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We study the ratio of the cross section for elastic positron-proton scattering to that for elastic electron-
proton scattering. In first-order «, the leading terms of this ratio for small-angle scattering are given. As

could be expected, the first term in this ‘‘expansion”

is the same as that obtained in Dirac theory, and the

first plus the second are unchanged from the structureless-proton result. Only in the third term do we begin
to find proton structure, this in the form of a sum rule over photoproduction cross sections. Use is made of
an off-mass-shell analog of the Compton low-energy theorem, and as a by-product we show that the two-
photon contribution to our ratio is finite in the limit of zero electron mass.

I. INTRODUCTION

HE scattering of positrons in a Coulomb field is
identical to electron scattering in classical me-
chanics and in nonrelativistic quantum mechanics. It
is only when we consider relativistic quantum mechanics
beyond first Born approximation that differences occur.
For example, if we define R as the ratio of the positron
cross section to the electron cross section with the
proton as a target, the Dirac theory yields!

sini6
R—1=—-27ra—— +0(a?

(1.1)
1+-sin6

for an ultrarelativistic beam incident on a fixed struc-
tureless proton. Here « is the fine-structure constant and
6 is the lepton scattering angle. The deviation from zero
of the expression (1.1) is due to the two-photon ex-
change entering differently into the two cases.

A more realistic calculation of R which includes the
proton’s strong interactions as well as its recoil is
stymied by the absence of a complete theory. In view
of the accuracy with which experimentalists can now
compare scattering rates,? however, such a calculation
must go beyond resonance approximations. It is the
purpose of this paper to make as precise a statement as
possible—by examining R at small angles.

The result of our work can be summarized by the
expansion

R—1= —27a sin}0— (o/7)(8E/M)
X sin%(36) In2(sin6)+2(a/7)C(E)
Xsin%(360) In(sin26)+O(a sin%(36),e2), (1.2)

where E is the laboratory energy of the incident lepton,
M is the proton mass, and C(E) includes a sum rule over
the proton photoproduction cross sections. It is seen

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1W. A. McKinley, Jr., and H. Feshbach, Phys. Rev. 74, 1759
(1948). See also R. H. Dalitz, Proc. Roy. Soc. (London) A206,
509 (1951).

2 Representative of the experimental progress in this area is
the work reported by J. Mar ef al., Phys. Rev. Letters 21, 482
(1968). This includes a rather complete list of the theoretical
and experimental references relevant to our work.
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that the first term of (1.2) is simply the McKinley-
Feshbach result (1.1) at small angles and that the
second, also independent of strong interactions, is a
recoil term. Over all, this is certainly an intuitive result:
One would expect to have to hit the proton harder and
harder in order to “see’” more and more structure. The
derivation of (1.2) in an approximation which neglects
the electron mass is presented in the main body of this
paper. We should note that the “energy resolution” AE
entering into the radiation corrections is assumed small
compared with the momentum transfer. Therefore an
important O(a sin%(36)) term which is proportional to
In(E/AE) is explicitly calculated.

We must emphasize here that (1.2) is rigorously
correct only for momentum transfer small compared
with the pion mass. However, the possibility that this
result is valid for larger momentum transfer is discussed
later in the text.

The general a correction to R is presented in Sec. ITin
terms of the elastic (two-photon exchange) contribution
plus the inelastic (bremsstrahlung) part. Next we find
the leading terms of these contributions for small
momentum transfer in Secs. IIT and IV. Combining the
results in the two preceding sections, we are led to (1.2)
and Sec. V is directed toward a discussion of a nu-
merical study. Conclusions are given in Sec. VI.

II. « CORRECTION TO R

We now write the ratio R in first-order a. To this
order, the deviation of R from unity is due to the inter-
ference of the two-photon exchange amplitude with the
one-photon exchange amplitude plus the interference
of the amplitude for radiation by the proton with the
amplitude for radiation by the lepton.

The experimental conditions are assumed for quanti-
tative purposes to be those of SLAC,? where electrons
and positrons, after being scattered by a hydrogen
target, are momentum-analyzed by a spectrometer. All
polarizations remain unspecified and the recoil protons
are considered as undetected. The four-momenta ki, p1;
ks, p2; and ks, ps, and g refer, respectively, to the initial
lepton and proton; the lepton and proton in the elastic
final state; and the lepton, proton, and photon in the
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1 COMPARISON OF SCATTERING OF ELECTRONS:- ..

one-photon inelastic final state. In the laboratory, we
assume that the leptons are ultrarelativistic and denote
an array of notation by?

ki?=E2—Kk*=m?,

k2= E"?—K2=m?,

ks?= Es?—kg?=m?,

pif=Eplt—pP=M?,

P?=wq®—q?=0.
The ratio then is
R=c¢t/o7=14+A40(?),
where we have introduced
A=4 Re[Y(O)M*Mt-p(1) MM ]
X[(0) [ M4[ T

The phase-space operators in (2.2) are
Bpuye M &PRppr m PO,
(2m)° Eppya (2m)° Erpia

(2.1)

(2.2)

Y= ¥
with '

P(n)=2m)*%(p1+kr—pa—Fks), n=0

d3

n=1.

q 1
= —(@m)*o(prt-kr—ps—ks—q),
(2m)3 2w,
The matrix elements of (2.2) shown as Feynman
diagrams in Fig. 1 refer to positron-proton scattering,
and are given by

My=idmai(ks)yu(k)ta(p) T(p2—pu(py), (2.3a)
My =i(4na)**a(ks)[v*equ(Rs+q—m)~'y
+y'(Ri—q—m) v equ Ju(ks)
X(ps—p1)~*a(ps)To(ps—pr)u(pr), (2.3b)
M= (4ra)? / (b-ky)2
X (k+ko)%i(ko)y* (— k—m)~ "y u(ks)
Xi(p2) Tou(p2, k+ka; p1, k+k)u(pr), (2.3¢)
and
My = i(dma)*au(bs)y u(les) (b — )
Xa(ps)eq’ Tou(ps, g5 p1, Fx—ka)u(pr), (2.3d)

in which

/f/ (j:;

1= (pa—p1)?=(k1—k2)? =2 —4EF' sin%(39).

3 Our basic notation and conventions are those of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill
Book Co., New York, 1964), and Relativistic Quantum Fields
(McGraw-Hill Book Co., New York, 1964). In particular, Z=c=1,
a=e/4x, and p=phy,. Also geo=—gu=—g=—gs=1.
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Fi1c. 1. Feynman diagrams and their corresponding momentum
assignments for the matrix elements in Egs. (2.3).

