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The above set of equations partially determines the
constants in A( &.

Isospin restriction:

(A31)Ps —g4 +2$s =0
B& & Amplitude

pt +4t +Ps =15
Forward charge exchange:Nucleon pole:

(A25) (A32)gt +Ps =4.047.6 pole:

(5/12)Ps +(7/12)P, +(7/12)gt +(5/12)gs
+ (13/12)p —,', p = 7.643,

s-wave scattering length:

ts(Ps —4t —A —P4 +Os +Ps )= —o3372,

ps +Qt +)4 =p4 +)4 +Pe =0.

(A26) 3.46Pt —4.66Ps +2.10Ps +3.16P4
—5.68gt-+2.46/, +0.643gs +1.12$,
—5.49$s +0.633$s ——(1/4s-)Bg„esp& ' (A33)

(A28) and

E~ pole:

4pt +Ape + 'Qt + '-Qs + '-Qe + -p4 =1-.674,

A(Pt Ps —4t +—Qs Pe +—@4 ) =1.856.

(1/4~)(A& &+ttB& &)„„„,h=0.716. (A34)

The solutions of these equations and analogous ones
for 2&+) and 8&+& are tabulated in Table I. We do not

(A30) list the equations for A'+& and B&+& here.
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A statistical model for the production of multibody hadronic states by e+e annihilation is discussed.
We associate the secondary hadron momentum distributions for colliding-beam processes with the ex-
ponentially falling transverse-momentum distributions in hadron-hadron collisions. The consequence of
this picture is that at high energies hadron multiplicity rises linearly with c.m. energy, unlike the Ins behavior
for the multiplicity of secondaries in hadron-hadron collisions. If the total annihilation cross. section is
assumed to have a power falloft ~s ~, the n-pion cross sections follow a Poisson distribution with the most
probable multiplicity n =s&/(8 )+3 rn and (E—)~375 MeV. An alternative statistical model based on
jets is also brieQy discussed. The storage rings now being constructed or envisaged should easily distinguish
between the various possibilities.

I. INTRODUCTION

' 'N the next few years, electron-positron storage rings
&- will be developed capable of producing hadron
systems of total mass Qs up to 6 GeV or higher.
Aside from predictions for the energy dependence of the
total annihilation cross section into hadrons, "there has
been little discussion concerning the composition, multi-
plicity, and other properties expected for the multibody
hadron final states. ' It is not so clear what to expect,

* Work supported by the U. S. Atomic Energy Commission.
'V. N. Gribov, B. L, Iofte, and I. Ya Pomeranchuk, Phys.

Letters 24B 554 (1967); J. D. Bjorken, Phys. Rev. 148, 1467
(1966).' J. Dooher, Phys. Rev. Letters 19, 600 (1967); M. B.Halpern
and G. Segre, ibid. 19, 611 (1967);see also J.J. Sakurai, in Lectgres
in Theoretical Physics (Gordonand Breach, Science Publishers, Inc. ,
New York, 1968), Vol. XI, p. 199.' For a review of what has been done see R. Gatto, in Proceed-
ings of the International Symposium on Electron and Photon
Interactions at High Energies, Hamburg, Germany, 1965, p. 106
(unpublished); K. Celeghini and R. Gatto, submitted to the 1969
International Symposium on Electron and Photon Interactions,
Daresbury, England (unpublished).

even qualitatively. The process e+e ~ hadrons at high
energy differs from almost all other hadron processes
inasmuch as (within the one-photon-exchange approxi-
mation) the hadrons are produced via the decay of
an arbitrarily heavy virtual photon. One picture of
such a decay would be that the virtual photon decays
into an intermediate state consisting of a virtual pair
of "bare" constituent partons4 (such as a bare quark-
antiquark pair) which subsequently decay in some way
into hadrons —mainly pions. If this were the case, one
could anticipate anisotropy and the existence of an
axis in the distribution of hadron products; in other
words, the hadrons "remember" the direction along
which the bare constituents were emitted. Under these
circumstances, the transverse momenta p, of the secon-
daries relative to the axis for a given event would be no
more than a few hundred MeV, while the longitudinal

4 R. P. Feynman (unpublished); J. D. Bjorken and E. Paschos,
Phys. Rev. 185, 1975 (1969); see also S. Drell, D. Levy, and T.
Yan, Phys. Rev. Letters 22, 744 (1969); Phys. Rev. 18'7, 21S9
(1969).
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momenta could be much larger. In other words, the
momentum distributions and the (slow) increase of
multiplicity with energy would be much like the situa-
tion in ordinary hadron-hadron collisions.

