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We study the ratio of the cross section for elastic positron-proton scattering to that for elastic electron-
proton scattering. In first-order 0., the leading terms of this ratio for small-angle scattering are given. As
could be expected, the first term in this "expansion" is the same as that obtained in Dirac theory, and the
first plus the second are unchanged from the structureless-proton result. Only in the third term do we begin
to find proton structure, this in the form of a sum rule over photoproduction cross sections. Use is made of
an o8-mass-shell analog of the Compton low-energy theorem, and as a by-product we show that the two-
photon contribution to our ratio is finite in the limit of zero electron mass.

I. INTRODUCTION

HE scattering of positrons in a Coulomb field is
identical to electron scattering in classical me-

chanics and in nonrelativistic quantum mechanics. It
is only when we consider relativistic quantum mechanics
beyond first Born approximation that differences occur.
For example, if we define R as the ratio of the positron
cross section to the electron cross section with the
proton as a target, the Dirac theory yields'

sin~0
+0(n')R—|= —2mo.

1+sin20

for an ultrarelativistic beam incident on a fixed struc-
tureless proton. Here n is the fine-structure constant and
0 is the lepton scattering angle, The deviation from zero
of the expression (1.1) is due to the two-photon ex-
change entering differently into the two cases.

A more realistic calculation of R which includes the
proton's strong interactions as well as its recoil is
stymied by the absence of a complete theory. ID view
of the accuracy with which experimentalists can now
corwpure scattering rates, ' however, such a calculation
must go beyond resonance approximations. It is the
purpose of this paper to make as precise a statement as
possibl"- by examining R at small angles.

The result of our work can be summarized by the
expansion

R—1= —27m sin-', 8—(n/m) (8E/M)
&& sin'(-'8) ln'(sin 2 8)+2 (n/vr) C(E)
Xsin'(-'0) ln(sin20)+O(n sin'(~|t) n') (1.2)

where E is the laboratory energy of the incident lepton,
cV is the proton mass, and C(E) includes a sum rule over
the proton photoproduction cross sections. It is seen

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' W. A. McKinley, Jr., and H. Feshbach, Phys. Rev. '74, 1759
(1948). See also R. H. Dalitz, Proc. Roy. Soc. (London) A206,
509 (1951).

'Representative of the experimental progress in this area is
the work reported by J. Mar et al. , Phys. Rev. Letters 21, 482
(1968). This includes a rather complete list of the theoretical
and experimental references relevant to our work.

that the erst term of (1.2) is simply the McKinley-
Feshbach result (1.1) at small angles and that the
second, also independent of strong interactions, is a
recoil term. Over all, this is certainly an intuitive result:
One would expect to have to hit the proton harder and
harder in order to "see" more and more structure. The
derivation of (1.2) in an approximation which neglects
the electron mass is presented in the main body of this
paper. We should note that the "energy resolution" d,A"

entering into the radiation corrections is assumed small
compared with the momentum transfer. Therefore an
important O(n sin'(28)) term which is proportional to
1n(E/AE) is explicitly calculated.

We must emphasize here that (1.2) is rigorously
correct only for momentum transfer small compared
with the pion mass. However, the possibility that this
result is valid for larger momentum transfer is discussed
later in the text.

The general n correction to R is presented in Sec. II in
terms of the elastic (two-photon exchange) contribution
plus the inelastic (bremsstrahlung) part. Next we fin.d
the lea, ding terms of these contributions for small
momentum transfer in Secs. III and. IV. Combining the
results in the two preceding sections, we are led to (1.2)
and Sec. V is directed toward a discussion of a nu-
merical study. Conclusions are given in Sec. VI.

II. 0, CORRECTION TO R

We now write the ratio R in first-order n. To this
order, the deviation of R from unity is due to the inter-
ference of the two-photon exchange amplitude with the
one-photon exchange amplitude plus the interference
of the amplitude for radiation by the proton with the
amplitude for radiation by the lepton.

The experimental conditions are assumed for quanti-
tative purposes to be those of SI AC, ' where electrons
and positrons, after being scattered by a hydrogen
target, are momentum-analyzed by a spectrometer. All
polarizations remain unspeciled and the recoil protons
are considered as undetected. The four-momenta k~, pq,
k2, p2, and ka, pa, and q refer, respectively, to the initial
lepton and proton; the lepton and proton in the elastic
final state; and the lepton, proton, and photon in the
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one-photon inelastic Anal state. In the laboratory, we
assume that the leptons are ultrarelativistic and denote
an array of notation by'

~12—g2 k2 —)~2 )

u 2=e2 —k"=m2
7

2 g2 k2 —~2

p, 2 + 2 p 2—ilI12

(2= CO~2 —q2= 0.
The ratio then is

2k

k2

k+k

k

I
k
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PI

kI

+kI

M,

E=o+/o —= 1+6+0(n'),
where we have introduced

(2.1) P)

The phase-space operators in (2.2) are

d'P„+2 3E d'k. +2 I
4(u) —= Z — &(u),

au~» (27r)s E„„+,(2s)s EI,„+,
with

P(N) =(2a.)'8(p&+k& —ps ks), n =0
1q

(2n-)'6(pt+k& —ps —ks —q), u=1.
(2w)' 2co,

6—=4 ReLlf (0)Mt*Ms+a(1)M t'*Ms'1

&& LW(0)l&~tl'j ' (2 2) kg+ q kI

PP PI

P)

q

k, -q

P~ PI

P~ PI

kI

= MI

The matrix elements of (2.2) shown as Feynman
diagrams in Fig. 1 refer to positron-proton scattering,
and are given by

Mt ——s4~nu(ks)y"u(kt)1-'u(Ps)F„(Ps —Pr)u(Pt), (2.3a)

M&' ——i(4~n) 'f 'u(k, )use, „(k,+q —nz)-'q"

+y"(kt —q —m) 'y&sq„]u(k&)

&&(Ps—Pr) 'u(ps) 1'.(Ps —Pt)u(p~) (2 3b)

cVs ——(4mn)' (k+kt)-'

FIG. 1. Feynman diagrams and their corresponding momentum
assignments for the matrix elements in Eqs. (2.3).