The virtual photon amplitudes exhibited in Egs.
(2.3), I'y and T, are represented by Feynman diagrams
in Fig. 2. They correspond to the absorption and the
scattering, respectively, of a virtual photon from a
physical proton in order « and to all orders in the strong
interactions. The invariant amplitudes or form factors
in the familiar Dirac-Pauli expression

Iy(q) =vF1(g%) +iowg"(x/2M)Fs(q") , 2.4)
F1(0)=F,(0)=1, x==1.79 ’
are understood fairly well experimentally. But as far as
T,, is concerned, an invariant amplitude expansion s
complicated and a clean comparison to experiment is
impossible. This, of course, is the reason for addressing
ourselves to small angles; we wish to deal with the
simpler features of T, which ensue at {=0. In passing
we note that these amplitudes represent conserved
currents; so if p’ and p refer to physical protons,

(' —pya(p)To(p’ —p)u(p) =0 (2.5)
and

¢ a(p)Tou(p' s p,0u(p)=0,

2.6
GV Tl ds bu®)=0, p+ad=ptrg. &0
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We define A, as the positive-energy projection If we write A=A+, (2.8)
operator,

A= P+ (pHYD) /2(p2) 12, (2.7)  the sum over polarizations yields for the elastic term,

A= 167ra[F”"(k2,k1)va(p2,p1):|_1 Re(-—zt/ <k+k1)_2(k+k2)_2
k

XTrly Ay (—R—m)~ "y "Ar ] Tr[r‘v(Pl_P2)AmTpr(P2y k+ks; pa, k+k1)Am]) , (29)
and for the inelastic part,

Es dgq 1
As= —16mal F(ko,e0) Gou(pospr) T Re(zz[M+E(1 —cosf)JE-1 /

dEs— —§(M+E—Ep— Es—oy)
E,, (2m)% 2w,
X (ps—p1)~*(k1—ks)~> Tr[ (v (Rs+g—m) "y v (Ri—q—m) v ) Auyy"As. ]
XTr[To(pr—ps)AnT or(p3, 45 P15 kl—k3)Am])- (2.10)
The Rosenbluth traces in (2.9) and (2.10) have been denoted by

Pk R)=Tr[v,Aevubi], Gu(p',p)=Tr[TW(p—p")ApTu(p' —p)A,].

III. ELASTIC CONTRIBUTION AT SMALL ¢

In this section we find the leading terms in A, for small momentum transfer. As usual, we must come to grips
with the infrared divergence; A, and A; are separately undefined due to the integration regions k= —ks, —k;
in (2.9), and g=0 in (2.10). A small photon mass A will be used as a cutoff and our first job is to find all of those
terms that are divergent as A — 0 in A,.

Since it is assumed here that —£>m?, we have another task which is similar to the infrared one. In order to have
some idea about the size of any O(f) terms, all of the contributions to A, and A; which diverge as 7 — 0 must be
located. It turns out that there are none; we can show A, and A; to be separably finite as m — 0 and we may
proceed directly to the case where ¢ is small, albeit large compared with .

In Sec. IIT A we consider the Compton Born contribution to A,. The continuum remainder is treated
in Sec. IIT B.

A. Compton Born Contribution
We may isolate the infrared part of A, by considering only the proton pole term in 7',,:
Buw(p',0'; 0:0=T =)0’ +¢' —M) " Tu()+u v, ¢ —q, p'+¢=pt+qg. (3.1)

This is a conserved second-order current if it is sandwiched between spinors or projection operators. Upon Feynman
parametrization, the corresponding contribution A.? becomes

1
AeB= 161['0[[F”“(kz,kl)Gyu(pg,pl)]_l Re[—il[ / 3 !dxldxgdxgdm 5(1 —x1~x2—x3—x4)
t1Jo

1
X<(zz 7y Trly"Aryy?(—14v+m)y ™Ay ] Tr[To(p1— p2)A paT o (—1Hv—E2)

X (potke—v+HI+M)T(I—v+k)Ap 4-[1/ (P — U)*] TrlyArsy (=14 u+m)y ™A
XTr[To(p1—p2)Ap T r(I— k1) (pr—katu —1+M)I‘p(*l+%—kz)1\m]>:| , (32)

where in the direct term

v=Fkix1+kottot (Ratpo)xs, V=N2(w14 x2) — ot m2xs%2—2wxsay+ M 2,2 —1e, (3.3)
w=p1-ki=ME, (3.4)

and in the crossed term
u=Rixr+kowot (ka—pr)as, U=N2(w1+x2) — a1+ m232+ 2w+ ) waws+ M 2x,2. (3.5)

The expression above for V includes the small term >0 in order to define the real intermediate-state singularity.
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The / integral in Eq. (3.2) may be divergent when V and/or U vanish over the x; integrations; the path of the
Iy integration is then “pinched” at the origin where 1=0. In this way the vanishing of the masses may lead to diver-
gences in A.® depending upon the numerators in (3.2). Such circumstances furnish us with a method for choosing
the leading terms for small £. Namely, we pick out the i-divergent parts of the / integral by considering the succes-
sive vanishing of A, 7 and ¢ (the order is dictated by the imposed inequality A2<<m?& —?) and the behavior of its
numerators at the corresponding integration regions which give rise to singularities.

The next step is then to expand each product of traces in the direct and crossed numerators. Toward this end,
two useful expansions of the Dirac-Pauli form factors [see Eq. (2.4)] can be found. These are

F1(tx1)F1(tx2) = F1(Zf(1 —xg))—i—O(tlexg,tm) y Fz(tx1)x1—l—F2(tx2)x2= Fz(l(]. —xs))(l —x3)+0(tx1x2,x4) N (36)

which follow from the constraint 3", x;=1 and which, strictly speaking, break down at the pion thresholds (¢>0).
Also note that numerator terms odd in / contribute nothing by symmetry and are hereafter ignored.

From (3.6), the constraint on the «;, and with considerable effort, we have for each numerator [modulo
a factor 4(mM)~2]

N= Fl(t)Fl(t(l — xx) )Zv(l —x;;) (4w2+ 2wl—l—M2t—}-m2t+%t2)

1 2Fy (0)[4*(1 —5) (— s+ 2 Zuwacsacs+ M2 2+ 12) — 8wy - Lpy -l

—dwxy— 2Zwn1 s — 22w 2(1 — 2x4) 4+ Owinana - 2Zw -2 Zwhky - U1 -1
FkF1(8)Fo(t(1—x3)) (2 —23) (1 — x3) Zv (%124 3m2) +kFo () F1(H(1 —25)) (1 — x05) Zv (382 m?t)
+ (x/2M ) 24w wixixe—Lwa 20 —wi+ 2k1 - 1p1 - 11— x5) ] — 2k,

+ (k/2M )2F 2(§) F2(H(1 — x5) ) (2 —203) (1 —23) Zvt (M % —wi— 2w+ 2 *m?)