The observation of such "jets" in colliding-beam
processes would be most spectacular. It is not our inten-
tion here to study such a possibility further. Instead,
we consider the case in which there are no high hadron
momenta in the 6nal state. Because all directions are
equivalent in the c.m. frame, we associate the secondary
hadron momentum distributions for colliding-beam
processes with the transverse-momentum distributions
in hadron-hadron collisions. These fall off exponentially
and are characterized by a mean momentum of a few
hundred MeV. The most immediate consequence of this
picture is that the hadron multiplicity rises Hnearly
with c.m. energy, quite unlike the case in hadron-hadron
collisions. For example, given this picture we predict
that at an energy of 1.5 GeV/lepton (gs=3 GeV),
states containing 8-10 pions will be most prevalent;
at 3 GeV/lepton typical hadron states are expected
to contain on the order of 15—20 pions; at 6 GeV/lepton
the number is 30—40 pions.

II. STATISTICAL MODEL

X(p)d'p ~ e-~ &~"'d'p/E.

If we choose b' such that (p~) remains unchanged from
its value in hadron-hadron processes, we ind, for pions,

(2)

0

dx x'(x'+m. '/b") "'e ~

dx x'(x'+m, '/b") 't'e ~. (3)——

' G. Cocconi, Nnovo Cimento 57A, 837 (T968).

A striking phenomenological feature of high-energy
hadron collisions is the fact that the distribution of
transverse momenta'of the secondaries is quite well
represented by an exponential law':

&(p )dp "p exp( —p /b)dp (1)
with b= ~(p~)=150-200 MeV/e depending upon the
mass of the secondary. For pions, (p,)=300 MeV/c.
The relation (1) has been checked over a range of trans-
verse momentum from ~10 MeV/e to 1.5 GeV/e. The
approximate constancy of (p&) with energy has been
checked for incident nucleon energies extending from a
few GeV to cosmic-ray energies of 104-10' GeV. The
longitudinal momentum distribution is much broader;
as a consequence of the slow increase of multiplicity
with energy, the energy per secondary increases as the
c.m. energy increases.

In going over to electron-positron collisions we take
the same exponential form (1), with p& replaced by ~ p ~

and —',dp~'= p~dp& replaced by the invariant phase space
d'p/E:

This factor in brackets, for reasonable b', is nearly
unity and gives b'—1.2b=175 MeV. An immediate
result is that if, as we expect to be the case, pions
dominate the secondaries, the mean energy of a pion is

(E )=2b'
0

dx e *x'(x'+m. '/b") 't'—

—375 MeV.

III. ANNIHILATION INTO n PIONS

The differential cross section for annihilation into n
pions may be written as

1 t'167r'o. ' Trg+y„P y„j
do'" =

~

— —dji'"
2X4( q' 4E~E

(6)

with the hadron matrix element dJ&" given by

dj "=P &O I J (O) ln)(n I i (O) I
O)(2~)'b (1 „—q)

t4 d3p~
Xg - (7)-t 2E,(2m)'

The statistical assumption that we adopt is that in the
c.m. frame

dJ&"=a (q&q"-g&"q') e x"~&'~ (2s)'5'(8 —q)

e dap;xII, (8)
'-& 2E,(2s.) '

with a„a slowly varying function of q' and a= 2/(E, ).
We then 6nd for do" the expression

Ss'o.' ~ d'p;
a„P e

—~&'~ — (2s.)'b4(P„—q) . (9)
q2 ~-t 2E,(2s ) '

We discuss in the Appendix the relationship of this form
with the single-pion momentum distribution (2). Clearly
the essentially uncorrelated distribution (9) should only
be expected to have validity, if at all, for large n. We
shall only apply the results consequent from (9) for
n&4. All correlation effects, isospin requirements, Bose
statistics, and sects associated with higher mass
particles (E, 1V, Ã, F, Y) have been neglected. In a
statistical model such as this, we expect the Z/~ ratio

By equipartition this leads to a crude estimate of
multiplicity:

n. (gs)/(E. ) (Qs)/375 MeV.