The virtual photon amplitudes exhibited in Eqs.
(2.3), F„andT„„,are represented by Feynman diagrams
in I'ig. 2. They correspond to the absorption and the
scattering, respectively, of a virtual photon from a
physical proton in order n and to all orders in the strong
interactions. The invariant amplitudes or form factors
in the familiar Dirac-Pauli expression

&&(k+ks) 'u(ks)y"( —A —m)
—'y&u(kr)

Xu(ps) 2'„„(ps,k+ks, pt, k+kr)u(pt), (2.3c)

r, (q) =~„P,(q')+io„„q~(x/2M)Ps(q'),

Ft(0) =Ps(0) =1, x—1.79
(2 4)

ancl

Ms' ——i(4sn)'isa(ks)y&u(kt)(kt —ks) '
Xu(ps)e, "&„(ps,q; pt, kt —ks)u(pt), (2.3d)

in which

d4k

(2s)'

are understood fairly well experimentally. But as far as
T„„is concerned, an invariant amplitude expansion @
complicated and a clean comparison to experiment is
impossible. This, of course, is the reason for addressing
ourselves to small angles; we wish to deal with the
simpler features of T„„whichensue at t=0. In passing
we note that these amplitudes represent conserved
currents; so if p' and p refer to physical protons,

f= (ps —pt)'=(kt —k,)'——4ZZ' sin'(-', 8).
3 Our basic notation and conventions are those of J. D. Bjorken

and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill
Book Co., New York, 1964), and Relativistic Quantum Fields
(McGraw-Hill Book Co., New York, 1964).jn particular, A =c= 1,
n=s'/4s. , and P=—P&y„.Also goo= —g»= —gso= —g33=1.

anCl
(p p)"u(p )I' (p p)u(p) = 0

q'"u(p') T"(P', q'; P,q)u(P) =0,
q"u(P') 2'"(P' q' P,q)u(P) =o, P'+q'=P+q

(2.5)

(2.6)
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We define A„as the positive-energy projection If we write
operator,

(2.8)

]~ =(p+(p')"')/2(p')"' (2.7) the sum over polarizations yields for the elastic term,

LP""(k,k )G ,(P,P .)] 'Re( —rr (k+2 ) '(k+2,)-'

XTr[r A,r (—k —re) '2 A„]Tr[T.(P,—P,}A„,I'„(P,, k+k ;P, k+. k )A.„,]), (2.2)

and for the inelastic part,

A;= —16 [P""(k„k)G.„(P,P,)] ' Re(r'[AI+R(1 —ceeq)]R'
Eg d'q

dER — 8(M+E —E~, E2 6GR)— —
E„, (22r)' 2(G,

X (pk —p, )
—'(k, —k2)-' Tr[(y (kR+q —pp4)-ky p+p p(k, —q —pp1)-Tp )A„,y ]}).„,]

XTr[T,(P, P,)A,T„(P—,, q; P, , k, —k,)A,]). (2:10)

The Rosenbluth traces in (2.9) and (2.10) have been denoted by

E„„(k',k)
—=Trk'Y„A1 'V+1], G„„(p',p) =—TrLr„(p—p')]~„1'„(p'—p)

III. ELASTIC CONTRIBUTION AT SMALL t

In this section we find the leading terms in 6, for small momentum transfer. As usual, we must come to grips
with the infrared divergence; 6, and 6; are separately undefined due to the integration regions k= —k2, —k&

in (2.9), and (1=0 in (2.10). A small photon mass I). will be used as a cutoff and our first job is to find all of those
terms that are divergent as A —+ 0 in 6,.

Since it is assumed here that —f&)m', we have another task which is similar to the infrared one. In order to have
some idea about the size of any 0()!) terms, all of the contributions to d„and 6, which diverge as pp4 —k 0 must be
located. It turns out that there are none; we can show 6, and 6; to be separably finite as m —+ 0 and we may
proceed directly to the case where t is small, albeit large compared with m.

In Sec. III A we consider the Compton Born contribution to d, . The continuum remainder is treated
in Sec. III B.

A. Comyton Born Contribution

We may isolate the infrared part of 6, by considering only the proton pole term in T„„:
&"(p',V', p, q)= I'( V')(P'+—rf' M— ) 'I'.(C)+—~, C' Vp'+V'=p—+V (3.1)

This is a conserved second-order current if it is sandwiched between spinors or projection operators. Upon Feynman
parametrization, the corresponding contribution A,~ becomes

d, ,s=162r(Tt 2)" (k2, kk)G„„(p2,pk)]
—' Re zt—3!dxkdx2dxkdx4 &(I—x1—x2 —xk —x4)

—TrLy'A1, y'( —l+ v+pp2) y']4,]Tr)I', (p1—p2)A, 21' p(
—3+2)—k2)

()2 p') 4

X (p2+ k2 —v+1+M) I', (l—2)+k1)&„I]+Ll/(I' —U) '] Trfy &1,y p( —l+u+ 222) y'&),]
XTrLr. (p, —p,)]I„,r, (l—u+k, )(p,—k,+u —lyM)r, (—t+u —k,)X„,] ~, (3.2)

)
where in the direct term

1)=klxl+k2x2+ (k2+p2)x4 2 l = l1 (x1+x2) txkx1+ 444'x2' 2wx—kx4+M'x4' ze-, —
w:—p1'k1= ME,

and in the crossed term

44= klx1+k2x2+ (k2 p1)x4 2 0= l1 (x1+x2) txlx2+ ppz xk + (2w+f)x4x4+M'x4

(3.3)

(3.4)

(3.5)

The expression above for V includes the small term e)0 in order to define the real intermediate-state singularity.
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The t integral in Fq. (3.2) may be divergent when V and/or fI vanish over the x; integrations; the path of the
Lo integration is then "pinched" at the origin where 1=0.In this way the vanishing of the masses may lead to diver-

gences in 6, depending upon the numerators in (3.2). Such circumstances furnish us with a method for choosing
the leading terms for small t. Namely, we pick. out the 3-divergent parts of the L integral by considering the succes-
sive vanishing of X, m and t (the order is dictated by the imposed inequality X'(&m'(& —t) and the behavior of its
numerators at the corresponding integration regions which give rise to singularities.

The next step is then to expand each product of traces in the direct and crossed numerators. Toward this end,
two useful expansions of the Dirac-Pauli form factors [see Eq. (2.4)] can be found. These are

Fi(txi)Fi(tx2) = Fi(t(1—x,))+0(t'xix~, tx4)1 F2(txi)xi+F2(tx~)x2 ——F2(t(1—xg))(1—xa)+0(txix2)x4) ) (3.6)

which follow from the constraint Pi x,= 1 and which, strictly speaking, break down at the pion thresholds (t)0).
Also note that numerator terms odd in t contribute nothing by symmetry and are hereafter ignored.