+ O (4, 1201200, 112, 2% 1000, 10 %003, 224,202 232042, 2043 0 d2, (Rer - 1) 2,0%)

where v=—w(w+3%) and Z=—1 (+1) in the direct
(crossed) case. From the tabulations in Appendix A it
is seen that the O(fxy,. . .) terms left unspecified in (3.7)
lead to finite / integrals in our limit A=m={=0.

It is now possible to obtain the infrared pieces in A5,
to show that A,2 is finite as m — 0, and to find [with
error O(f) ]its leading terms for small angles. Remember
that the / integral in Eq. (3.2) has ¢ as its coefficient;
only an integral which diverges as ¢ — 0 will not con-
tribute O(¢) terms to A.B.

1. Infrared Divergence

We have infrared singularities in (3.2) from the
integration regions /=0, x;=1 and /=0, x;=1 when
A=0.* But according to Appendix A there would be
no divergence at either region if the numerator is
O(x1202,%3,24,12). From the expansion (3.7), one has

N=Zvm*M*Fo(ko,kr)Gop(p2,p1)+ O (a2, x5,%4,0%) . (3.8)
Therefore, the infrared part of A2 is (see Appendix A)
A B(infrared)

a —t 2w
=4 ln<—> ln< >, mM<<w+3t. (3.9)
T A2 2w+t

The remainder of A7 is finite at A=0. Strictly speaking,
one should not make approximations for small 7 as in
(3.9) until the A cancellation between A, and A, is made.
However, it can be shown that the two procedures
commute.

4The general picture of mass singularities in Feynman dia-
grams has been given in a comprehensive paper by T. Kinoshita,
J. Math. Phys. 3, 650 (1962).

3.7

2. Electron Mass Singularities

There is an m=0 singularity in (3.2) due to the
integration region /=0, x3=1 and, since we maintain
A<m, more m-singularities result from the larger
x1+x3=1 and x»+x3=1 regions. Again appealing to
Appendix A, we see that O(x1xe,x4,m%3,02) terms in N
sufficiently cancel these denominator zeros, contributing
no divergences for A=m=0.

In the remaining contribution to X, the divergent
Inm In\ and In?x behavior from the overlap of x;=1
and x;+x3=1 and from x.=1 overlapping x,+x5=1
can exist for A,Z(infrared). But it turns out that the
In%» terms from the x3=1 region overlap cancel those
aforesaid. Further, when the direct and crossed terms
of A.B(infrared) are combined, the Inm In\ and Inm
divergences also cancel out, leaving only the infrared
In\ behavior as shown in (3.9).

1

p'-p,v
= —iv/Amau(p)(p’~-plu(p)

—i4mau(p)T,, (p'.q";p,q)u(p)

F16. 2. Virtual photon amplitudes in Egs. (2.3)
as Feynman diagrams.
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In view of the above remarks, we have only to con-
sider those terms in V that are not O(x1%s,%4,m%¢3,/2) and
do not lead to infrared divergences. But all such terms
in IV can be written proportional to powers of x; times
Zv and, from Appendix A, it can be seen that the
m-divergences cancel between the direct and crossed
parts of (3.2). Thus A.? is finite at m=0. The fact that
we need to combine both the direct and crossed terms
in A8 before the m-divergences can be canceled is
related to gauge invariance. This relation will be more
directly illustrated in the treatment given later of the
nonpole contribution.

3. Forward Divergences

In the forward direction, the % integral in the two-
photon amplitude M, [see Eq. (2.3c)] is more divergent
than In\. By “counting powers” we see that M could
diverge quadratically as A — 0 around k= —k;=—Fk,
when the nucleon pole terms are considered and perhaps
linearly or logarithmically for other contributions to 7',.
This further consequence of the photon’s zero rest mass
is related to the divergence of the Rutherford cross
section in the forward direction. The forms of the
divergences in M, as ¢ — 0 are dependent on the
limiting procedure; as stated earlier, we choose
AL —t.

We have noted that the O(fxy, ...) remainder in Eq.
(3.7) renders the / integral of A,? finite at t=0. Another
inference from Appendix A is that the terms fx1xox3 and,
after combining the direct and crossed parts Zvtxs»
(m=1,2,...), lx1ds, Zwxsxys, Zwxs2xy, x42, 12, and [%x; all
leave the / integral finite at {=0. We are left with

ZVm2M2F‘7P(k27k1)GUP(P2)P1>
+2wix4 (05— 2) A 22w M 2x4(1+x4)+ 2 Zwky - 1p1 - 1
—2w2|:2Zyx3—2wx3x4—|-ZM2x4(2 *964)
+Ztxies—2Z17]  (3.10)
as the only part of IV that requires attention.® Moreover,

the bracketed terms in the expression (3.10) correspond
to (patketk)*—M? in the direct part and to

1
ALl = 161ra[F”‘<k2,kl)Gy“(pz,pl):l*l Re(—lt// 2\dx1dxad s 5(1 ——xl—xg——xa)
t1J0
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—(p1—k2—Fk)?*+M? in the crossed part and contribute
no f-divergences.

The integrals associated with (3.10) are given in
Appendix A; in fact, the first term in this expression is
just the infrared numerator which led to (3.9). We have
for A

a —1 2w af —t M
AB=4- ln<—> 1n< )—2—(——)[72 —
T \\? 2w+t w\ 2w (=2

2w 2w 2w
+3 1n2<——>+ln(—> In—
—i —i M?

—-ln(—iiv;)il—f—O(al) (3.11)

in the approximation where we neglect the electron mass
m (without violating A<m).

An interesting feature of (3.11) is that the proton
structure does not enter into the explicit terms. As far
as it goes, this “‘expansion” is identical to that for a
point proton.$

B. Continuum Contribution

We define the nonpole or continuum contribution to
T, as the O(¢’q) terms in the low-momentum theorem?

Tou(t',q'; 2,90 =Bu(p",¢'; p,0)+0(q), (3.12)

which is true between spinors or projection operators.
This contribution—call it C,,—will not produce any
infrared divergence in A,. Also, if we keep m? nonzero,
a simple power counting shows that the % integration in
(2.9) over C,, is then finite at ¢=0, i.e., its corresponding
AL is O(f). Here, however, we let m — 0 first so that the
k integral can diverge as {— 0. The determination of
this divergent piece is given below after A, is shown to
be finite at m=0.