In the following, we try to improve and refine this
estimate.
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10 ' and the p/7r ratio 10 ', of the order of the ratio
in hadron-hadron collisions. %e also expect the two-
body and quasi-two-body final states to be a very small
fraction of the total yield. For example, the cross section
for e++e —+ p+p can be estimated from the dipole
fit to the electromagnetic form factor to decrease as

s '.
Returning to the cross section (9), we carry out the

integrals over the pion phase space. The pion mass
makes only a minor modification to the kinematics, and
we neglect it here; then all the phase-space integrals
can be performed. Introducing a Fourier transform on
the 5'(P„q), w—e get

then the c„ in (10) can be estimated. If we set

s"o,.2(s) = const =c,
we get, from (10),

gn+m 2~m— euvec'cove '( av'e+e —ov'g)

a2$
=2c Pk=0 (2P) t

Equating coefficients, we have'

a2n+2m —6

GA=2c—
(2rt+2rtt —6)!

(17)

(19)

8m'n'
g Q a~ d4xe " d p

e&pt—zpi ~ xe—ay

2p(2n. ) '
Finally, for the cross section to produce n pions, with
the aid of (10),

8x'n'
a„d'xdte —" '

42rsf(a —it) '+Xsj

2G

(aQr) 2n+2m —6

sm

e—a&8

(2rt+2rtt —6)!
(20)

Sm'n'
a&

e
—«~~ 2w2(2rt —4)!

dt—
(4w )- (n —1)!(n—2). L2(a —it) j'"-'

sn—2e—a&8

Notice that the distribution of multiplicity n for a
given s is a Poisson distribution with An 1/Qtt .

IV. CONCLUSIONS—a
s (162r2)" 2(rt —1)!(2t—2)!

=c„s"-'e-'~'. (10)

(provided a„varies slowly with s). Thus

Qs
tt=3+

«-)
=3+

375 MeV

which for large n is in agreement with our original esti-
rnate (5). We also see that as long as a„ indeed varies
slowly with s, it is sufficient to set it equal to its value
at the s for which o." attains its maximum, Eq. (11).

Various dynamical models have predicted the asym-
ptotic behavior of the total annihilation cross section.
The most optimistic quark. -model estimate gives

Therefore, as a function of s the cross section for pro-
ducing n pions follows a distribution which is sharply
peaked about the value

ags =2tt —6

The two models we have discussed, "jet" and
"statistical, "are most likely extreme limiting cases, with
the truth somewhere in between. The most immediate
experimental distinction between them, apart from the
qualitative "visual" difference, ' is the energy depend-
ence of the mean multiplicity, which we compare in
Fig. 1 for P-P and 2r-X collisions' (supposed to roughly
represent the case of the "jet" model) and for e+-e
collisions in the statistical model, according to Eq. (12)
predicting tt =3(+s)/GeV. The storage rings now being
constructed or envisaged should easily distinguish be-
tween the two extreme cases.

For the statistical model, our conclusions are sum-
marized in Eq. (20). From that equation, it can be
deduced that with o~& s (s —+co), then at energy Qs,
the most probable multiplicity is

n.= (gs)/(Z. )y3 —~, (21)

with (E )=375 MeV. The multiplicity at this Qs falls
off rapidly for larger and smaller n, with width An

o;.,(s)-s-' as s ~~,
while the gauge-field algebra gives the prediction'

o~,e(s)&s 2(ins) ' as s~~,
and probably

(13)
e Notice that the coeKcients o„ in (10) for large n can now be

written as an area factor LAg" ' times a slowly varying function
of n and s.