From (3.6), the constraint on the x, , and with considerable effort, we have for each numerator [modulo
a factor 4(mM) ']
jV = Fi(t)Fi(t(1—x,))Zv(1 —x3)(4w'+ 2wt+M't+ m't+ —' t')

+2Fi'(0) [4w'(1 —xa)(—txix2+2Zwx, x4+3II'x4'+t') —Sw'k, tp, tx,]
4w'x4—2Zw'—txix2 2Zw'M— '(1 2x4)x—4+6w'x, x4+2Zw't2+2Zwk, tp, l

+ &Fi(t)F2(t(1—x3))(2 —x3) (1—x3)Zv(—„'t'+ ~zm't) +~F&(t)Fi(t(1—x,))(1—x3)Zv(~~t'+ m't)

+ (~/23I)'4w'[wtxix2 —Zw'x3'x4 —wt'+2ki tp, t(1—x,)]—2~w'x, '
+ (g/2M) 'F2(t) F2(t(1—x3))(2 —x3) (1—x3)Zvt( —'M't —wt —2w'+ 2M'm')

+0(tx4, t'xix2, tl', m'xix2, m'x3, m'x4, m't', xax4', x4', x4P, (&i t)', t ), (3.7)

where v= —w(w+-,'t) and Z= —1 (+1) in the direct
(crossed) ca,se. From the tabulations in Appendix A it
is seen that the 0(tx4, . . .) terms left unspecified in (3.7)
lead to finite L integrals in our limit X=m=t=0.

It is now possible to obtain the infrared pieces in A,~,
to show that d„eis finite as m ~ 0, and to find [with
error 0(t)] its leading terms for small angles. Remember
that the t integral in Eq. (3.2) has t as its coefFicient;
only an integral which diverges as t —+ 0 will not con-
tribute 0(t) terms to A,e.

I. Infrared Divergence

We have infrared singularities in (3.2) from the
integration regions L=O, x~=1 and L=O, x2=1 when
A=O. ' But according to Appendix A there would be
no divergence at either region if the numerator is
0(xix2, x~,x4,P) From the ex.pansion (3.7), one has

1V=Zvm M F' (kg, ki)G~„(p2,pi)+0(xix2, xa, x4, P) . (3.8)

Therefore, the infrared part of AP is (see Appendix A)

A,e (infrared)

n ti f 2w-
, mm«w+-', t. (3.9)

),'i &2w+t
'

Z. ELectron Mass Singularities

There is an m=0 singularity in (3.2) due to the
integration region /=0, x3=1 and, since we maintain
X((m, more m-singularities result from the larger
xi+xa ——1 and x2+x3=1 regions. Again appealing to
Appendix A, we see that 0(xix2,x4,m'x3, P) terms in X
suKciently cancel these denominator zeros, contributing
no divergences for P =m=0.

In the remaining contribution to E, the divergent
lnm ink and ln'm behavior from the overlap of @~=1
and xi+x3=1 and from xi= 1 overlapping x2+x3 ——1
can exist for d,P(infrared). But it turns out that the
ln'm terms from the @3=1 region overlap cancel those
aforesaid. Further, when the direct and crossed terms
of AP(infrared) are combined, the lnm ink and lnm

divergences also cancel out, leaving only the infrared
in' behavior as shown in (3.9).

—
i Q47ra u (p')l„lp'-p) u (p)

The remainder of A,~ is finite at X=0. Strictly speaking,
one should not make approximations for small m as in
(3.9) until the X cancellation between d„and 6; is made.
However, it can be shown that the two procedures
commute.

4The general picture of mass singularities in Feynman dia-
grams has been given in a comprehensive paper by T. Kinoshita,
J. Math. Phys. 3, 650 (1962).

—
i 4 m a u {p') T„{p', q'; p, q) U {p)

FIG. 2. Virtual photon amplitudes in Eqs. (2.3)
as Feynman diagrams.
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In view of the above remarks, we have only to con-
sider those terms in E that are not 0(xix~,x4,m'x3, P) and
do not lead to infrared divergences. But all such terms
in N can be written proportional to powers of xs times
Zv and, from Appendix A, it can be seen that the
m-divergences cancel between the direct and crossed
parts of (3.2). Thus hP is finite at m= 0. The fact that
we need to combine both the direct and crossed terms
in A.~ before the m-divergences can be canceled is
related to gauge invariance. This relation will be more
directly illustrated in the treatment given later of the
nonpole contribution.

—(pi —k2 —k)'+M' in the crossed part and contribute
no t-divergences.

The integrals associated with (3.10) are given in
Appendix A; in fact, the erst term in this expression is
just the infrared numerator which led to (3.9).We have
for A,~

2w! 2w 2w
+~ ln' ~+in ln

3) —tM'—
3. Iiormard Divergences

In the forward direction, the k integral in the two-
photon amplitude cV2 [see Eq. (2.3c)j is more divergent
than ink. By "counting powers" we see that M2 could
diverge quadratically as X —+0 around k= —k&= —k2

when the nucleon pole terms are considered and perhaps
linearly or logarithmically for other contributions to T„„.
This further consequence of the photon's zero rest mass
is related to the divergence of the Rutherford cross
section in the forward direction. The forms of the
divergences in M2 as t ~ 0 are dependent on the
limiting procedure; as stated earlier, we choose
P '&&m'« —t.

We have noted that the O(tx4, . . .) remainder in Eq.
(3.7) renders the / integral of A,s finite at t= 0. Another
inference from Appendix A is that the terms tx~x2x3 and,
after combining the direct and crossed parts Zvtxs"
(n= 1, 2, . . .), txix, , Zwx, x4, Zwx3'x4, x4', P, a,nd l'x, all
leave the l integral finite at t=0. We are left with

Zvm'3l'F p(k2, ki)G, p(p2, pi)
+2w'x4(x, —2)+2Zw'cV'x4(1+ x,)+2Zwki /P, /

—2w'[2Zi x3 —2wx3x4+ ZM'x4(2 —x4)

+Ztxix2 ZPj (3.10)—
as the only part of E that requires attention. ' Moreover,
the bracketed terms in the expression (3.10) correspond
to (p2+k2+k)' —cV' in the direct part and to

(2w—ln~ — +O(nt) (3.11)

in the approximation where we neglect the electron mass
m (without violating X«m).