In the analysis of the m- and f-singularities, only the
electron and photon propagators need to be param-
etrized since C,, is well defined at small virtual photon
momenta. We obtain

1
(#—Dy’

XTIy Aegy* (= d-+m)y ™A Tr[To(p1—p2)A puCor(pr, I—d+tks; pa, l—d+k1)Am]) ,» (3.13)

with
dE klxl+k2x2 y

D=m?x3%—1tx1%,.

(3.14)

As in the Born case, there are singularities in A,® when m and ¢ vanish due to the integration region /=0. The
behavior of the numerator determines whether the integral in (3.13) diverges at these singularities. To be sure,
no infrared divergence is present in A,¢ and no cutoff \ is required.

8 The term (k:1-1)? goes over to a multiple of 72 after a symmetric ! integration.
SR. W. Brown, Ph.D. thesis, MIT, 1968 (unpublished). Our paper represents an extension of part of this thesis.

7 The proof of this theorem is discussed in Appendix B.
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The amplitude C,,=T;,— B,, represents a conserved second-order current. Assuming parity and time-reversal
invariance, its invariant amplitude expansion in the forward direction is®*

Cou(0,9; 2,0) = (00— gmg) A (%0 Q)+ [ o009+ 8o (P 02— (g tgopw) P ¢ 1B (g% 0 Q)

+ (v —7:9v)C(¢% P Q)+ (@ioing* —iong qutiomg?) D(g%p - Q) -

(3.15)

Knowing this, we may now expand the numerator in Eq. (3.13) in the manner of the Born case, Eq. (3.7).

The product of the traces is®

IVC =Tr['y"Akw"(d—{—m)'y’Ak1] TI‘EI‘,(?1-?2)AZJ2C“([)2, kz—‘d, ﬁ1, kl—'d)Am]

40

+

m*M

As in Eq. (3.7), we have ignored / and * terms since the
! integration is symmetric. It is assumed here that the
two-photon contribution due to C,, is ultraviolet-
convergent—for B,, this certainly seems so, since the
form factors experimentally drop off quite fast at large
momentum transfer. On the other hand, we need a
much weaker damping from C,, than, for example, in
electromagnetic mass difference calculations.!® The next
step then is to show that A/ is finite at m=0, after
which we proceed in the determination of those terms
which vanish more slowly than ¢ as £— 0—all of this
via (3.16).

1. Electron Mass Singularities

There are singularities at =0 due to the subregions
x1+23=1 and x,+x3=1. Whether or not these develop
into divergences depends upon Ne¢. In particular, In%m
terms that are apparently possible from the overlap at
x3=1 cannot occur, since the factor —Il4-d+m is
present in N¢. Also any O(/2,m) numerator terms will
not lead to m-divergences in A.C as long as ¢ is finite.
This last remark means that we need only consider the
first quantity on the right-hand side of Eq. (3.16),
neglecting m therein. The corresponding contribution
to A.C is proportional to the integral

1 Tr[ykyy*dy k]
IE/ dxrdxadas 6(1 —xy—x9—x5)———————————
0

m2a3®—[x1%e

XTr[To(pr1— p2)ApCor(p2, ka—d; p1, ki—d)A -
(3.17)

According to current conservation and since the electron
mass can be neglected, we may substitute!!

'y"dy"= 27Pk1’x1+ Zkgf’xyyf
= 2961x2x3—1[7p(k2—k1)7+ (kl_kz)p,y'r] (318)

8 C. K. Iddings, Phys. Rev. 138, B446 (1965).

9 We assume that the only singularities of the frace product
in (3.13) are the dynamical branch cuts of C,,. This means that
(3.16), which for its validity requires the existence of the first
few derivatives with respect to / and ¢ of C,., may break down at
certain values of Exs. However, the «; integrations offer sufficient
smoothing for our purpose.

10 W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).

1 This analysis was suggested by the argument used by N.

([ —4(1 ~x3)P1 . lkl . l+2wl2:]B(O,wx3)+2wx32p1 lkl . l

dB(0,2)

O M2, (ks - 1)2,14)> . (3.16)

2 z=wr3

inside the electron trace. Therefore, at m=0 the
denominator term in 7, xyxs is canceled by the nu-
merator. We must note that the apparent divergence
due to the right-hand side of (3.18) at x3=0 is net
really there since, for example,

(k2_k1) TAmer(P?., kZ—d; Ply kl_d)API

vanishes at x3=0 as a result of current conservation. In
any event, along the line x;+x.=1 (x3=0),

C,"(Pz, kz—d, Pl; kl—d)=O(tx1x2) (319)
by the theorem (3.12). The conclusion of all of this is
that I (and hence A.C) is finite at m=0.

We see that gauge invariance has played an important
role here. It has been used in the derivation of (3.18), as
well as in the low-momentum theorem (see Appendix
B), and through these same results remains instru-
mental in the following {-divergence discussion.

2. Forward Divergences

The divergent part of the / integral in Af as {— 0
(—t>m?) can be found by considering only the explicit
numerator terms in (3.16).> Moreover, we see that 7 is
finite in this limit since by (3.18) and (3.19) the full
denominator fxixs is canceled by its numerator.!?
Therefore the explicit /2 terms in Eq. (3.16) are the sole
contributors to ¢-divergences.

Suppose we have some nonpathological f(Z) which is
finite and smooth around /=0. Then if it vanishes
sufficiently fast as/ — oo,

my 1 A?

—_— —_ uy 1 S
TP D]3f(l) P 1(0) "

~+terms finite at D=0, (3.20)

in which A? is some scale pertaining to f(?). We may

Meister and D. R. Yennie [Phys. Rev. 130, 1210 (1963)], showing
that the £=0region of Eq. (2.3¢c) should contribute little according
to gauge invariance.

12 This is essentially a result of averaging over spins; otherwise,
the numerator would only vanish like (—2)1/2,



1438

correspondingly write

a AZ 1
AC=2—twM ln<—> Re/ dx((l——x2)B(O,wx)
0

T —1

[¢]
+2Lwx?(1 —x)—B(0,2)
0z

)—}—O(at). (3.21)

Z=wae

Here A? refers specifically to a characteristic “mass”
of B.

Since B(0,») is simply the strong-interaction part of
the non-spin-flip forward Compton proton amplitude,
we may write it as a dispersion relation which contains
the total strong photoproduction cross section 7. If u
is the pion mass,

2 e vdy'
B(0y)=— / ImB0,). (3.22)
T J w2 v'E—v?
The optical theorem takes the form
ImB(0,0) = dmaMv)'or(v/M), (3.23)

where the argument of o7 refers to the laboratory photon

energy. Note that our dispersion relation is assured of

convergence if o7(v) is bounded in the limit » —oo.
The combination of Eqs. (3.21)—(3.23) yields

AL=— 3(4%) 1n(%>S(E)+0(aQ . (3.24)

including the sum rule for S(E)

4E2 )
S(E)= — Re/ ar(Eu)du
w/E4pt/2w

o

x[(Z + 51;) ln(:—i—;>—§ L ln(qu;l)}. (3.25)

This completes the determination of the leading terms
in A,.

