0'

0.01012
0.00012

—0.01023
0.00482

"K. M. Crowe (private communication).
"The effects of distortion upon r are most pronounced in this

region, which is where the Born Coulomb term, which dominates
the forward direction, competes with the distortion &erg~, which
dominate the backward direction.

I I
~ P ~

Ca)
pY

Cb)

FIG. 4. Virtual photon terminating outside As',
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g ~he'll Explicitly&external lines, ABT is o

d4q

(2n-)'q'

(28;p;+q) (28;p, —q)

H8' ' ~"jk(8 P q)'—~'—j

A (»=4 &0;. ;0;s,iJ

P +q)
—+ —8 . 8&&~«(p'~p'+8'q P ~p q—.

ubtract the on-shell ABT inside theNow we add and s

a9ia, the standard infrared correctiondiagrams, gives us the stan ar in

where

B=g Bg,
i(j

8;;=——0;s;O,s;
SZ3

-(2p;8; q) „(2P—,8;+q)„-~

q' —2q p;8; q'+2q p,8;

nC=n Q C;;,

where

hich we denoted above by is theThe r
d to theo'-shell behavior o ecorrection ue o

It is given by
(11)

P-(q') = 1/(1+ lr-'q') (13)

n off shell (as well as
sum th momenta of lnteres

vcltcx with OIlc pion 0
sumethat or t emom

it is approximately given by the on-s e va

I p(—q' q P)(2P q). —
+h(q' 2q P—)/q'j(P(q' q P) 1q-

= —i' (q')(2p —q)„.
'

h
'

legs off shell is derivedThc aIIlplltudc A wit pion cgs 0
0

in Sec. III A. Using the expansion o sec
momenta, we have

is Hq02 de —28,g. 3 C, q
—

q
'—2q (P~—Pa)3

(q'+2q P2)(q' —2q P~)

(15a)&&P-(q') (2P +q)"P-(q")(2P~—q).

~'q» I:q' —q (P~+P3)l
' (q' —2q p3)(q' —2q p,

&&P-(q')(2P~ —q) "P-(q')(2P3 —q),

( 2) 'nee we ass metic e
'

] th scanbetak. enassimpy ~ ~
h ]l. H wevcrexternal o' legs rem pp

l time]. ike valuesere wc must con» c & ~ . d.@ ulty for largeruns intoThe form exP( 6r~ q
ze) rather than theto assure convcrgncc

ole formGaussian, we mll us Po

Cg —— 0;s,O;z,.
3

d'q (28'P'+q) (28'P~ q)—
q'(q'+2q P'8')(q" 2q PA)—

we can compute=Ca(p2~ —4,Thus
q uslIlg

C = 2(C2g+C23) and C = 3). o
define

X sr; ' *, ~ —8 q
—~sT$ (12)&&3~»(P'~p'+8*q Pr~p~ ~q—

is t Coulomb interactions&
h - f

is assumes poln o
so to be correct we mumust insert e a

.( ' 8 p ) before integrating. orfactors F;(q, ,g

P= 28 p 2C (p p)—
Q—= 2(P~ —P2),

M„'—=6/r„.~'.

(16)

(17)

(18)

C2i =—
g g

1 ( 1 1«ej, , —,„- —,)

'q (C,Q P) C,q'— —.P+(q P)(q Q)+4C(p~ Pm)q+q .

32+4

M. )

~+2C, ln
1 ) —g'+yM '

—
g y

' M 'J —g'+yM, '—g'+yM ' —
g y

i+ C«(p. p)+g. (CQ—P) —C '
2 2 2 2 ~ 2 ~ 2M' —M' —g'+yM' —g y

an ar
' ' . e that the right-hand side Involves two

term it would be necessar tol. If '
l ddth „t,i

f the lef t-hand side follows from a ar . e

'
l~t di .)ercome an ultraviolet svt hi h momenta to overco

t necessary to useh n calculating C23 and
than s= (P1+P2 '. owev
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where
g=—(1—*)Pf+6—*)P2. (21)

Numerical calculation of the double integral for
typical values of the parameters shows that C is in the
order of 10%%uo of AsT."This (together with D to be
computed in Sec. II D) contains the bulk of the dis-
tortion eRects in the cross-section difference.

I'IG. 5. Real photon terminating
outside AsT.

Z. Real I'hotons

In this section, we show that the oR-shell contribu-
tion of the real photon correction is of the order

d'q 32nhkk'( m'k)
(2~)'2(v, n. m t5 t i'

&&IA.,+0(~.a.) I, (22)

where hk=hE is the experimental limit of resolution
and al. is the m n scattering length. In the experiments
conducted to date, Itl&4fm 'and LS=2MeV/c. Under
these circumstances, the real photon contributions are
negligible. (So long as ~k(5 MeV/c, these contribu-
tions make up less than 1% of the total cross section. )

The real external terminating corrections (Fig. 5),
in which the photon carries off energy ~,(AE, are not
coherent with the virtual photon corrections because of
the additional external line.

I.et us write the amplitude for these processes as

If we look at (A~');""& alone and compute its con-
tribution to the cross section, we obtain the standard
infrared correction"

(3b)

1
8'f= 8;s,8;s;Q

Sx' (l~l'+')'~'

P' ~+(~) Pf'+(q) '
(28)

P" q Pf'q

The off-shell-dependent remainder is

a)qhE d3q
(IZ(A+')"'" I'

(2m)'co,

where"

A+'=Z(A+')' (23) +2 ReZ(A+')"'"* Z(A ') '"'j) (29)

(28'P'+q)"+"(q)
(A.');= —e8;s,

28;p; q
&&Asf(p'~P'+8'q) (24)

The second term in the numerator vanishes, since

q, '+"(q)=o
We use the trick. of breaking this up into on-shell

and off-shell parts: g(A I).(off)—
« / Pf e' P3. e')'q I P3 +pf
87r- ' pfq p3qf

Thus the oR-shell contributions due to real infrared
photons of momenta less than Ah=DE are (using the
AsT given in Sec. III A) related to (dropping q' com-
pared with q pf, a)

(A+')'=(A+')""'+(A+')""',

P' ~+(q)
(A~');&o"&= —e8;s; —AsT,

p"'(0)
(A+');&"'&= —e8;s;—

(26)

Pf'E' P3'E'
+~.q (p.-p.) — - I, (30)

Pf'q Pa'q'-

while the on-shell contributions come from

X[AsT(p;~ pf+8fq) —AsTj. (2&)
Z(A+')""'=«. —— IAsT.

Pf'q P3 q'
(31)

"The double numerical integration also shows that the C,q4

term can be neglected. This is of practical importance, since the
y integration for the other terms can be done analytically, leaving
only the x integration to be done numerically when curve fitting.

"The photon polarization vector can be written

&cose—i sin~e cos@ sinqb
~"(i( A})=~2

. sino(&cosp+i cos9 sin@}
Zp cos'0+sin'0 cos'$

Since (A'')3=(A~')f(P3~ —Pf), it is suiTicient to
consider only the Pf. e' terms. Further, observe that
whenwecompute IA'&of'&I'+2Re(A'&o"&*A'&'"&), wewill
have terms of the form 1+p3 q/pf q or 1+pf q/p3 q.
Now ref=a&3 and lyfl = lysi. Thus, for purposes of rnag-
nitude estimation we will assume P3 q/Pf. q is of order
unity, and so neglecting it will not decrease the order of
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magnitude of the result. Therefore

I
A ~' t"'&

I

'= (n/16s. ) I C,(pi e~) I

'

l(P '+)I'
1(off) step 1(on)

Finally, to obtain the desired result, Eq. (22), we

add Eqs. (39) and (40) and use the relation
(32)

AZT =m ar, —(m al/2m, s+C,/327r)t, (41)

(33) to be derived in Sec. III A.