An interesting feature of (3.11) is that the proton
structure does not enter into the explicit terms. As far
as it goes, this "expansion" is identical to that for a
point proton. '

B. Continuum. Contribution

We define the nonpole or continuum contribution to
T„„asthe 0(q'q) terms in the low-momentum theorem'

T"(P' V" P 9) = &"(O' I"P,V)+O(A), (3 12)

which is true between spinors or projection operators.
This contribution —call it C„„—will not produce any
infrared divergence in 6,. Also, if we keep ns' nonzero,
a simple power counting shows that the k integration in
(2.9) over C„„is then finite at t = 0, i.e., its corresponding
D,o is 0(/). Here, however, we let m —+ 0 first so that the
k integral can diverge as t +0. The determination of
this divergent piece is given below after D,~ is shown to
be finite at m=0.

In the analysis of the m- and t-singularities, only the
electron and photon propagators need to be param-
etrized since C,

„

is well defined at small virtual photon
momenta. We obtain

6.~=16 L6'""(6,,6,)G.„(p„p,)j 'Re( —6

with

2 !dxidxgdx3 8(1—xi —x2 —xa)
L 0 (P D)3

y Tr[y A»~ (—i+0+m)y'A„,]Tr[I'.(p, —p, )A„,C„(p„l—d+k2, pi, l—2+k,)A„]~, (3.13)
r

d=—k i*i+k2x2, D= m'x, ' txix2. — — (3.14)

As in the Born case, there are singularities in A,~ when m and t vanish due to the integration region 1=0. The
behavior of the num'erator determines whether the integral in (3.13) diverges at these singularities. To be sure,
no infrared divergence is present 'fn A,,~ and no cutoff X is required.

5 The term (k& l)' goes over to a multiple of m' after a symmetric l integration.' R. W. Brown, Ph. D. thesis, MIT, 1968 (unpublished). Our paper represents an extension of part of this thesis.
'The proof of this theorem is discussed in Appendix B.
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The amplitude C,„=—T„„—B,„represents a conserved second-order current. Assuming parity and time-reversal
invariance, its invariant amplitude expansion in the forward direction is

C,„(p,q; p,q)=(q„q„g„—„q')A(q',p q)+. [p„p„q'+g„„(pq)'. (p—„q„+qp„)p q]B(q',p q)

+h"qv. v.q—v.)C(q', p. q)+(q.i~.iq" ~~'q"q.+~~"q')D(q' p q) (3.»)
Knowing this, we may now expand the numerator in Eq. (3.13) in the manner of the Born case, Eq. (3.7).

The product of the traces is'

A, =Tr[~.A„~(d+~)~ A„,]Tr[1.(p, —p,)A„C„(p„k,d; p—„k,—d)A„]
4''

+ [—4(1—xs)pi lkt. l+2t()P]B(0, tt)xs)+ 2t()xs'pilki l
m'3f

e)B(0,s)
+0(ti'm'I' (k , l)' l')). i3.16)

Z=Wx3

As in Eq. (3.7), we have ignored l and P terms since the
/ integration is symmetric. It is assumed here that the
two-photon contribution due to C„is ultraviolet-
convergent —for 8„this certainly seems so, since the
form factors experimentally drop off quite fast at large
momentum transfer. On the other hand, we need a
much weaker damping from C„than, for example, in
electromagnetic mass difference calculations. "The next
step then is to show that A,~ is finite at m=0, after
which we proceed in the determination of those terms
which vanish more slowly than t as t ~ 0—all of this
via (3.16).

/. E/ectron 3Eass Singllarities

There are singularities at m=0 due to the subregions
xt+xs=1 and xs+xs=1. Whether or not these develop
into divergences depends upon Ã~. In particular, ln'm
terms that are apparently possible from the overlap at
xs=1 cannot occur, since the factor l+d+nz is-
present in Xz. Also any O(P,nz) numerator terms will

not lead to m-divergences in D,~ as long as t is finite.
This last remark means that we need only consider the
first quantity on the right-hand side of Eq. (3.16),
neglecting m therein. The corresponding contribution
to A,~ is proportional to the integral

Tr[y'kg Pdy k,]
dxtdxsdx3 3(1 xi xs xs)

m x3 —txyx2

XTr[1'.(p, —p, )h.„,C„(p,, k, —d; p, , ki —d)A„,].
(3.17)

According to current conservation and since the electron
mass can be neglected, we may substitute"

y~dy'= 2y)'ki'xi+ 2ks)'xsy'
= 2xtxsxs '[y'(ks —ki)'+(ki —ks))'y'] (3.18)

' C. K. Iddings, Phys. Rev. 138, 8446 (1965l.' We assume that the only singularities of the truce product
in {3.13) are the dynamical branch cuts of C~,. This means that
{3.16), which for its validity requires the existence of the first
few derivatives with respect to l and t of C„,may break down at
certain values of Ex3. However, the x; integrations oGer sufhcient
smoothing for our purpose.

'0 W. N. Cottingham, Ann. Phys. {N.Y.) 25, 424 {1963).
"This analysis was suggested by the argument used by N.

inside the electron trace. Therefore, at m= 0 the
denominator term in I, x&x2 is canceled by the nu-
merator. We must note that the apparent divergence
due to the right-hand side of (3.'18) at xs=0 is net
really there since, for example,

(ks kl) ApgCpr(P2) k2 di Pit ki d)Ap(

vanishes at x3= 0 as a result of current conservation. Iri
any event, along the line xi+xs ——1 (xs=0),

Cp, (ps, ks —d; pi, ki —d) = O(txtxs) (3.19)

by the theorem (3.12). The conclusion of all of this is
that I (and hence A,o) is finite at m=0.

We see that gauge invariance has played an important
role here. It has been used in the derivation of (3.18), as
well as in the low-momentum theorem (see Appendix
I3), and through these same results remains instru-
mental in the following t-divergence discussion.

,f(l)
=

[p D]s

A.'
g)'"f(0) ln-

64m'i D

+terms finite at D =0, (3.20)

in which A.' is some scale pertaining to f(l). We may

Meister and D. R. Yennie LPhys. Rev. 130, 1210 (1963l], showing
that the k =0 region of Eq. {2.3c) should contribute little according
to gauge invariance.