IV. INELASTIC CONTRIBUTION AT SMALL ¢

The bremsstrahlung part of A admits a simpler treat-
ment than that for the elastic contribution. We define
the “energy resolution” AE according to Tsai,’* and
since it is assumed to be much smaller than the mo-
mentum transfer, the usual soft-photon approximation
for A; can be made. This in turn will be examined at
small .

We first discuss the way in which gauge invariance
eliminates divergences which @ priori could arise as
m —> 0. Again this gives us confidence concerning the
magnitude of neglected terms.

The next step is to simply read off the result for A;,
from Tsai’s work. This, of course, completely deter-
mines the infrared-divergent term needed to cancel the
elastic one.

1Y, S. Tsai, Phys. Rev. 122, 1898 (1961).
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A. Electron Mass Singularities

If m is very small compared with the other experi-
mental parameters, there is a possibility of large con-
tributions to A; when q is parallel to ks or k; in (2.10).
After integrating (ks-q)~'d(cosf,), for example, around
the region q|/ks, we obtain a Inm term. Further, there
could also be Inm In\ and In?s terms due to the overlap
of the infrared and m-divergences. It turns out that
none of these m-divergences is really present. To see
this, we notice when q|/ks that

ka—l— q= (E3+wq)E3_1k3+O(m2)

= (Estwgw, 'g+0m? . (4.1)
Therefore,
Awyy* (Rs+q+m)y*Ars
= Ay [2(kstq) " —v*(Rst+@) +my* Ak
i Ay [2(EsFogwi P =7 (Estw,)
X Es Ym+my+-0(m?) JAx;.  (4.2)

Since this is contracted into A, T, (ps, ¢; p1, k1—ks)Apy,
the ¢? term vanishes by current conservation.!* An
analogous argument follows for q||k1, and so we see that
the end-point singularities at 7= 0 do not really lead to
divergences. Our argument is not strictly applicable at
we=0, but it will be shown explicitly that there are no
Inm In\ and In%» terms from the overlap.

B. Soft-Photon Approximation

Tsail® has argued that we may neglect the infrared-
convergent terms in an inelastic integral such as that
appearing in Eq. (2.10), provided

AEK(14-2E/M)-'E'.

One should note that there is an added restriction
implicit in Ref. 13: (AE)%<< —t. We shall assume that
both of these are true in our case as well. In order to
avoid spurious Inm behavior, we also require any ap-
proximation of A; to be gauge-invariant. This last
requirement is satisfied in the event that only the
infrared-divergent terms are kept.

It follows from the low-momentum theorem (3.12)
that

AT o= (P, @5 D1, kx—ks) Ay
=Ap[ Tp(—q)(ps+q—M)'T(pst+q—p1)
+pr 7, =g pstg—pilAn+0(g) (44)

Ps 1
=AP3FT(P3_P1)A171(

Psq  P1q

4 D. R. Yennie, S. C. Frautschi, and H. Suura [Ann. Phys.

(N. Y.) 13, 379 (1961)] have shown that the cancellation of

Inm terms in the infrared part of our interference contribution is

due to gauge invariance. Our argument here is a simple extension
to the complete contribution.

(4.3)

) 1O, (45)
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This last statement is not a result of (3.12) insofar as it
was built into B,,. Since the effects of the finite detector
width are neglected,

ks=kat0(g), ps=p21+0(q).
We therefore find, in soft-photon approximation,

Ax(soft) = — -Oiz[M—i—E(l —cos)]
m

¥l diq 1
X f dE; | — —8(M+E—Ep—E' —w,)

E'—AE Wq Eps

k k
x( : l)( pe ——pf-). (4.6)
ke-q  kig/ \p2rqg  p1-g

with
pi=ka+pi(1—x),

OF SCATTERING OF ELECTRONS

! d 2 M AE 2 2 M AE 2
Ai(soft)=—zgli2w/ im(M)_ 2w+t)/ <P21( nAE) >:|,
o Jo bt WP pupepan Pt \Npa puspa prs

1439

The behavior of such a A; will be correct for small
since the infrared proton current is conserved:

(- )=,

p2q Py

In order to be consistent with the elastic infrared cutoff,
we set ¢?=\? in (4.6). Strictly speaking, some of the
steps which led to this expression relied on ¢? vanishing,
but the errors involved vanish as A — 0. We may now
proceed in the fashion of Ref. 13.

Since the q integral in Eq. (4.6) is an invariant, one
can choose to integrate in the reference frame where
p1+ki—ks;=0; the angular integrations are then easy.
The use of Feynman parametrization together with a
convariant generalization of the result leads to

(4.7)

n=2w/QRw+1)=E/E'.

Since mM<Kw+ %t (mKE'), we may in turn write (see Appendix A for the pertinent integrals)

A2 AE

2w E 2E
Aq(soft) = —2— I:Z ln<*—> Inp—4 ln( ) Inyp+35 In%—ln(———) In

M
2F

M 2F
1—— +ln(—~> In|1—

2E M

M
2
2F

M

M M M M M M E, M M M E,
ool ol ol oo Y 2o ) o
2F 2F 2E 2E E 2E" E 2F E 2E FE

where

F(xy)= '—‘b(l—y)_.q)<g>

(x(l =)
+& >+1nx In
x—=y

1—x

x—y

and ® is the Spence function?®

zd
@(x)z—f D inli—y] . 4.9)

¥y

All of the Inm, Inm In\, and In?»m terms, although
present in individual integrals shown in Appendix A,
have indeed canceled out in (4.8). Outside of the A
dependence, A;(soft) is seen to be

8(a/7) In(E/AE) Inp+0(at) .

Since we maintain —£3>(AE)?% In(E/AE) is large and,
in spite of the fact that Inpy=0(%), the above must be
kept as a leading term for small 2.

1 L. L. Lewin, Dilogarithms and Associated Functions (Mac-
Donald and Co., London 1958). The definition (4.9) actually is
the real part of Lewin’s dllogarlthm see K. Mitchell, Phil. Mag.
40, 351 (1949).

V. A AT SMALL ANGLES

Our next step is to collect the results from Secs. III
and IV for small £. In terms of the scattering angle, we
find from Egs. (3.11), (3.24), and (4.8) that

A= —27a sing0—(a/7) (8 E/M) sin?36 In?(sin6)
+2(a/m)[4E/ M+ S(E)] sin230 In(sin%6)
+8(a/7) In(E/AE) In[ 1+ (2E/M) sin?36]

+O0(asin?36). (5.1)

Aside from the InAE term which must be kept in soft-

photon approximation, this is our stated result (1.2).