Since
I
A e+ I

&
I
A I, this gives the upper bounds

IA+"'"
I &(~/16~) IC, I u, (34)

For the first term in (29), the integral is simply

IA 'i «&*A '- I&—
32~ IPs ql

&& I
C.*L(2& —C ) .'—(&.—C.)t] I (35)

D. Photon Terminating on Internal Lines

1. Virtla/ I'hotons

Consider the off-shell amplitude A„"(pi,ps, ps, p4, q) in
which one virtual photon of momentum q and polariza-
tion ts is emitted either by an external line (n= 1,2,3,4)
or an internal line (I= 0). For n = 1, 2, 3, 4 we can calcu-
late explicitly (using the exact arsy and nny vertices
with one hadron off shell)

q"A."(Pi Ps Ps P4 q)

d3q 4X
—',(Ak)'.

(2n.)'te, (2s.)'

For the second term it is

(36)
=s„eq&fF„(qs, eq P )—(2P„+e„q)„

AsT(p ~p +tl q)
+G-(q', —0-q P)q.h

(P.+H.q)
'—m. '

coq&.A E d3q

(2s)'to, ps q

Ak co k
ln-

(2s.) ' k co+a
(37)

AZT(p„~ p„+0 q)
=s„eq (2p„+g„q)

(p.+e.q)
'—m. '

(43)

(2s.)s m
for k«m .

where 2'„e is the charge of the nth line.
Defining

and

& L2n/(4rr) s7(hk) 'ks
I C, I

' (39)

&L4 /(4 )'j(LB/m )k'IC, *I (2B,—C.)m '
-(~.-C.)tel. (40)

Thus the contributions to the cross section, doing the
sum P+, are of the orders

we will know q&A„' if we know g&A„. When. all the ex-
ternal lines excluding the added photon are on shell,
p„s=m„', n=1, 2, 3, 4, current conservation tells us
that q&A„=O. However, we need gI'A„with oG-shell
hadrons. This is given by off-shell current conservation
expressed in the generalized Ward identity"

q"A.(Pt,P,P,P4, q) =z-e
(Pi' —m-')A»(Pi —

q Ps Ps P4) (ps' m-')A»(pi Ps P—s+q P4)

(pt —q)' —m ' (ps+q)' —m '

(Ps' — 'm)A»(p p tqs, ps P4) (P4' m-')A«(Pi Ps —Ps P4+q)

(ps —q)' —m ' (p4+q)' —m ' (44)

Therefor'e

q~A s = z eLA ST(pl q) A sT(ps+ q)j
+s eLAZT(Ps q) A»(P4+q)3 —(4—5)

Leaving the external o, particles on shell and taking
2 sT to second order in the momenta, we have

q~A„s= (s,e/8~)B, q (pi+ ps) (4.6)

From this it follows that the amplitude for Fig. 3(f),
permitting the photon and the pions to go off shell, is

A.'= (s-e/8w)&. (pi+Ps).+&. (47)

where the remainder satisfies E„q~=O, i.e., given any

four-vector V„we can construct R„=(g„„—q„q,/q') V".
However, bremsstrahlung from internal lines produces
no infrared divergences, so A„ is not singular as q

—+ 0.
Hence R„ is of order q."So for soft photons,

A,'=(s.e/8~)&. (pi+ ps)„ for
I q'I&(m. s. (48)

26K. Kazes, Nuovo Cimento 13, 1226 (1959). Although the
identity is proved only for Feynman diagrams involving spin-0
and spin-s particles (as well as the photon), we assume it to be
true for elastic mn scattering whatever intermediate states may be
involved.

~' See F. E. Low, Phys. Rev. 110, 974 (1958); E. M. Nyman,
ibid. 170, 1628 (1968).This argument of course fails for external
terminating photons, so we could not determine A„' from q&A„'
for i 1, 2, 3, 4. t T=he leading terms for the next order in e are
examined by T. P. Cheng, fMd 176, 1674 (1968).g.
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Ct 'pi, s" (51a)

Denoting by nD the contributions of Figs. 3(a) and
3(b), and by 0(D the contributions of Figs. 3(c) and
3(d), we have

d4q
QDg (~) = $88~(~)

(2s.)'q'

(2Pi(»+q) "A.'(Pi(» ~ Pi(2)+q)
X — Pi(~) (q')

(Pi(2)+q) )iso (~)

(2P « —q)"A.'(P «P « —q)+, , F~(4)(q') (49)
(Ps (t) —q)

'—r)t. (-)'
This formula shows that we do not need to know A„'
completely. We only need q&A„' and p&A„O, the first of
which we already know. To get the second we would
need two more independent scalar constraints on A„',
i.e., we would need to know A„o up to one scalar
constraint.

If we assume that the soft-photon (q2((m ') part of
the integral dominates, we can caclulate the p;I'A„'
terms completely. In this case, D is proportional to s
and hence contributes only to the cross-section average.
(We will find later that all radiative corrections to the
average are small. ) However, if the hard-photon part is

significant, D may contribute an important part to the
cross-section difference, which we could not calculate
here even if we knew the off-shell 7f'n elastic amplitude
exactly. If we separate the hard-photon part of A„o into
a part which depends on s and a part which does not,
we get

A„'= A„'l „(,+B„'(s.)+C„', {50)

where B„"(s,) and C„' are of order q; the omitted con-
tributions to the cross-section difference come from the
terms

where we have used r ns =31.4 and the approximation

AsT=rN ul, (m—ar/m. '+B,/16')t, (55)

qA '= —nB q
' (57)

From the nonsingularity of A„,o as q' —+ 0, we have

A„„"=—nB,+O(q, q') . (58)

The desired amplitude is now obtained by setting
q'= —q, inserting the photon propagator, and integrat-
ing over the photon momentum. However, the inte-
grand depends only on q', so the integral vanishes be-
cause of spherical symmetry of the kernel

nDg=0. (59)

Here also we have omitted the hard-photon contribu-
tion, the full term being of the form

aD0 (tD0
I soft

(2s)4q'

XF.P.g""f&„,"(.)+C„,"j, (60)

to be derived in Sec. III A.
To calculate the contribution of Fig. 3(c), where both

ends of the virtual photon terminate on internal lines,
we simply reiterate the use of Ward's identity. Let
A» (pi, p2,pl, p4, q„q') be the amplitude A„o, with an
additional photon of momentum q' and polarization s

inserted in line m. Following the same procedure as be-
fore, we get

q"A;"=s-sL~'(P q') —A'(P—+q') 3
+s-sl:~'(P2 —q') A'(P—4+q')&.

Putting the e particles on shell and taking the soft-
photon limit, we have

(51b)
where the unknown terms B„„'0(s) and C„„00 are of
erst order in q= —q', and contribute to the cross-section
difference and average, respectively.