"This is essentially a result of averaging over spins; otherwise,
the numerator would only vanish like (—t)' .

Z. Fonvard Divergences

The divergent part of the / integral in D,~ as t ~ 0
(—t))ns') can be found by considering only the explicit
numerator terms in (3.16).' Moreover, we see that 1 is
finite in this limit since by (3.18) and (3.19) the full
denominator tx~x2 is canceled by its numerator. "
Therefore the explicit P terms in Eq. (3.16) are the sole
contributors to t-divergences.

Suppose we have some nonpathological f(l) which is
finite and smooth around l=0. Then if it vanishes
sufficiently fast as l —+~,
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correspondingly write

CX A.2 1

d,~=2—ted% ln Re dx 1—x2 8 0 zx
7r

8
+-,'~~ (1—~)—B(O,s) +0( t) (3. .21)

a=we

Here A.2 refers specifically to a characteristic "mass"
of B.

Since B(0,v) is simply the strong-interaction part of
the non-spin-Qip forward Compton proton amplitude,
we may write it as a dispersion relation which contains
the total strong photoproduction cross section 0~. If p,

is the pion mass,

A. Electron Mass Singularities

If m is very small compared with the other experi-
mental parameters, there is a possibility of large con-
tributions to 6, when q is parallel to ks or kr in (2.10).
After integrating (ks q) 'd(cos9, ), for example, around
the region qllks, we obtain a 1nm term. Further, there
could also be lnm ink and ln'm terms due to the overlap
of the infrared and m-divergences. It turns out that
none of these m-divergences is really present. To see
this, we notice when qual ks that

ks+q= (Es+~,)Es—%s+O(m')
= (Es+ru, )cu, 'q+0(m') . (4.1)

Therefore,

2
B(o,p) =-

@M+ ~/2 &

ImB(0,v') . (3.22)

As,y'(1'ts+q+m)y~A&,

=As ~'L2(ks+q) '—7'(&s+q)+~7']~k.

including the sum rule for $(E)

S(E)= or(Eu)dl.
V/&+V /2'2

X — —» — —-', -', ln . 3.25

This completes the determination of the leading terms
in 6,.

IV. INELASTIC CONTRIBUTION AT SMALL t

The bremsstrahlung part of 6 admits a simpler treat-
ment than that for the elastic contribution. We define
the "energy resolution" AE according to Tsai, " and
since it is assumed to be much smaller than the mo-
mentum transfer, the usual soft-photon approximation
for 6; can be made. This in turn will be examined at
small t.

We first discuss the way in which gauge invariance
eliminates divergences which a priori could arise as
m —+0. Again this gives us confidence concerning the
magnitude of neglected terms.

The next step is to simply read off the result for 6;,
from Tsai's work. This, of course, completely deter-
mines the infrared-divergent term needed to cancel the
elastic one.
"Y. S. Tsai, Phys. Rev. 122, 1898 (1961).

The optical theorem takes the form

ImB(0,u) = (47rn3f v)
—'o r(v/cV), (3.23)

where the argument of o.T refers to the laboratory photon
energy. Note that our dispersion relation is assured of
convergence if or(v) is bounded in the limit p —&~.

The combination of Eqs. (3.21)—(3.23) yields

n —t A2

ln 5(E)+0(nt), (3.24)
X 482

B. Soft-Photon Ayyroximation

Tsai" has argued that we may neglect the infrared-
convergent terms in an inelastic integral such as that
appearing in Eq. (2.10), provided

d E«(1+2E/M) —'E'. (4.3)

One should note that there is an added restriction

implicit in Ref. 13: (AE)'« —t. We shall assume that
both of these are true in our case as well. In order to
avoid spurious lnm behavior, we also require any ap-
proximation of 6; to be gauge-invariant. This last
requirement is satisfied in the event that only the
infrared-divergent terms are kept.

It follows from the low-momentum theorem (3.12)
that

A„,T„,(ps, q; pr, kr —ks)A„,

=A„kr,( q)(p, yq M) 'r—,(p,+q p—,)-—
+t ~ r q~ Ps+q Pr)~.—+o(q) (4—4)

ps pl
=A„,I,(p, —p,)a„—yO(q') .

Psq P&q
(4 5)

'4 D. R. Yennie, S. C. Frautschi, and H. Suura LAnn. Phys.
(N. Y.) 13, 379 (1961)] have shown that the cancellation of
lnm terms in the infrared part of our interference contribution is
due to gauge invariance. Our argument here is a simple extension
to the complete contribution.

= AA. ,y'L2(Es+~, )cs, 'q' —p'(Es+n, )
al lka

XEs 'a+nay'+0(m') jA.r, (4.2)

Since this is contracted into A»T„(ps,q; pr, kt —ks)h»,
the q& term vanishes by current conservation. " An
analogous argument follows for qual kr, and so we see that
the end-point singularities at m= 0 do not really lead to
divergences. Our argument is not strictly applicable at
co,= 0, but it will be shown explicitly that there are no
lnm Ink and ln'm terms from the overlap.
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A, (soft) = — [M+—E(1—cos8)]
7r2

X
E' d'q

dE3 — "e(M+E E„,E—co,)— —
Mq +@3

(4.6)
~~

~~

~

~

k, .q ki ql p2 q pi. q&

This last statement is not a result of (3.12) insofar as it
was built into B„„.Since the effects of the finite detector
width are neglected,

k3 ——k2+O(q), pa ——p&+O(q) .

We therefore find, in soft-photon approximation,

The behavior of such a 6, will be correct for small rn

since the infrared proton current is conserved:

In order to be consistent with the elastic infrared cutoR,
we set q'=X' in (4.6). Strictly speaking, some of the
ste s which led to this expression relied on q' vanishing,

—+0. We may nowbut the errors involved vanish as —+

roceed in the fashion of Re . 13.
S' the q integral in Eq. (4.6) is an invariant, oneince e

can choose to integrate in the reference frame where
kz —kB=0; th angular integrations are then easy.

The use of Feynman parametrization gi n to ether with a
convariant generalization of the result leads to

with

D, (soft) = —2—2w

' dx '(M AE)' ' dx pgi'(MqAE)'

'p p 'p 0 p21 li p2'p21p2'p12

p;,=k;x+p, (—1 —x), g—=2w/(2w+/) =E/E'.