We shall take AE/E=19, in our numerical work.

By examining the available photoproduction data,
we can concoct the crude parametrization

o2(E)=5000( E— Eq) (1— e~ 50 14)

—4000(E—2F,)(1—e~E2B01B) yb - (5.2)

16 Aachen-Berlin-Bonn-Hamburg-Heidelberg-Miinchen Collabo-
ration, Phys. Letters 27B, 474 (1968). See also J. Ballam et al.,
Phys. "Rev. Letters 21, 1541 (1968); 21, 1544 (1968); 23, 498
(1969); E. D. Bloom o al., Standard Linear Accelerator Center
Report No. SLAC-PUB-653 (unpublished). These references,
particularly the last one, show much more structure than we have
indicated.
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where we choose

A=3}E,, B=3}E,
with

EOE M+H2/2M .

The form (5.2) follows from several features. An
obvious one is the vanishing of the strong-interaction

” u 1 u+1 u?—1
Re / a1 e—au}[<~ + —) 1n< )—%+% 1n<
b 4  2u u—1 u?

b2
bb_

-+b1n

>]= 3{%2 +8(—0)~#(0)+1(3+) In |,

R. W. BROWN 1

cross section below Ey. Further, the data show a 500-ub
peak [the N*(1236)] at E~2E,, after which the cross
section drops and appears to level off asymptotically
at or about 100 ub. Theé plot of Eq. (5.2) is given in
Fig. 3.

We shall now estimate S(E) by using (5.2). If
by=0b%1 and if ¢>0, then

b

2 +

+ g; /{: dx e‘fl}h@:)—<I><:af>i|+e—“”[<b(—b)—q>(b)]—l— 2[—2 El(ad)+ é(lm 2)

1 1
Xe~ El(ab_)+ E(H— ~>e“ El(ab,)+Lie*(byIn|aby| —b_In|ab_| —2):” (5.3)
a

in terms of the exponential integrals!?

El(oc)zv/eo dyevIn|y|=e=In|x|+Ei'(x),

e Y

Ei’(x)EP/ dy—
@ y

and the Spence function ®(x) introduced earlier [cf.
Eq. (4.9)]. As a check, it may be seen that the evalua-
tion of the second integral in (5.3) does indeed reduce
to the first as ¢ — 0™

I T T

[T T T T

200—

100

]IIII]

50

o (E), pb
T

T

0 L bl N R
. .2 5 1.0 2.0 5.0
« E,GeV

Fic. 3. Total strong-interaction cross section or for photo-
production with the proton as a target. Cases (a), (b), and (c)
refer to the parametrizations given in Egs. (5.2), (5.4), and
(5.5), respectively.

17 The properties of Ei(x) are studied (using a slightly different
definition) in Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (U. S. Government Printing Office,
Washington, D. C., 1965). In terms of their definitions, Ei’(x)
=J;(x) if x>0; Ei’(x)= —Ei(—=x) if £<0.

The «x integral in (5.3) can be done numerically and
the results for S(E) are shown in Fig. 4 corresponding
to (a) the crude fit (5.2), (b) an ‘“overestimated” fit

UT(E) I overestimated — 5000(E - EO)

—4000(E—2.0 GeV) ub, (5.4)
and (c) an “underestimated” constant fit
o7(E) | underestimatea= 1000(E—E¢) ub.  (5.5)

These limiting cases for op are also plotted in Fig. 3.
In turn, we may now display the leading behavior of
A for small angles. With error O(asin?6), A(6) is
plotted for <30° and for several incident energies in
Fig. 5 corresponding to the explicit terms in Eq. (5.1).
We see that for E much smaller than 1 GeV, the
—27a sinif McKinley-Feshbach term dominates and
one needs energies on the order of the proton mass in
order to see any structure. As we approach the GeV
region, the S(E) term becomes dominant, especially
since the In(E/AE) contribution (for E/AE=100) more
or less cancels the negative-definite remainder.
However, our calculation really has an error of
O(a sin236,at/M 2), where M, is a characteristic ‘“mass”
which may very well be that of the pion. (This shows
why our work is not useful in the nuclear case with its
attendant low-lying intermediate states.) Strictly speak-
ing, the leading terms may be dominant only for both

—iLu?, sin?6K1
or

6<<min(mr,u/E). (5.6)

Hence, although S(E) grows like E? we cannot predict
an enhancement at larger energies since our calculation
is then valid only for correspondingly smaller angles.
This apparent enhancement, first seen by Drell and
Ruderman’® in an approximation which also singled out
the forward Compton amplitude, is zot expected to be

18 S, D. Drell and M. A. Ruderman, Phys. Rev. 106, 561 (1957).
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really there. Werthamer and Ruderman, using both a
Weizsidcker-Williams analysis and a perturbation-theory
argument for meson electroproduction, have found for
nonforward angles that the magnitude of the continuum
contribution decreases with increasing (ultrahlgh)
energies. This agrees with an extensive static approxi-
mation to the lower-lying Compton resonances per-
formed by Greenhut® if the high-energy extrapolation
is permitted.

We also believe that the terms in (5.1) due to the
Compton Born part of A, exhibit incorrect behavior for
E>>M. Rather than becoming increasingly negative as
E grows, the work of Greenhut and the exact results for
a point proton® suggest that this part never is more
than a few percent of unity in magnitude—even for
ultrahigh energies.

It is therefore anticipated, a fortiori, that the efficacy
of our expansion (5.1) will break down at some energy.
On the brighter side of things, A does have a definite
negative slope as 6 increases away from zero and is on
the order of 19, before our restrictions are obviously
violated. This may be experimentally verifiable in the
future; at present, the most accurate data are accom-
panied with errors which bracket our result, but which
are yet too large by a factor of 2 or 3 for our purposes.

VI. CONCLUSIONS

It is hoped that the result (5.1) will constitute more
than a small-angle theorem in order a—besides being
an example of a way in which the isolation of mass
divergences can be employed. In order to consider an
experimental confrontation, we turn our attention to
several uncertainties which would appear to stand in
the way.

With respect to the inelastic part of A, it turns out
that the InAE term in (5.1) is an excellent approxima-
tion (within 10%,) of the soft-photon calculation (4.8)
in our region of interest—which is the reason for not
expanding the logarithm in sin}6 there. Incidentally,
the corresponding calculation of Meister and Yennie
agrees extremely well with (4.8) (see, for example, the
comparisons in Mo and Tsai?!); hence it also is approxi-
mated decently by our single term. Since the error intro-
duced into the calculation initially via the soft-photon
approximation should vanish with AE [especially the
0(g) continuum; see (4.4)], this step does not bother us;
i.e., we certainly satisfy the condition (4.3) and we do
not have to worry about pion thresholds or continuum
contributions. The detector slit-width effects should
likewise create no great error since, according to Tsai,'?
we need only ask that the elastic peak width to the
right of the average detector angle be small compared

B N. R. Werthamer and M. A. Ruderman, Phys. Rev. 123,
1005 (1961).