Z. Eeu/ Photons

The amplitude for emission of a real photon from an
internal line l Fig. 3(f)j is simply

A„'e"= (ss./8~)(B, —2C,)(pi —p,)„e~', (61)

where we can neglect terms O(q) because we restrict
the integral to infrared photons. The contribution which
this term alone makes to the average cross section is

d'q 4n
(au)

(2s)'a), (4tr)'6x
Xln 1—

(1 x) '(r.m. )'—
(53)

X l B,—2C,
l
'k'(1 —cose), (62)

B.(.)p. ,"
in D and D, respectively.

If we make the soft-photon dominance assumption
for p;&A„', our second-order expression for D becomes

d q
B (Pi+Pa). F-(q')

(2s)' q'

(2P2+q)" (2P4 —q)"
+ — . (52)

-q +2q'Pm q 2q Pt-—
If we take F (q') =1/(1+6r 'q'), the integral can be

done easily, giving

~B, 1

D = (s—u) dx(1+@)
(2s)' 0

0.056 s —I
A» —m.~.

l
1—

m. 'i
which is of the same order of magnitude as the real
photon contribution from external lines, hence negligible.
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III. STRONG ~e SCATTERING: LOW-ENERGY me
ELASTIC AMPLITUDE WITH EXTERNAL

PIONS OFF SHELL

The matrix element «r la I&r) is just the &r&r&r vertex

The invariant 7r&r —+7ro& ainplitudeDR (see Fig. 6) which gives, at threshold (s=h=g;m;s, t=N=O), the
with both pions o6 shell is defined by'8 coupling constant

i5R(&r(P4),&r»(Ps); &r(Ps), rr (Pt))c,m 'a G...=Z...(m. ,m. ',0). (69)

=(m '—Ps')(m '—Pr') d'xe '»'

X&~(P4) I
2'(~.A."(*)up(0)) I ~(Ps)) (63)

where Ps'=P4' ——m s, t& is the pseudoscalar field, &i is
the t&-6eld norrnalisation constant &0 I

t& (0) I &rs(1I&))
= u &I t& (so t& is related to the pion Geld g by t&=a P),
A& is the axial-vector current, and c, is the PCAC
proportionality constant r)„A&=c,m„s&t&. Also, a. =c,m, s

and c.=m&vg"/G~N&« =0.60m, .
We now integrate by parts, and use the equal-time

commutation relation

I &).",t, (O)j=ss.,o(O),

Because the o. particle is an isosinglet, we may write"

J)I(~(P4) ~&(Ps) ' ~(Ps) ~.(P&))

=3f(s, t,u; pts, ps', ps', p4')b && (70.)

Keeping the external n particles on shell, suppose we
take s+I, s—u, Pts+Pss, and Pre —Pss as independent
variables in terms of which we expand 3II. Then crossing
synunetry (s ~ u, pie ~ pss) says that in erst order the
s—I and pr' —ps' terms are absent. (More generally,
the crossing-symmetric expansion can be immediately
written to any order by taking t, pt'+ps', su, and
PisPss as the independent variables. ) Thus, to second
order in the momenta, "we have

Q
"= d'x A '(x) &&(x ), (65)

3I=&J+bl+c(prs+ ps')

- +(&+c)Ps'.

(71)

(72)

~(*)= (V's)~o+(V's)~s, (66) Equating this to our previous result as pr-+0, we
obtain

and u is the scalar field. Then, going to the limit of
small pt, "we have

1Iin DR(&r(p4)p»(ps); &r(ps), &r (p,))
= —m-'(m-' —Ps') &~(P4) I ~(0) I ~(ps) )

M(m ', t,m. ', O,m. ', t,m. ')

.' p"
&.. (m ',m ',t), (73)

X(& p/c m 'a~). (67) and assuming that F, (m ',m s,t)=G„ for sinali &&,
»

wehave &r= —m s(b+c). Thus, redefining the constants,
we get

&=28,P& Ps+C (1—m s) (74)

Unlike the case of xm scattering, here we do not have
an additional relation to reduce further the number of
constants. On the mass shell this becomes

M= —(C,—28,)m '+(C,—8,)1, (75)

/
/

p

FIG. 6. 7i-a nuclear amplitude.

'8 That this is a valid off-shell definition is shown by the LSZ
formalism, which demonstrates that it approaches the on-shell
amplitude as p1, g' —+ m ': H. Lehmann, K. Symanzik, and W.
Zimmerman, Nuovo Cimento 1, 205 (1955).

ss In general, as pz and ps ~ 0, Ms~-+M&&~&0& —2(gv/c )s
XPr Pi(7'~)»~(7'~)+poles+0(PP, PiP~, PI'), where M ' is &p&ropor-

tional to t, : S. Weinberg, Phys. Rev. Letters 17, 616 (1966);A. P.
Balachandran et a/. , in Proceedings of the Conference on Particle
Physics, Boulder, Colo. , 1966 (unpublished). Because thecx particle

is an isoscalar, if the 0-type terms are omitted, the scattering length
is zero, since the charge commutator gives an antisymmetric
contribution to 3Ip .

30 In the notation used previously, M = —167i-A ST, where
S=1+2(2s)'sAsTS(P; Pr), so S=—1 47r'r'Mb(P; Pr)— —

~' Qrdinarily the problem of s-channel poles would have to be
considered in going beyond the zeroth-order term. However, here
crossing symmetry says that the s dependence must appear in the
form of an sl dependence, so the question of s-channel poles
does not arise till we carry the expansion to fourth order in the
momenta. It is this fortunate circumstance which permits us to
say anything at all about the off-shell amplitude.

"See N. N. Khuri, Phys. Rev. 153, 1482 (1967). For small t,
F(&&& 2,&a ', t) =G, Pl J,(»& s t)5,—where —J,=os/6~m, the
scattering length being given by m al. =AST(threshold). This
induces a correction which is negligible for small scattering lengths.
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Pro. 7. Isobar diagram, A =4. All energies are plotted vertically in MeV and referred to the mass of 4He without taking into account
the neutron-proton mass difference of the Coulomb energy. Values of total angular momentum J, parity, and isobaric spin T which
appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. Levels which
are presumed to be isospin multiplets are connected by dotted lines. Two possible arrangements of the 2'=1 levels are shown. [Re-
produced from W. E. Meyerhof and T. A. Tombrello, Nucl. Phys. A109, 39 (1968).)

which gives

AsT=m ar. —(m ar,/m, '+ j3,/16rr)t

=m al. ,'(m al—,/—m s+C,/16m. )t

(55)

(41)

Using the condition that 1irn»„sMccm~' —pss, we
6nd that

a+em 4= m'(b+—c) and d+ f+g= 0.
On the mass shell, this gives an amplitude of the form

3I(on shell) = const+ (b+2m„'f) t+dP+ esu. (78)

Although at fixed s (for any T" in the region of
interest 24-75 MeV) this formula gives a fairly good
Gt to the t dependence for 30'&0, &150', it cannot
be expected to represent the sl dependence very well.
The reason for this is the relative closeness of s- and

The expansion of M to second order in momenta is
equivalent to an oR-shell partial-wave expansion for
l=0, 1. It is known that a good Gt to the mn data re-
quires inclusion of the d wave. However, going to the
next higher order in the expansion of 3f indudes an su
dependence as well as a t' dependence, and this rasies
the question of s-channel poles. Naively expanding M
to fourth order in the tnomenta, setting pss= p4'=m '
and, imposing crossing symmetry gives

M =a+bt+c(pt'+ps')+dt'+esu+ ft(pt'+ps')

+a(pt'+Ps')'+hpt'Ps' (76)

:a+em. '+(byc) p, '~(d+f+g) p, ' (77.)

u-channel singularities to the region of interest, in con-
trast to t-channel singularities.