(see A endix A for the pertinent integrals)Since ~M((w+-,'t (m(&E'), we may in turn write csee ppen
'

2E
A.( ft) = —2—2 ln —lnii 41n —— nq+ln 5 ln'g —ln ln 1—6;sot = —— +lr( -) ln 1—

where
f1—y

E(x,y) —= —C'(1 —y) —C'~

kx —y

x(1-y) 1=x
+@ +lnx ln-

x—y x—y

and C is the Spence function"

S dy
4(x)=—— —lni1 —yi.

0

(4.V)

All of the inn, 1nnz ink, and ln m term, gterms although
' d' 'd al integrals shown in Appen ix A,

have indeed canceled out in (4.8). Outside o t e

dependence, d, (soft) is seen to be

8(n/m) 1n(E/AE) 1ng+0(n/) .

Since we maintain-—t&)(AE)2 1n(E/AE) is large and,
in spite of the fact that lug=0(t), the above must be
kept as a leading term for sma

'
ll~.

'

in Dilo arithms and Associated Functions (Mac-
on 1958). The definition (4.9) actually is

the real part of Lewin's dilogarithm; see . i c e,
40, 351 (19491.

V. 4 AT SMALL ANGLES

Our next step is to collect the results from Secs. III
and IV for small t. In terms of the scattering ang e, we
find from Eqs. (3.11), (3.24), and (4.8) that

2~n sin-', 8——(n/m) (8E/M) sin' —', 8 1n'(sini28)

+2(n/vr) $4E/M+5(E)] sin'i~8 ln(sin-', 8)

+8(n/7r) in(E/AE) lnL1+ (2E/M) sin'-,'8]
+O(n sin'-'8) (5.1)

A 'd from the lnhE term which must be kept in soft-
photon approximation, this is our sta e res
We shall take 0 E/E= 1% in our numerical work.

By examining eth available photoproduction da a,"
we can concoct the crude parametrization

o-i (E)= 5008(E—Eo) (1—e-ie ~&»")

—4008(E—2EO) (1—e—&~ '~»'e) pb, (5.2)

bur -Heidelberg-Munchen Collabo-Aachen-Berlin-Bonn-Hamburg- ei
ation, Phys. Letters 2'78, 474 1968). See a so . a am

et al. tandard Linear Accelerator Center""""""' "'-'3""--"-bl 'hed). Th-. -f-.n.-R~po~t No SLAC PUB 653 (unpu is
particularly the last one, show much more struc ure
indicated.
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where we choose

with
3= —,'Ep, 8= ~3Ep,

Ep=—p+ p'/2M.

The form (5.2) follows from several features. An
obvious one is the vanishing of the strong-interaction

cross section below Ep. Further, the data show a 500-pb
peak [the S*(1236)]at E=2Es, after which the cross

lsection drops and appears to level off asymptotica y
at or about 100 ftb. The plot of Eq. (5.2) is given in

Fig. 3.
IfWe sha, ll now estimate S(E) by using (5.2).

b~=—b&1 and if a) 0, then

h

1 ——'+—'1 = — —+C (—b) —C (b)+—'(3+9') ln—
4 2N I—1 I' 2 2

+b ln
6+4

1 1
dx e * &I — —C'I +e b[e(—f) —C(b)]g — —2 El(ab)+ — 1——

2 nb ka k a 8

1 1
Xe 'El(ab )+ — 1+ — e El(ah+)+ —',e '(b+lnla&+I &—»Iati —

I 2)
2 0

(5.3)

in terms of the exponential integrals'

El(x) —= dy e
—

ln~y) =e-*ln)x[+Ei'(x),

Ei'(x) =—P

500 — r
I

I

I

I

I

I200—
I

I

I

I

l00—
I

I

I

I

50—
I

I

I

I

I

20—

1

i
I I I

(c)

I I I I I I I I

I

I

I(b)
I

I

I

I

I

. I

I

and the Spence function C(x) introduced earlier [cf.
Eq. (4.9)j. As a check, it may be seen that the evalua-
tion of the second integral in (5.3) does indeed reduce
to the first as a —+ 0+.

The x integral in (5.3) can be done numerically and
the results for S(E) are shown in Fig. 4 corresponding
to (a) the crude fit (5.2), (b) an "overestimated" fit

"(E)I ...,..t; .t.d= 50011(E-Eo)
—4008(E—2.0 GeV) pb, (5.4)

and (c) an "underestimated" constant fit

~r(E)
~I

underestimated 1000(E EO) f b ~

These limiting cases for 0.~ are also plotted in ig. 3.
In turn, we may now display the leading behavior of

6 for small angles. With error 0(n sin'-,'fl), 6(g) is

po e orl tt d f 0&30' and for several incident energies in
5.1 .Fig. 5 corresponding to the explicit terms in Eq. ( . ).

We see that for E much smaller than 1 GeV, the
—2zo. sin~~8 McKinley-Feshbach term dominates and
one needs energies on the order of the proton mass in
order to see any structure. As we approach the GeV
region, the S(E) term becomes dominant, especially
since the ln(E/AE) contribution (for E/AE= 100) more
or less cancels the negative-definite remainder.

However, our calculation really has an error of
0(n sin'-,'g, trf/cV, '), where Ms is a characteristic "mass"
which may very well be tha, t of the pion. (This shows

why our work is not useful in the nuclear case with its
tt dant low-lying intermediate states. ) Strictly speak-

thing, the leading terms may be dominant only for bo

.I .2
I

.5 l,0
E, GeV

I I I I I I

2.0 5.0

FIG. 3. Total strong-interaction cross section 0 z for photo-
pro uc

'
duction with the proton as a target. CaC ses a b and (c)

~ ~ ~ ~ 5.2 5.4 andrefer to the parametrizations given in Eqs. (5.2), ( . ), d
(5.5), respectively.

'r The properties of Ei(x) are studied (using a slightly different
definition) in Handbook of Mathematzcat Fgnctions, edite y
Abramowitz and I. A. Stegun (U. S. Government Printing Office,hi, D. C. 1965}.In terms of their definitions, Ei'(x)

St(x) if x)0; Ei'(x) = —Ei(—x) if x(0.

oi
t((p, , sin, 8((1

0«min (tr,p/E) . (5.6)

Hence, although S(E) grows like E', we cannot predict
an enhancement at larger energies since our calculation
is en va ith l'd only for correspondingly smaller ang es.
This apparent enhancement, erst seen by Dre an
Rudermanis in an approximation which also singled out
the forward Compton amplitude, is not expected to be

"S. D. Drell and M. A. Ruderman, Phys. Rev. 106, 561 (1957).
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really there. Werthamer and Ruderman, "using both a
Weizsacker-Williams analysis and a perturbation-theory
argument for meson electroproduction, have found for
nonforward angles that the magnitude of the continuum
contribution decreases with increasing (ultrahigh)
energies. This agrees with an extensive static approxi-
mation to the lower-lying Compton resonances per-
formed by Greenhut' if the high-energy extrapolation
is permitted.