» G. K. Greenhut, Phys. Rev. 184, 1860 (1969) [Ph.D. thesis,
Cornell University, 1968 (unpubhshed)] An excellent review of
the whole two-photon subject can be found in this paper.

2L, W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
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E,GeV

Fic. 4. Results for S(E) corresponding to the or parametri-
zations: (a) the crude fit of Eq. (5.2), (b) the overestimation
(5.4), and (c) the underestimate (5.5).

to AE. Thus, as a result of these considerations,?? it is
probable that the only important uncertainties lie in
the elastic approximation.

The elastic constraints (5.6) which limit the kine-
matical region where (5.1) is useful may be milder than
we have supposed. Something like the Rosenbluth form-
factor scale, 0.71 (GeV/c)?, should be the breakdown
point in place of u? for A.5. For example, it can be
inferred from the static calculations of Greenhut?® that,
for angles less than 40°, the McKinley-Feshbach term
is dominant up to several hundred MeV in the c.m.

o T T T

(a),(b),(¢c)

-0l -
E =10 MeV

-.02 - 0

(a),(b),(c)

=-0l
E=100 MeV
(o} 02
A
-0l - (c) -1
-02+ ]
(a)
=03+ -
-.04} E=1.0 GeV i
(b)
-.05 - G
- ] ] ] ] 1
'060 5 10 15 20 25 30
?]

Fic. 5. Plot of the explicit terms in (5.1) in the forward angle
region for three representative energles The cases (a), (b), and
(c) correspond to the gp parametrizations of Egs. (5 2), (5 4),
and (5.5), respectively.

21, C. Maximon, Rev. Mod. Phys. 41, 193 (1969).
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frame. It would be interesting to compare the computer
estimations of A.Z, which have been done by Campbell?
for the rather high beam energies of 4 and 10 GeV, at
lower energies in order to further specify the region of
validity for (3.11), Noting that scalar and pseudoscalar
particles (e.g., 7°) cannot contribute as /-channel inter-
mediaries. in the limit m=0,2* the ¢ variation of the
continuum may also be marked by a larger mass than u.
[As something of a check, Greenhut’s resonance calcu-
lations start out negative from §=0 for c.m. energies in
the GeV range—which is compatible with our S(E)
term. ]

We do have more than the size of the O(af) remainder
to worry about, since the higher-order electromagnetic
effects have not been shown to be finite at m=0. If the
a? corrections diverge as m — 0, terms comparable to
those in (5.1) might have eluded us. For example, in
the forward direction Delbriick scattering has just such
a divergence? and must, strictly speaking, be taken
into account when one writes a dispersion relation for
the forward Compton amplitude. We have not done so
and the question concerning the o? terms has been left
unanswered here. We are in a better position with
respect to the strong interactions. The possible require-
ment of a subtraction in (3.22) has been studied by
Walker,? who found a small upper limit for its constant.

In summary, we have found the first few corrections
to the McKinley-Feshbach term (the existence of this

R. W. BROWN 1

term has been verified for small-angle low-energy
electron-nucleus scattering?” and it is the leading term
in the small-angle Coulomb-scattering expansion of
Drell and Pratt?) for the proton case. Since these
corrections essentially cancel between the elastic and
inelastic portions in the 100-MeV region, any experi-
mental deviation of more than 0.01 from the McKinley-
Feshbach term for forward angles, although (perchance)
explainable in terms of the O(at,a?) uncertainty, would
be surprising. The good statistics available around §=0
and the greatly increased resolution and precision of
modern machines may permit such a comparison.
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APPENDIX A

We list here the leading behavior of certain integrals
required in the text. For Sec. ITI the relevant integrals
are of the form

1
F(f(x:l)= Re(—-i/ 3ldxrdxadasdxs 6(1 —x1— X —x3—%4)
0

J(x:l)

, (A1)
)\2(x1+x2) +tx1QC2 - m2x32 —_ 21/003964 —M2X42+iéj4>

“J -

where y= —w(w-+3t) in the direct (crossed) case. The integrals corresponding to the pertinent f(x;/) are dis-
cussed in the following.
In doing some of these integrals, changes of variables in (A1) have often proved to be valuable. An example is

ri=1—z, x=({1—y)z, x3=(1—2x)yz, (A2)
which can be used after eliminating the x4 integration by way of the § function.
Certain basic integrals which arise in a number of our cases are, for >0,
1 dy y2 7['2
K(x)E/ ln( )= +% Inx+R(x), (A3a)
0 yz—‘x(lﬂi) w(l=y)/  2(x)'*
y2
L(x)= / ( )=;} In2x+R(x), (A3b)
0 —x(l y) \a(l—y)
dy y? 1 2
M(x)=R —-—1 (———~>= — —IlnxIn|—|+R(x), (A3c)
o 148y \a(1—y) B 7

% J. A. Campbell, Phys. Rev. 180, 1541 (1969).

2 D. Flamm and W. Kummer, Nuovo Cimento 28, 33 (1963).

25 J. M. Jauch and F. Rohrhch The Theory of Photons and Electrons (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1955);
H. Cheng and T. T. Wy, Phys. "Rev. 182, 1873 (1969). If the rapid diminution of Delbriick scattermg away from 8=0 is carried
over to its ratio contr1but1on then our expansxon for R may yet be good in some region of small but nonzero 6.

26 J. K. Walker, Phys. Rev, Letters 21, 1618 (1968).

27 See, for example J. Ellis and C. Henderson Proc. Roy. Soc. (London) A229, 260 (1955).

%S, D. Drell and R. H. Pratt, Phys. Rev. 125 1394 (1962).
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where we have denoted remainders that are finite as
x— 0 by R(x), and where

B=M?/2v—1. (A4)

It is also convenient at this point to define

1

I(g(x))=Re /

0

dx1dxadasday §(1 —x1— %o —x3—x4)

g(xi)
, (AS)
—tx1%2+ 2w 234+ M2 — 1€
so that
iri1 2v M?
I(1)= —[— In?|—| —1 lnz(——):|+R(t) , (A6a)
L2 —1 -

11 /me
I(ws) = —- ln(—> +R@). (A6b)

2v 2 —t

We have now developed enough machinery for our
tabulations. Let us begin with the simplest cases.