The lowest t-channel singularity is the 2x branch
point at 3=4m ', so a power expansion is good if

~
t~

(4m ', converging faster for smaller t t ~. In the region
of interest —2m '&t(0.

No such favorable circumstances pertain to the s
and I channels. Consider, for example, poles" at
m ~=m„+25 MeV (see Fig. 7) which contribute

1 2(m. '+m ' —m *')—t

s m, +' —u m+' —su $2(m '—+m ') —1]m '+m *'

2m '—t( su)
(79)

3II(on shell) = a,+b,t+c,P (80)

and experimentally determining a„b„and c, for each
value of s. However, there is no such easy way out for

as The n particle is a scalar isosinglet 4He(3728. 5). The two
lowest sets of poles in the 71.+a system are the isotriplets
L4H(3752.5), 4He(3752.8), 4Li(3753.0)g and L4H(?), 4He(3753. 1 or
3'I55.0), 4Li(3753.7 or 3756.2)g, with J~=2 and O, respectively:
W. E. Meyerhof and T. A, Tomtbrello, Nucl. Phys. A109, 1 (1968).

This is approximately proportional to 1+su/m only if

( su ~(&m 4. However, in the region of interest
) su( is of

the order of m 4 or larger.
Thus, the s dependence of M in the region of interest

cannot be represented satisfactorily by a power expan-
sion in the rnotnenta. For M'(on shell) this can be
handled simply by writing
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Fzo. 8. Second-order expansion 6tted to
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the fourth-order expansion of M(off shell). For the
present we will have to live with the inherently less
accurate

M(off shell) =28,pi p~+C, (t—m ') (74)

where the constants 8, and C, are determined for each
s by fitting cV(on shell) = —(C,—28,)m '+(C,—B,)t.
The amount of inaccuracy in a second-order expansion
relative to a fourth-order one can be observed by com-
paring the average cross-section fit of Fig. 8 (second
order with X, '=3033) with that of Fig. 9(f) (fourth
order with X, '=68).

I7. NUMEMCAL RESULTS

A. Fitting Nuclear Parameters

Three sets of experimental m+n scattering data are
available (see Appendix B):(a) Rochester, ~ eight points
at 24.0 MeV (1 s.d. errors = 10% in av cross sections);
(b) Northwestern, 4 nine points each at 50, 58, and 65
MeV (1 s.d. errors =20%%uo in av cross sections); and
(c) Berkeley, ' 15 points each at 51.3, 59.7, 67.6, and
75.0 MeV (1 s.d. errors =3%%uo in av cross sections).

A least-squares search for values of the complex
parameters a„b„and c, which minimize

0.5(do( i/dQ;+d(r(+&/dQ;), „pt —0.5(da( i/dQ, +do(+'/dQ;). ,i,&'
Xsv

(expt error in average);

was performed at each energy by using the fourth-order approximation to the on-shell strong amplitude

2 sT (J,+b,t+c——,t',
where the calculated average cross section is given by

/d(T(
—) d&(+)~

0.5I -+ —
I

=diagram in Fig. 10
E dQ dQ )„i.

= (4/~) L I ~» I
'+2~ Re~»*(C-+D-)+

(81)

(82)

(83)

Using the fact that the C and D terms are small relative to A sT, we omitted them in our initial determination
of the strong-amplitude parameters. "Since the average cross section in this approximation is independent of the
over-all phase of ABT, there were Ave parameters to determine. The results are shown in Table IV and displayed
in Fig. 9.

It was also necessary to perform a similar least-squares search using the less accurate expansion

AsT= (1/16m)L(C, —28,)m. '—(C,—B,)tj (84)

in order to determine values for the second-order approximation to the oG-shell amplitude. These results are
given in Table V. (See Fig. 7 for a plot of the 60-MeV curve. )

B. Pion Form Factor

We now adjust the remaining parameters —r and the over-all phase of Aa, — -to minimize

Xdiff
(do( '/dQ; do(+&/dQ;), . —

p~ (da—( &/. dQ; d(r(+&/—dQ;),.i, '—
(expt in error diff);

(85)

'4 Furthermore, since A c,g is very small compared with A sT, the exact value of r used for the average cross-section Gt is unimportant.
go we used r =0.63 F.For this same reason, the cross-section average Gt was not used to determine the phase of ABT relative to 3 q, p.
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Fzo. 9. Average cross section: (a) 24, (b) 50, (c) 58, (d) 65, (e) 51, (1) 60, (g) 68, (h) 75 MeV.

vrhere the leading terms in the calculated cross-section difference are

do( ) do(+)
-=diagram in Fig. 11

(We have dropped the s in D, and D .)
= —(4/s)a Red s T*Lrl c,s+C~~+D j.
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0.8 1.0

The term D is ca1culated in Sec. II D:

(87)

The term C is given in Sec. II C:

(88)
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rETABLE IV On-shell fourth-order nuclear parameters for Eq.

T'bLb

(MeV)

Rochester
24.0

Northwestern
50
58
65

Berkeley
51.3
59.7
67.6
75.0

a,

—2.498—0.963i

—6.608—0.926i—9.959—0.413i—11.975—0.890i

—6.837—0.917i—8.649—0.450i—9.648—0.538i—11.270—0.495i

b,
(10 4 MeV ')

—0.020—0.010i

—2.597+0.475i—4.708+0.212i—4.228+0.457i

—3.567+0.471i—3.865+0.231i—3.706+0.276i—3.933+0.254i

Cg

(10 ' MeV ')

—0.020—0.010i—3.723 —1.248i—2.138—0.194i

—2.027+0.659i—2.842 —0.912i—2.329—0.496i—2.557—0.534i

1.5

5.8
0.3
1.9

26
68
27
44

Xssm
2

(expected)

9
9
9
9

FIG. 10. Principal contributions to
average cross section. + Q e +

Fro. 11.Principal contributions to cross- g Resection difference.

a

I II a I
+ + + + + +

@&here, roppingh, d ing the C q4 contribution, "vie get

-1 f1
dy L4(P P)(g I')+(g I')(g Q))

1

g' —yM ')C
3 2' 0 0

s 1 1+, &&~ (P P )+g (C Q )j(—, —
cV ' —3E 'Eg' —yM„s g' ycV 't M—as —~~

nal ticall . We define vrhereThe y integration can be done ana y ic y.

%02=—O, (90)

—&;—=4(1—*)'t(P& Ps)' —mrsm, '(+M,'—4M, sP,
~ Ps(1 x)+8M xmss, —(91

vr '=, , Th the relevant integrals arevrherei=O, x, or o.. en
so that

a—=m '(1—x)'—2pr psx(1 —x)+ms'x',
.2b—=2Pr Ps(1 —x) —2mssx —M;,

2C—=m2

—6= 52—4aC.

(95)

(96)

(97)

(98)

I;(x)—=

g2 y~, 2

dy

a+by+cy'
(92) TABLE . -SV. Off- hell second-order nuclear

parameters for Eq. (84).