We also believe that the terms in (5.1) due to the
Compton Born part of 6, exhibit incorrect behavior for
E)&M. Rather than becoming increasingly negative as
E grows, the work of Greenhut and the exact results for
a point proton' suggest that this part never is more
than a few percent of unity in magnitude —even for
ultrahigh energies.

It is therefore anticipated, a fortiori, that the efficacy
of our expansion (5.1) will break down at some energy.
On the brighter side of things, 6 does have a definite
negative slope as 8 increases away from zero and is on
the order of 1% before our restrictions are obviously
violated. This may be experimentally verifiable in the
future; at present, the most accurate data are accom-
panied with errors which bracket our result, but which
are yet too large by a factor of 2 or 3 for our purposes.

VI. CONCLUSIONS

It is hoped that the result (5.1) will constitute more
than a small-angle theorem in order n—besides being
an example of a way in which the isolation of mass
divergences can be employed. In order to consider an
experimental confrontation, we turn our attention to
several uncertainties which would appear to stand in
the way.

With respect to the inelastic part of 6, it turns out
that the 1nhE term in (5.1) is an excellent approxima-
tion (within 10%) of the soft-photon calculation (4.8)
in our region of interest —which is the reason for not
expanding the logarithm in sin~8 there. Incidentally,
the corresponding calculation of Meister and Yennie
agrees extremely well with (4.8) (see, for example, the
comparisons in Mo and Tsai"); hence it also is approxi-
mated decently by our single term. Since the error intro-
duced into the calculation initially via the soft-photon
approximation should vanish with AE Lespecially the
O(q) continuum; see (4.4)j, this step does not bother us;
i.e., we certainly satisfy the condition (4.3) and we do
not have to worry about pion thresholds or continuum
contributions. The detector slit-width eRects should
likewise create no great error since, according to Tsai, "
we need only ask that the elastic peak width to the
right of the average detector angle be small compared

'~N. R. Wertharner and M. A. Ruderman, Phys. Rev. 123,
i005 (1961).

so G. K. Greenhut, Phys. Rev. 184, 1860 (1969) LPh. D. thesis,
Cornell University, 1968 (unpublished)g. An excellent review of
the whole two-photon subject can be found in this paper."L.W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

I20—

IOO—

80—

S(E)

40—

20—

-20
0

I I I

0.2 0.4
I

'0.6
E, GeV

I

0.8 I.O

Fxo. 4. Results for S(E) corresponding to the cry parametri-
zations: (a) the crude fit of Eq. (5.2), (b) the overestimation
(5.4), and (c) the underestimate (5.5).

to 5E. Thus, as a result of these considerations, " it is
probable that the only important uncertainties lie in
the elastic approximation.

The elastic constraints (5.6) which limit the kine-
matical region where (5.1) is useful may be milder than
we have supposed. Something like the Rosenbluth form-
factor scale, 0.71 (GeV/c)', should be the breakdown.
point in place of p,

' for 6, . For example, it can be
inferred from the static calculations of Greenhut'" that,
for angles less than 40', the McKinley-Feshbach term
is dominant up to several hundred MeU in the c.m.

—.0 I —-

—.02

E =IO MeV

E= IOO MeV

I I

(o),(b),( c)

(0),(b), (c)
—-Ol

—.02

—.0 I

—.02

—.05

—.04

—.05

-,06 I

Io l5
8

I

20 25

FIG. 5. Plot of the explicit terms in (5.1) in the forward angle
region for three representative energies. The cases (a), (b), and
(c) correspond to the ~z parametrizations of Eqs. (5.2), (5.4),
and (5.5), respectively.

"L.C. Maxirnon, Rev. Mod. Phys. 41, 193 (1969).
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x xe $3 $4 xi x $4d'(f(x.;d))—=Re(—d d!!dx,dx,dx, dx, d 1 —x,—x
0

x3 )

(A1)
2 2 Z~ 4x — 'x ' —2P$3$4 —M $4 ie/xixq —m x3—

(x, , l)

(A2)

i fl X (xi+ 2)

ndin to the pertinent f(x, ,l) are dis-
g case. The integrals correspon ing o—'t) in the direct (crossed case. e

'
where d = —w(w+-, t, in e

va
' '

ave often proved to be valuable. An example ish f i bl i (Ai)h oft o toeinte rais, changes o va
'

xi—- 1—s, x2 ——(1—y)z, $3= —x

wa of the 8 function.inatin the x4 integration by way o
0

be used te ehm ing
Certain basic integra s w ic

E(x)= —n — = +-', 1nx+R(x),
y' —x(1—y) x(1—y) 2 (x)"'

2

=-; i. x+Z($),
y' —x(1—y) x(1—y)

(A3a)

(A3b)

dM (x)—=Re (A3c)

s. Rev. 180, 1541 (1969).

Co. Inc. , Reading, Mass. , 1955);
Nuovo Cimento 28, 33 (19

eory of Photons and Electrons (
1873 (1969) If the rapid di i utio o~, y' . ,

f ~ R b ood

Ell
' M

S-. (I. d-) A229, 260 (1955).ll'"nd C. H'nd""n P"' R' S"S D. Drell and R. H. Pratt, ys.
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tt—=M'/2v —1. (A4)

It is also convenient. at this point to dehne

1

I(g(x,))=Re dxrdx2dx3dx4 5(1—xr —x2 —x3 —x4

so that

(As)X —txrx2+2vx3x4+M x4—2 2

1
I(1)= ——ln'

2v 2

pM2—
—

4 in2i +R(t), (A6a)
E —t

where we have denoted remainders that are finite as
x —& 0 by R(x), and where

g3$4

$4

—tfX1X2+2VX3X4+ X42 2

1671-'F(f(x,,l) )
—kg""I(1)
8

t—I(1)

1 t9——I{1)
2 l9V

I(1)
BM'

I(1)

The explicit divergence in (A9) for m ~ 0 is found from

E . ,A1 corresponding to thosesLz I. Integrates F Lef. q.
u in A endix A, in terms of I e ne if " ' " ' pp

The masses X and I can be neglecte zn ese

11 M'
I(x,) = ——ln +R(t) .

2v 2 —t
(A6b) 1 t —11 ( t——K = ———ln2~ +R(m) .

km'
(A10)

)&Re
m2(1 —x) '+2vx(1 —x)+M'x' —ie

+q(X),

(A7)
in which the real part of the x integral is

1 2v
—ln
v mM

(Z) f=x4. Here we may neglect X andand m forthwith.
Bearing this in mind, in termea

' ' ' '
s of t'A3& we have

We have now developed enough machinery for our
tabulations. Let us begin with the simplest cases.