(1) f=1. After the change of variables indicated in
(A2), one can exploit the fact that A? is needed only
around the y=1, 2=0 and y=0, z=1 regions of inte-
gration.? If we denote terms which vanish as x—0

by n(x),
11 —1
- ln(—>
1672 ¢ A2

! dx
XRe/
o m2(1—x)2+42vx(1—x)+M2%2—ie

F(1)=—

+7l(>‘) )

(A7)
in which the real part of the x integral is

)

(2) f=x4. Here we may neglect N\ and m forthwith..
Bearing this in mind, in terms of (A3) we have

1
—1n
14

2v
mM

11 1
1672 2v 20+t

LG oG] e

(3) f=x3" Only X\ may be neglected. For n=1,

sl ) 3G
UM E ) +(m) . (A9

29 M. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219
(1953).

F(x4) =

F (.’X}3) =

1443

Tasie L. Integrals F [cf. Eq. (A1)] corresponding to those
f’s not discussed in Appendix A, in terms of /(1) defined in (AS5).
The masses A and  can be neglected in these cases.

f(xi,l) 1672F (f(x,,l))
biw —3grI(1)
a
tx1x2 l‘*l(l)
at
10
X3¥4q —_ —1(1)
2 9v
7]
X —I(1)
aM?
—tx1x2+2vx3x4+M2x42 1 (1)

The explicit divergence in (A9) for 7 — 0 is found from

izc(:) ! 1n2< _[) +R(m).  (A10)

m? \ m? t2 m?

For general integer n>1,

(xcs™) Lr dz (yz)"!
F(xs) = ——— dydz (yz)™~
; 161r221//; Y

+R(m). (Al1)

X
m*y*%—it(1—z)(1—y)

The R(m) remainder in (A11) diverges no faster than
[¢]~12ast— 0.

The remaining cases that we need are listed in Table
I. The masses A and m» can be neglected in each of them
and their limiting form for small ¢ can be inferred
directly from (A6a) with error R(¢). (This is true in
spite of the interchange of derivative and limit.) To
complete our catalog, we note that the F’s correspond-
ing to x3 times those f’s listed in Table I can be found
merely by reading I(x;) in place of I(1) there. The
numerators to which we have not made reference in this
appendix (e.g., x5 14, wsxs?, etc.) render F well behaved
around /=0 in the limit A=m={=0.

Lastly, we shall give the integrals pertaining to Eq.
(4.7). One needs

Vdx  pun? 1 2w 2w 2w
—In— = —|:2 In— ln—2 -1 ln2(-~)
A

0 15112 A2 2w mM m?
2w 2w M*? M?

—1 1n2<~—«>—1n— Injl— — +<I><~~>
M? M? 2w 2w

oo )T

and

Udy  pa?
=
o pa® AN

=(A12) with replacement w — w+43/. (A13)
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Also Tsai’s calculation!® requires

1 dx 2° Pij 1 (4 z'ki a—1
—_ lng—P—‘ = ——|:2 In lnp +I1n Ina
0 P M? 2¢ mM  M? a—b
1-b a(1—0) mM
sl D),
a—b a—b c
(A14)
with
Mm? D2 pi
o= —, b= , =kipj.
2¢ pyki

An exact version of (A12) can be found in some work by
Campbell.?°

APPENDIX B

We give here the essential steps in the proof of Eq.
(3.12), the off-mass-shell analog of the Compton low-
energy theorem. Since the proof follows quite directly
from the work of Adler and Dothan,®® a detailed
exposition is unnecessary. The important assumption is
that certain properties of the strong interactions can be
inferred from a Feynman-graph analysis based upon
renormalizable perturbation theory.

Using such an analysis, we state that the divergent
part of a(p")Tou(p’,q'; p,q)u(p) in the limit ¢ and/or
¢’ — 01is given solely by the set of graphs which can be
disconnected merely by cutting a single proton line.
The remaining graphs are of the noninfrared type and
are considered well defined in such limits independent
of the path along which ¢ or ¢’ vanishes.

In terms of the proper vertex function and the full
proton propagator, the aforesaid divergent part is
isolated in
a(p )T, ' +a)SF (' +¢)Tu(p'+¢', p)

+uer, ¢ o—qlu(p). (B
Recall that we have

P'+q'=p+q,

and note that the renormalization factor Z, has been
left understood in the expression (B1).

We now shall reduce the ill-defined part of (B1) to a
term which involves only the “measurable” Rosenbluth
form factors. To do this, we project out the positive-
and negative-energy parts of the vertex functions by
way of the projection operators

P R G
= 2(k2)1/2

pr=p=rr,

+k—M
(E)V24- M

' (
L

)(M:!:k). (B2)

@] A. Campbell, Nucl. Phys. BI, 283 (1967); B10, 190(E)
(1969).
81S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).
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Further, we assume that the off-mass-shell vertex
functions in (B1) go smoothly on mass shell as the
virtual photon momenta vanish and we separate out
the divergent portion of S'(k) as k* — M2, Zy(k—M )™,
which is its single-particle contribution.

We have, for example,

a(p')Tu(p' k) =a(p")[T5*(p' )

+(@ (k) =T (¢ k)A],  (B3)

where the positive-energy vertex can be expanded in the
following invariant amplitudes:

FV+<P,;k) = 7VF1+(A2>k2)
FicMNFrH(ALED) + AP (AL E?)
A=p'—k.

(B4)

By careful bookkeeping with respect to the renormaliza-
tion constants Z; and Zs, and since Z1=Z, according to
the Ward identity for the proper vertex,

Fa(A?)
Fi (0 M7) = | (/2)F(8%) | +00— ),
’ 0

B

The F; are the Dirac-Pauli form factors introduced in
Eq. (2.4). Therefore, from Egs. (B2)-(B5) and (2.4),
one has

(BS)

when

a(p)Tu(p' k)= (1/Z2)a(p ) [To(p' —k)+ (R—M)
X (terms well defined as £ — p’)]. (B6)
A similar decomposition can be given for T (k,p)u(p).
The reduced part of (B1) is thus seen to be
a(p")B,u(p',q"; p,q9)u(p), where B,, has been defined pre-
viously in Eq. (3.1). In other words,

aCyu=aTl,u—uB,u

is well defined as ¢ and/or ¢’ — 0 and, being a conserved
second-order current, is O(g) and also O(¢’) by the
arguments of Adler and Dothan.?! Thus it must in fact
be O(¢’q) and we have the theorem (3.12).

One final remark should be made here. Our choice for
I,(q), (2.4), cannot be freely changed by use of the
Gordon reduction formula,? since the nonpole parts of
B,, can destroy its gauge invariance even though the
pole residue remains correct.