J';(x) —=

E;(x)=

y 1 a+bx+cx'
d — =—lny

g2 —yM 2 2c

b—I;(x), (93)
2c

x b a+bx+cx'
dy =————ln

g2 y~ .2 c 2c2

—2ac
+ I;(x), (94)

c2

T'lab

(MeV)
Ba

(MeV ')
C,

(MeV ')
X1LV

Xa~s (expected)

Rochester
24.0

Northwestern
50
58
65

Berkeley
51.3
59.7
67.6
75.0

0.0204 0.0344 -0.00248i

0.0300 0.0430 —0.00238i 6
0.0296 0.0412 —0.00247i 52
0.0370 0.0494 —0.00247i 38

0.0240 0.0346 —0.00212i 471
0.0272 0.0381 —0.00192i 3033
0.0266 0.0361 —0.00192i 1075
0.0276 0.0364 —0.00192i 3159
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Fro. 12. Ratio of cross-section difference to average cross section: (a) 24, (b) 50, (c) 58, (d) 65, (e) 51, (f) 60, (g) 68, (h) 75 MeV

Doing the x integration in C numerically and 6tting
to the cross-section diRerence data, we obtain the re-

sults shown in Table VI and displayed in Fig. I2. The
over-all phases 84 and 82 are those associated with the
fourth- and second-order expansions of AHT.

The reasonableness of the phases 04 obtained can be
checked against data on the total cross section (in-

elastic as well as elastic) by use of the optical theorem"

2k+s
ImA sr(t =0)= —— op.t""".

16m
(99)

The measured total nuclear cross sections at 50, .58,
"The author is grateful to Professor A. Wolfenstein for suggest-

ing this cross-check.
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Fro. 12 (cont. ).

and 65 MeV are quoted4 as 87.6&3.0, 98.2+2.7, and
123.2&3.7 mb, respectively. The total cross sections
implied by the phases in Table VI for the Northwestern
data are much smaller than the measured values (59 mb
for the 58-MeV phase). However, the Berkeley data,
which have smaller experimental errors and present

less problems regarding nearly equivalent local minima

to the X'-minimizing search program used to obtain

84, give 54, 81, 127, and 137 mb (with uncertainty about

&20%%uz, not counting effects of theoretical approxima-
tions in the distortion term) as the total cross sections
implied by the phases at 51, 60, 68, and 75 MeV.
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TABLE VI. Pion charge radius, taking the cross-section di fference
proportional to ReAHT (A o, B+C~~+D~), where C~ is computed
using an off-shell strong amplitude accurate only to second order
in the momenta and D is computed assuming soft-photon domi-
nance of the integral over virtual photon momenta. The values
of X2 are not intended to reflect these theoretical uncertainties,
which could have a strong effect on r .

+lab

(MeV)
04

(rad)
02 Xdiff

(rad) xa;tgP (expected)

Rochester
24.0

Northwestern
50
58
65

Berkeley
51.3
59.7
67.6
75.0

0.87 0.287 —0.483 11

1.46 —0.137 —0.407 13
1.31 0.297 —0.615 16
1.00 0.198 —1.437 17

0.85
0.66
0.99
0.99

0.287 —0.483 16
0.513 —0.757 21
0.890 —1.502 15
0.889 —1.502 25

TABLE VII. Comparison of relativistic and
nonrelativistic calculations of r .

+lab

(MeV)

Relativistic
(froni Table VI)

re Fsr

(F) x~ ~P (I')

Nonrelativistic
84 02

(rad) (rad) x a; rrm

Rochester
24.0

Northwestern
50
58
65

Berkeley
51.3
59.7
67.6
75.0

0.87 11 1.46 0.115 —2.824 8

1.46
1.31
1.00

1.90 —0.013 —0.940 13
2.91 —0.023 —1.022 15
1.45 —0.476 1.042 18

0.85 16 2.90
0.66 21 2.45
0.99 15 2.39
0.99 25 2.39

0.219 —0.299 21
0.420 —0.900 32
0.640 ' 0.100 15
0.619 0.878 17

'~ C. T. Mottershead, University of California Lawrence
Radiation Laboratory Report No. UCRL-19216, 1969 (unpub-
lished). This is the most recent nonrelativistic analysis of the ma
data, and discusses in detail the relative insensitivity of the results
to the model-dependent shape of the nuclear radial wave function.

1. Sensititity of r lo Relativistic Terms

All of the previous computations' ' " of the pion
charge radius based on mn scattering measurements
have used nonrelativistic dynamics, i.e., they involved
inserting interaction potentials into either the Schro-
dinger or the Klein-Gordon wave equation. The use of a
wave equation automatically considers the electromag-
netic interaction represented by the potentials to all
orders. Use of the Klein-Gordon equation provides
relativistically correct kinematics. The use of wave-
equation-constrained wave functions properly fitted to
the data assures reasonable o6-shell behavior. However,
use of a dynamically. nonrelativistic wave equation (as
distinguished from the Bethe-Salpeter equation, for
example) ingores all diagrams in which the interactions
represented by the potentials do not occur in a definite

time sequence. For example, it ignores the diagrams
shown in Figs. 2(b) and 2(c), in which the electromag-
netic and nuclear interactions overlap the same time
interval, and those shown. in Figs. 3(c) and 3(d), in
which the electromagnetic interaction overlaps part of
the nuclear interaction.

As we have seen, C, and D are the dominant dis-
tortion terms. C is composed of Cr2+C34, which enters
into nonrelativistic calculations, and also the relativistic
contribution C4r+Cqs. D does not enter at all into
nonrelativistic calculations. In order to compare this
analysis with previous nonrelativistic calculations, the
r calculation was rerun with the relativistic terms
omitted. Table VII compares these results to those ob-
tained by using D and the full C„.

Two features are of interest. First, compare the re-
spective Xd;~~"s. If the nonrelativistic terms alone fit
the data poorly, anyone performing a nonrelativistic
calculation would be immediately led to suspect the
importance of the relativistic terms. However, the non-
relativistic terms alone fit the cross-section difference
data about as well as the fully relativistic formulation.
Second, without the relativistic terms, the estimates of
r are larger, falling in the vicinity of the values for the
Berkeley data obtained by using the Kisslinger model
with the methods of Auerbach et al. and Block (Table
II), both nonrelativistic methods. (This, incidentally,
provides some evidence that the o6-shell behavior of
the amplitude used in computing C is probably not
too unreasonable. ) Thus, even though the data can be
fitted fairly well by using only the nonrelativistic terms,
the relativistic terms are quite important in determining
the value of r .

Z. Sensitivity of r, to Nuclear Model

It is clear that the value of r obtained through the
type of analysis performed here is dependent upon the
functional form assumed for the strong xo. scattering
amplitude. This is because the estimate of r is sensitive
to the nuclear distortion, C and D are the dominant
parts of the distortion, and both of them depend in
detail upon the form of the oIIf-shell strong amplitude.

In order to get a numerical estimate of the model-
dependent uncertainty in r it would appear to be neces-
sary to recalculate C and D by using a variety of
off-shell models. However, we can get a rough idea of
this uncertainty without doing such a set of complete
recalculations.

First, we can simply increase or decrease C or D
by a factor roughly indicative of the error in the
second-order amplitude given by Eq. (84). Looking at
Fig. 8, which shows the average cross section (propor-
tional to the absolute square of the amplitude), we see
that on the mass shell this error is in the order of 10%
(what it is off the mass shell is unknown). The calcula-
tion described in Sec. IV B was rerun varying C and
D by 10% in Eq. (86). The resulting shifts in r were
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f(8)= ee (101)

and Xd ff (new) was computed as a function of e, looking
for the range of r for which Xg'ff'(new)&X~HP(old).
Depending upon the energy, this range covered &50%
of r (old). However, this represents a rather artificial
situation in which many higher partial waves enter in
such a way as to cancel out in the cross-section average
calculations, but strongly affect the cross-section differ-
ence results. It appears to be more physically reason-
able to accept the conclusion that l= 3 and higher waves
are neglibible.