) f= 1. After the change of variables indica e in

(A2, one can exploit the fact that X is n y
(I = . er

he =1 x=0 and y=0, a=1 regions of inte-around the y=, s=
as x —+0gr ation. We." If denote terms which vanish as x —+

by rt(x),

For general integer n&1,

1
F(x3")=

16m' 2v p

dyds (ys)" '

+R(m) . (A11)
m'y's —t (1—s) (1—y)

The R(m) remainder in (A11) diverges no faster than
t

—'t'as t —+ 0.

and their limiting form for smaa t can be inferre
directly from a wigA6 ) ith error R(t) (This is t.rue in

spite o e inf th '.nterchange of derivative an limit. o
corn. lete our ca a og,t 1 we note that the Ii s correspon-
ing to x3 times t ose s is eh g' 1' ted in Table I can be found
merely by rea ing x3 id' I( ) in place of I(1) there. The
numerators to w ic we avh h have not made reference in this

' /4 x 2 etc.) render F well behavedappendix (e.g. , x4 x3x4 e

Lastly we shall give the integrals pertaining to q.7

(4.7). One needs

1 1 1
F( )=

162r2 2v 2v+Pt
dx prr——ln

p
2 g2

1 2w 2w (2w)
2 ln -ln —

2 ln'~
mM

x '"z '~~ —I. '~+44r( ') . (43)
M2i

2w) 2w—' ln'
~

—ln ln 1—
M'i

(3) f= x3". Only X may be neglected. For n= 1, —C 1— ——
& A12

+(1 M'/v) F(X4)+rt(m—) . (A9)

"M. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219
(1953).

dx p21
ln

p
2 y2

= (A12) with replacement w —& w+2 .—& w 't. A13)—
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Also Tsai's calculation" requires Further, we assume that the off-mass-shell ver tex
functions in (81) go smoothly on mass shell as the
virtual photon momenta vanish and we separate out
the divergent portion of S~'(k) as k' ~M', Z2(k —M) ',
which is its single-particle contribution.

We have, for example,

dÃ p2 pq 1 c p2 k; a —1
ln —= —2 ln ln —+ln —lna

p ' M' 2c mM M' a b—

p1 —
b~ ]a(1 b)—— mM—C'(1 —b) —C

I I+4 I +~
ka —b) k a —b c

with
(A14) u(p') I'.(P', k) =u(P') [I'(P'»)

+ (r„-(p',k) —r„+(p',k))A,-7, (83)
M'

b=
2G

p p c—=k,' p, .
pg k,

An exact version of (A12) can be found in some work by
Campbell. "

APPENDIX B

We give here the essential steps in the proof of Eq.
(3.12), the off-mass-shell analog of the Compton low-

energy theorem. Since the proof follows quite directly
from the work of Adler and Dothan, " a detailed
exposition is unnecessary. The important assumption is
that certain properties of the strong interactions can be
inferred from a Feynman-graph analysis based upon
renormalizable perturbation theory.

Using such an analysis, we state that the divergent
part of u(p')T„„(p',q'; p, q)u(p) in the limit q and/or
q' ~ 0 is given solely by the set of graphs which can be
disconnected merely by cutting a single proton line.
The remaining graphs are of the noninfrared type and
are considered well dehned in such limits independent
of the path along which q or q' vanishes.

In terms of the proper vertex function and the full
proton propagator, the aforesaid divergent part is
isolated in

where the positive-energy vertex can be expanded in the
following invariant amplitudes:

I'„+(p',k) =y„Fg+(6',k')
+iophgFg+(6', k')+A, F3+(6',k'), (84)

0 —=p' —k.

By careful bookkeeping with respect to the renormaliza-
tion constants Z~ and Z~, and since Zy = Z2 according to
the Ward identity for the proper vertex,

Fg(A')
1

Fg+(6' M') = —(K/2M)F2(h') +0(k' —M') (85)
Z2

when

i= 2

.3.

The Ii; are the Dirac-Pauli form factors introduced in
Eq. (2.4). Therefore, from Eqs. (82)—(85) and (2.4),
one has

u(p') [r„(p',p'+q')Sp'(p'+q') r„(p'+q',p)+u, q' q7u(P) (81—) u(p') r„(p',k) = (1/Z, )u(p') [I',(p' —k)+(k —M)
Recall that we have &&(terms well defined as k —+ p')7. (86)

P+q =P+q P =P ™

and note that the renormalization factor Z~ has been
left understood in the expression (81).

We now shall reduce the ill-defined part of (81) to a
term which involves only the "measurable" Rosenbluth
form factors. To do this, we project out the positive-
and negative-energy parts of -the vertex functions by
way of the projection operators

&0+(k')"'

2(k2) 1/2

&A —M
1+ (Ma k) . (82)

2(k')'" (k')'"+M
"J.A. Campbell, Nucl. Phys. 81, 283 (1967); B10, 190(E)

(1969)."S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).

A similar decomposition can be given for I'„(k,P)u(P).
The reduced part of (81) is thus seen to be

u(p') B„„(p',q'; p, q)u(p), where B„„hasbeen defined pre-
viously in Eq. (3.1). In other words,

uCv pN—=NT'v pN N~v pQ

is well defined as q and/or q' —+ 0 and, being a conserved
second-order current, is O(q) and also O(q') by the
arguments of Adler and Dothan. "Thus it must in fact
be O(q'q) and we have the theorem (3.12).

One final remark should be made here. Our choice for
I'„(q), (2.4), cannot be freely changed by use of the
Gordon reduction formula, ' since the nonpole parts of
B„„candestroy its gauge invariance even though the
pole residue remains correct.