'For example, the underlying axes of the jets would imply a
nonzero quadrupole moment for the angular distribution of the
hadrons. Quantitatively, one could check for nondegenerate
eigenvalues of the tensor

&.e =2 (2P-*Pe' 2g-eP") IZ P"'—
&goy $ ~$

s ot, t(s) —+ const, (16)

It is interesting to combine such behaviors with the
statistical-model forms. If, for large s,

(averaged over events), where P; is the momentum of the ith
hadron.

The data have been summarized by O. Czyzewski, in Pro-
ceedings of the Fourteenth Jnternational Conference on High Fnergy-
Physics, Vienna, 196h', edited by J. Prentki and J. Steinberger
(CERN, Geneva, 1968), p. 367.
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FIG. 1. Charged hadron multiplicity
given by the statistical model for e+e
annihilation compared to the observed
multiplicity for p-X and x-E scattering.
The experimental points are from the
data compilation of Ref. 8.
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Qn . Likewise the cross section for Axed I falls off

rapidly for energies Qs larger and smaller than the
optimum given above by (11), again with A(Qs)
~((& )gs)'(2=(s/22 )'('. In Figs. 2(a) and 2(b) we plot
the partial cross sections for m= 1 and 2.

Most of the anticipatory interest in colliding beam
experiments has resided in two-body channels (study of
vertex functions) and the possibilities of relatively clean
resonance spectroscopy. Yet it is quite probable that
the bulk of the events will not fall into these categories.
In a new phenomenon such as this, where even qualita-
tive properties are a rnatter of speculation, it would be
a surprise if careful study of the more common com-

plicated events did not reveal important and funda-

mental facts regarding hadron dynamics. It is with this
in mind that this study was carried out.

APPENDIX: SINGLE-PARTICLE DISTRIBUTIONS

Let us consider a simple factorizable representation
for the distribution of transverse momentum of second-
aries in hadron-hadron collisions,

dJ)'/=O'P d'P. f(Pl) f(P )b'(EP'), (Al)

where f(p) is a peaked function of the magnitude of the
transverse Inornentum. The resulting single-particle
distribution is

d x —n—1
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The important range of integration in (A2) is small x,
so that when f(p() is raised to a large power it can be
approximated by a Gaussian:

then

and

f(P)=e P(2, 2b=(k)=0.3 BeV;

(k') =6b'=0. 135 BeV'

(A6)

(A7)

dp 2

7.5
~ exp —6.5p& ——p, '

e—1
(AS)

with pl in BeV. For a typical multiplicity n 5, the
distrubition remains exponential until the Gaussian
takes over at Pl 4 BeV. Thus f(Pl) can be identified
experimentally with the single-particl'e distribution.

For the annihilation process into n particles, we made
the ansatz

d'pl d'p„
f(p-) ~'(V Zp') (—A~)

Pl

where f(p) is a peaked function of the magnitude of the
three-momentum. Let us consider the single-particle
distribution for the annihilation processes where the in-
cident energy is averaged over an interval which in-
cludes the major contribution to the cross section o-„.
Then, ignoring mass corrections,

p

d pl

f(pl)
cK — d3x giPl

d3k —n—1

f(k) '" *

4x f(pl) d2g 4,4py x(,—[(n—l)(4]x2(22)

d pl
~ f(P )e p42((n——1)(22) (A5)

Suppose

d pl

—f(pl) pip& x d2k pic. xf(k)
(22r).'

(A2) f(pl) pl'
—exP — . (A10)

Pl (22 —1)k'

The Fourier transform

f(g) d2k haik. xf(k)

is rnaximurn at x= 0; for small x,

f(pp) d'k f(k)[1+—2k x—i2(k x)'+ ]

(A3)

Again the Gaussian is ineffective and f(pl)/pl can be
experimentally identified with a single-particle distribu-
tion. It might be noted that if f(p) is a pure exponential,
then, in Eq. (A9),

f(pl) f(p-i= '"" '""'= "o "( )

Thus diV/dpp is independent of a (and (p)) and is only
determined by phase space. For Qs near the maximum
of o' (s), it follows that the single-particle distribution
from pure phase space must reduce back to the single-
particle distribution exp( —ap).