V. SUMMARY AND CONCLUSIONS

A relativistically complete examination has been
made of all 6rst-order electromagnetic corrections to
m+n scattering, by use of a low-momentum-transfer ap-
proximation to the off-shell strong amplitude.

For purposes of determining r, those corrections are
most important which contribute to the difference be-
tween the ++0. and the x n cross sections. The Born

less than 1% (principally because of Ao, n), and the
increases in Xq;iq were less than 1. (If C is multiplied
by 0.5 and D by zero, which is effectively what is done
when only the nonrelativistic terms are considered, the
shift in r for this local minimum in XQ'f f ls still small.
What happens is that the Xg' ff for this local minimum
increases and that for a local minimum at larger r, de-
creases, resulting in the larger r having lower Xd;ti'. )

Second, we can vary the on-shell amplitude 3» in
Eq. (86), leaving fixed the oR-shell form used in calcu-
lating C and D . This can be expected to have a more
marked effect on r, since the expression in Eq. (86)
is wholly proportional to 3». However, we do not have
as much leeway in varying the on-shell amplitudes,
since the l=0, 1, 2 expansion (82) fits the data so well.

Three approaches were tried. First, it was observed
that the average deviations between model and experi-
ment for A» using the parameters given in Table IV
are: 24 MeV—1.9%, 50 MeV—3.9%, 58 MeV—0.8%,
65 MeV—2.0%, 51 MeV—1.9%, 60 MeV—1.3%, 68
MeV—1.9%, and 75 MeV—1.4%. (These are half the
percentage deviations in the cross-section average which
is proportional to the square of AsT.) Varying AsT by
these amounts in Eq. (86) produced variations of about
1% in r, .

Next, an /= 3 term d,P was added to Eq. (82) and the
whole calculation was rerun for the 60-MeV data, since
these quite precise data afforded the best chance of de-
tecting any /=3 contribution. The best fit was obtained
for d, =0, producing no shift in r .

Finally, AgT was multiplied by a real g-dependent
phase g (8):

As T(new) = As T(old) e'&&e&. (100)

Clearly this cannot affect X, ' (neglecting the small
correction term 2n ReAsT~C „).Then f(8) was set

Coulomb term, of course, dominates near the forward
direction. All real infrared photon terms were found to
be negligible in the relevant experiments. Of the remain-
ing corrections, the ones which contribute significantly
to the cross-section difference are those in which a virtual
photon links an external n leg either to an external
pion or to an internal line. Soft-photon dominance was
assumed in showing that if one end of the virtual photon
terminates inside the strong interaction, then if the
other end also terminates internally, the term is negli-
gible, whereas if the other end terminates on an external
pion, the term contributes to the cross-section average
rather than to the difference.

In spite of the fact that a fairly good ht to the cross-
section difference data can be obtained by using only
the diagrams in which a virtual photon links either both
incoming particles or both outgoing particles, the purely
relativistic diagrams were found to be equally important.
Furthermore, when the relativistic terms were included,
the best fits were obtained for significantly lower values
ofr.

Four amplitudes (AsT, Ac,s,C, and D ) were com-
puted in the process of extracting an estimate of r from
cross-section difference data. The forms taken for the
on-shell strong amplitude A~T and the Born Coulomb
amplitude 3z,z are sufficiently accurate for this purpose
when using the rn. ost precise of the available data. The
possible sources of error are the estimated form of C
(the amplitude for a photon linking an external pion
to an external n particle), the estimated form of D
(the amplitude for a photon linking an external n
particle to an internal line), and the estimated negligi-
bility of the contributions of D and Do to the cross-
section difference. The forIn taken for C uses an off-
shell strong amplitude accurate only to second order in
the momenta, and that taken for D assumes soft-
photon dominance of the integral in Eq. (49). (The
justification for neglecting D and Do also assumes soft-
plioton dominance. )

Using these forms, C and D are of roughly the
same magnitude. In the forward direction Ag, ~ domi-
nates over them. In the region from roughly 60' to 180',
C and D contribute more to the cross-section differ-
ence than Ag, ~. Both the C and the D contributions
in this region differ in sign from that of A ~,B, resulting
in a fit to the data at smaller r . (Furthermore, all four
components of C contribute with the same sign, so if
C~4, C23, and D are omitted, the apparent value of r
is increased. )

However, before a definitive value for r based on x+n
scattering can be quoted it will be necessary to clear
up the following three problems.

(a) The theoretical problem of calculating the hard-
photon parts of virtual internal terminating corrections.
This is the difficult and important problem of extending
the low-energy bremsstrahlung theorem to say some-
thing about O(q) terms in the ah~ any amplitude.
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These terms may turn out to be negligible for purposes
of determining r, but there is as yet no way of knowing
whether or not this is the case.

(b) The theoretical problem of finding an o8-shell
model of the amplitude valid at least up to terms of
order 32, i.e., fourth order in momentum. That the
second-order approximation used here is sufficiently in-
accurate to affect the determination can be seen by
comparing the on-shell second- and fourth-order
approximations.

(c) The experimental problem of reducing the erorrs
enough to see at least the l= 3 waves in the cross-section
average. Information concerning higher waves is neces-
sary because the r determination, which uses the cross-
section difference, is fairly sensitive to the detailed
structure of the functional form used for the strong
amplitude.
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APPENDIX A: NONRELATIVISTIC STERNHEIM-
HOFSTADTER PROGRAM

In this appendix we give a brief review of the Stern-
heim-Hofstadter (SH)' program for measuring the pion
electromagnetic form factor as formulated by Schiff, '
together with a summary of three techniques used for
adapting this formulation to analysis of experimental
data.

Schiff s nonrelativistic formalism begins with Gold-
berger. and Watson's'~ expression for the T-matrix ele-
ment for scattering by the sum of two potentials
U=2pN and V= 21is [p= re /(m. +m.)5,

f -do (+) do (—)-
+—-- - l(~-,U'')I',

2 dQ dQ
(A6)

(+) d (—)-
"2«[(4r»~)*(4r V+4'+)5 (A~)

2 dQ dQ

The SH program then is this: Choose a model for
the strong interactions which gives U as a function of
certain parameters. Using experimental data on the
cross-section average, determine values of these param-
eters which give a good fit to the data. These values,
which determine fr, U,X;), can then be used together
with cross-section difference data to ascertain param-
eters such as r in the first-order expression for
(yr-, VQ~+), since the term (pr—,(V—Vp)x ) contributes
only in second order.

To formulate the SH program even more explicitly,
SchiB assumed U to be spherically symmetric and let

y(x) =P rRi(r) Yi"(O,y), (AS)

where Ri(r) is the 1th partial nuclear radial wave func-
tion. Then

00 g2i8)

fN(0) = ——(Qy, UXp) =- P (2l+1) Pi(cosa),
4x 2i

(A9)

The expectation is that U, will be the same for x+o,

and x n scattering, and the V s will diQer only in sign.
To first order in the electromagnetic interactions, we
have

~o"'/did" l(A U'X') I'
+2 Pe[(pr, U"x;)*Qg, V"P~+)5 (A. S)

Then, using the assumption U,+= U, , V+= —V, we
have

where"
&i'= (4r Ux')+(4r~, Vf.+), (A1)

(V'+k')x= 0, (A2)

(V's+k' —U)p= 0, (A3)

(V'+ks —U —V)/= 0.

where the ttj'~ are the hadronic phase shifts, which are in
general complex.

Schiff showed that to first order one can substitute
p;+ for f;+ in the expression (pr, Vf,+) and obtain
(defining q= 2k sin-,'8)

V is taken to be the Born Coulomb potential, shown
to first order for sn +sn in Fig. 1.-[Thus, in coordinate
space to first order, e is the Fourier transform of
& (q')F (q')/q'. 5 U then represents the total potential
minus V. In the absence of electromagnetic effects, U
is simply the strong potential. More specifically
U= U, —(V—Vp), where U, is the purely strong po-
tential and Vo is the point Coulomb potential.

'7 M. I. Goldberger and K. M. Watson, Collision Theory
(John Wiley 8z Sons, Inc. , New York, 1964), p. 203.' Superscripts + and —indicate outgoing and incoming plane
waves, respectively. The x represents the initial plane-wave state.

Qlj, VP;+) =4m V(r)j p(qr)dr+4m. P (21+1)P&(cos8)
0 l=o

V(r)[es'P'Ris(r) —gP(kr)5rsdr, (A10)

fv= fc,n+ fcv (A11)

a form in which the Born amplitude is explicitly sepa-
rated out. The amplitude fv —(1/4s-)(&~, V——lt ~+) can
thus be written as the sum of the Born amplitude and
the SchiG distortion amplitude:
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The distortion amplitude fcN contains all nonrelativistic
first-order electromagnetic effects not contained in the
first-order Born Coulomb amplitude:

fo,B= V(r)j p(qr)dr, (A12)

fcN ———Q (2l+1)Pi(cos8) V(r)
1=0 0

&& $e"'&Ri'(r) jP(k—r)fr'dr. (A13)

Because the Coulomb field is long-range, both inte-
grals diverge at the upper limit, so a physically meaning-

ful cutoff must be introduced such as the average sepa-
ration between nuclei in the experimental medium,

beyond which the field from the nucleus of interest is
masked by the surrounding fields. This distance is
ordinarily in the order of 10 ' cm.

As an alternative way of avoiding the divergences,
West' uses a different separation based on pulling out
the point Coulomb amplitude,

and obtain (fs1)1 and (fcri)1 from f2&+& and (fc,B)1 vta

(&)2= 2Lfi"'+f1' 'j,
(fciv)1=2Lfi'+' —fi' ' —2(fC,B)ij.

(A24)

(A25)

P (r) —P (())e
—prp/(rrp+rap) (A26)

In addition to using different techniques for over-

coming the Coulomb potential divergences, these three

approaches also used different models for the nuclear
interaction.

To represent the data satisfactorily, a model of nu-

clear xn scattering must take absorption into consider-

ation. " In addition, it is known from partial-wave

analyses of other pion-nuclear interactions" that, un-

like the cases of nucleons and n particles scattering on

nuclei, which seem well approximated by local poten-

tials, pion-nuclear interactions apparently cannot be
explained unless nonlocality is employed.

Block' introduced a certain form of nonlocality into
a purely phenomenological Gaussian potential by mak-

ing it spin-dependent:

where
fv= fc+f~v+ fciv',

PV(r) —Vp(r) jj p(qr)r'dr,

f — (222k/q2)e
—in 1n sins( ', e)+2ipp-

qp = —0.5772m (A15)

(A16)

model, "based on the impulse approximation that in-

dividual nucleons in the nucleus behave under impact
like free nudeons which are, however, spread through-

out the nucleus according to a nuclear density function

p(r). This yields a momentum-dependent potential

(A14) where the Ui(0) were permitted to be complex to simu-

late absorption.
West and Auerbach eI cl.' both used the Kisslingre

fcri' —Q (21+1—)—P1(cos8) V(r)
""()=—( / )L& ()—

o () 3 ( 7)

e2s8 g

e""RP(r) gP(kr)— r'dr (A17).
2k'r'

Still another breakdown is used by Block, who shows

that to first order
fv= fB+fa r

where

In both cases, the original Kisslinger model was

modified by allowing bo and co to be complex to simulate

absorption. "If Imco= 0, the differential equation arising

from the model contains a singularity. To avoid this,

West further modified the model by making the

replacement
(1+ppc) —+ (1—ppe) '.

"The total elastic and inelastic cross sections have been mea-
sured at 129, 140, and 150 MeV/p for both rr+n and rr ss scattering.
In all eases a;n, &&o,&. Compare with M. Block et ul. , Phys. Rev.
169, 10N (1968).The observed absorption modes of low-energy
7f n, for example, include td, d2n, and p3n in proportions 30:54:
16jq.' M. SchiG, R. H. Hildebrand, and C. Giese, ibid. 122, 265
(1961);S. G. Ekstein, pbp'd 129, 413 (1.963). In addition, there are
three- and Qve-body channels, the inelastic modes without charge
exchange, m nHe', vr 2n2p, and x pH', and those with charge
exchange, m nH' and m p3n. At 153 MeV, elastic scattering is 36'P0

of the total, while the three-body modes without charge exchange
are 20, 10, and 4%, respectively, leaving 30% for the sum of the
three-body modes with charge exchange and the pion absorption
modes: Y. A. Budagov et gl. , Zh. Eksperim. i Teor. Fiz. 42, 1911
(1961) [English transl. :Soviet Phys. —JETP 15, 824 (1962)j.

40%. F. Baker et al. , Phys. Rev. 112, 1763 (1958); 112, 1773
(1958); M. Ericson, Compt. Rend. 251, 3831 (1963).

4' L. Kisslinger, Phys. Rev. 98, 1'61 (1955).
4~ Considering the more detailed results of M. Ericson and T. E.

O. Ericson LAnn. Phys. (N. Y.) 36, 323 (1966)g, it may have been

better to introduce complex parameters by writing U(r)
—(4pr/2p) ((bp+Bpp (r) jp (r) —V Lpp+ Cpp (r)gp (r)V), where bp

and co are real and Bo and Co are complex.

CO

fB=fo,B+—g (21+1)P1(cos8)(esi"—1)(pii —r)p) (A19)
l=o

and
00

fn =—g (21+1)P1(cos8)e""22gi
p i=o

(A20)

with

V(r) [RP(r) jP(kr) jr'dr (A21—).
Auerbach et al. ' used the original breakout

(A22)f'+'= fiv~(fc, B+fciv)

QO

=~fc+ Z(21+1)P1(cos8-)L(fs1)d=(fciv)1
k &=o

~(fo.B fc)23 (A23)—
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West used a step-function density p(r) = 8(R). Auer-

bach et al. used two different nuclear density functions,
the modified Gaussian of the shell model and the modi-

fied exponential of the Saxon-Woods model.

APPENDIX 8: mo. SCATTERING DATA

The basic m-+n scattering data from Refs. 3—5 are given

in Tables VIII—X. The Northwestern and Berkeley
data, which cover roughly the same energy range,

appear to be inconsistent, even discounting the problem
of uncertainty in over-all normalization (cited as &6
and &2% for the Northwestern and Berkeley data, re-

spectively). A plot of the data at constant values of the
scattering angle is shown in Fig. 13. Although experi-
mental errors are quite large, the Northwestern cross
sections appear to increase consistently faster with s
than those measured at Berkeley.

The Northwestern curves in Fig. 13 were drawn
using the center of each (hcos8, Ado/dQ) bin in the
published data. Because of the forward and backward
peaking, the event distribution in each bin was prob-
ably weighted toward the side with greater

i cos8i. Thus,
if we use the center of the ado/dQ range of the bin as
the cross section for the datum point, we should use a
value of cos8 between the center and the larger extreme.

If pl. and pU are the extremum values of cos8 for a

TABI,E VIII. Rochester data (at 24 MeV).

(deg)

51.6
61.8
76.9
92.0

107.0
121.8
139.3
150.9

do+/dn
(mb/sr)

0.27
0.38
0.44
0.73
1.04
1.53
2.33
2.48

(mb/sr)

0.05
0.06
0.05
0.05
0.08
0.15
0.16
0.12

do /dn
(mb/sr)

0.79
0.35
0.12
0.33
0.75
1.33
1.75
2.75

(mb /sr )

0.11
0.08
0.05
0.12
0.10
0.13
0.27
0.22

e Rochester8- --- Northwestern

Berkeley
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FIG, 13. Average cross sections at constant scattering angle.

TABLE IX. Northwestern data.

H, .m.
(«g)

31.8
45.6
63.2
81.4
95.7

107.5
120.0
134 4
154.2

31.8
45.6
63.2
81.4
95.7

107.5
120.0
134.4
154.2

31.8
45.6
63.2
81.4
95.7

107.5
120.0
134.5
154.2

do+/dQ
(mb/sr)

1.6
1.8
0.4
0.5
1.5
2.6
4.1
4.9
7.6

3.4
2.0
0.7
0.5
1.7
3.0
3.8
5.8
7.0

4.3
4.6
1.1
0.7
1.3
3.6

7.0
8.8

(do+/do) .s
(mb/sr)

1.4
1.8
0.4
0.5
1.4
2.5
4.0
4.8
7.5

3.3
1.9
0.7
0.5
1.7
2.9
3.7
5.7
6.9

4.0
4.6
1.0
0.7
1.2
3.5
47
6.8
8.6

(mb/sr)

50 MeV
0.4
0.3
0.1
0.1
0.3
0.4
0.5
0.5
0.6

58 MeV
0.5
0.3
0.1
0.1
0.2
0.3
0.4
0.5
0.5

65 MeV
0.8
0.7
0.2
0.1
0.3
0.5
0.5
0.8
0.9

do /dn
(mb/sr)

7.0
2.8
1.3
0.4
1.1
2.1

7.0
7.7

94
4.2
0.8
0.6
2.0
3.4
5.6
7.2
9.3

15.7
L 6.4
I 2.5
l 0.8
2.0

, 4.2

I8.4
10.3

(do /d&)mos
(mb/sr)

6.7
2.7
1.2
0.4
0.9
1.9
4.3
6.8
7.5

9.2
4.1
0.7
0.6
1.9
3.3
5.5
7.1
92

15.3
6.2
2.4
0.8
1.9
4.0
5.8
8.2

10.1

(mb/sr)

1.1
04
0.2
0.1
0.3
0.4
0.6
0.8
0.8

1.1
0.5
0.2
0.1
0.3
0.5
0.6
0.7
0.8

0.7
0.4
0.1
0.4
0.6
0.6
0.9
1.0
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TABLE X. Berkeley data.

31.5
36.7
41.9
47.1
62.5
67.6
/2. /
77.8
82.8
92.9

102.8
122.5
132.2
141.8
151.4

31.5
36.7
41.9
47.1
62.6
67.7
72.8
77.9
83.0
93.0

102.9
122.6
132.3
141.9
151.5

do+/dQ
(mb/sr)

1.516
1.61i
1.223
1.131
0.434
0.266
0.323
0.375
0.581
0.993
1.610
3.433
4.095
4.764
4.918

2.661
2.634
2.327
1.663
0.534
0.366
0.325
0.375
0.618
1.128
1.928
3.936
4.592
5.422
5.721

(mb/sr)

51 MeV
0.140
0.136
0.093
0.093
0.024
0.023
0.020
0.023
0.026
0.050
0.057
0.144
3.164
0.177
0.194

60 McV
0.075
0.071
0.052
0.046
0.010
0.009
0.008
0.008
0.012
0.021
0.031
0.079
0.104
0.150
0.196

do /dn
(mb/sr)

5.192
3.969
2.978
2.033
0.560
0.371
0.269
0.314
0.42/
0.950
1.638

. 3.715
4 471
4.791
5.034

6.712
5.033
3.854
2.835
0.747
0.436
0.306
0.336
0.521
1.077
1.916
4.232
4.875
5.454
5.924

(mb/sr)

0.254
0.166
0.145
0.107
0.025
0.020
0.019
0.020
0.023
0.041
0.053
0.132
0.148
0.147
0.156

0.146
0.106
0.076
0.062
0.013
0.009
0.008
0.009
0.011
0.021
0.031
0.083
0.109
0.153
0.203

(deg)

31.6
36.8
42.0
47.2
62.7
67.8
72.9
78.0
83.1
93.1

103.0
122.7
132.4
142.0
151.5

31.6
36.9
42.1
4"/.3
62.8
67.9
73,0
78.1
83.2
93.2

103.1
122.8
132.4
142.0
151.6

do+/dn
(mb/sr)

4.031
3.612
3.247
2.651
0.722
0.437
0.382
0.447
0.692
1.350
2.094
4.011
4.961
5.583
5.843

5.940
5.252
4.268
3.006
0.960
0.623
0.458
0.529
3.776
1.413
2.203
4.508
5.264
6.054
6.114

(mb/sr)

68 MeV
0.190
0.176
0.135
0.126
0.025
0.020
0.018
0.019
0.025
0.047
0.063
0.149
0.176
0.213
0.267

/5 MeV
0.205
0.167
0.141
0.104
0.025
0.019
0.017
0.019
0.023
0.042
0.057
0.143
0.152
0.175
0.200

do /dn
(mb/sr)

7.299
5.312
4 494
3.082
0.925
0.512
0.366
0.388
0.556
1.180
2.018
4.392
5.098
5.543
5.591

9.394
7.080
5.858
3.979
1.119
0.667
0.488
0.498
0.710
1.325
2.361
4.578
5.379
5.646
6.046

(mb/sr)

0.2/3
0.361
0,164
0.223
0.034
0.026
0.022
0.025
0.030
0.051
0.069
0.142
0.163
0.316
0.333

0.236
0.215
0.132
0.127
0.023
0.017
0.014
0.015
0.018
0.035
0.050
0.103
0.116
0.169
0.203

bin, then
80

(~)du
dQ

"U CfO

(~)4.
dQ

Since (da/dQ)(p) is not known a priori, we use the
linear approximation

I v(do/d~)(~v)+~~(«/«) ( ~)
p= (»)

(«/d~)(~~)+(do/do)( ~)

(which, looking at the Berkeley data, should be fqjrly
good in the forward and backward directions, where
the problems are), and use the extremes of the Ado/dQ
bin as (do/dQ)(po) and (do/dQ)(pl). Finally, to keep
the do-& ~ and do'+& data at the same 8, we transform
the correction from 8 to do./dQ by simple proportions
within each data bin. The modi6ed Xorthwestern data,
also shown in Table IX, are still in disagreement with
the Berkeley data.


