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Analytic Form Factors for Any Spin
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Using the Fierz-Bargmann-Wigner basis, we construct independent covariants, free of kinematic singu-
larities and zeros, for vertices in which two external particles carry arbitrary spins, with one off-mass-
shell leg corresponding to a totally symmetric Lorentz tensor. Results for (pseudo) scalars, (pseudo)
vectors, and symmetric tensors of second rank are tabulated explicitly.

1. INTRODUCTION

I~[NE—PARTICLE —EXCHANGE models are an
essential first approximation in many current

phenomenological studies. It is almost inevitable in
these considerations that the exchanged particles should
couple to p-space amplitudes (form factors or vertex
functions) that have definite transformation properties
under the homogeneous Lorentz group. The vertex
amplitudes that occur in models where current or tensor
densities are saturated by one-particle states have a
similar form in p space, with the internal leg carrying
the symmetry of the tensor.

Such analyses demand the ability to write down the
general structure of the vertex functions consistent with
Lorentz invariance, discrete space-time symmetries,
and analyticity. One way to achieve that is to have at
hand a complete set of independent covariants "free of
kinematic singularities" for each type of vertex. The
absence of kinematic analytic structure (whether singu-
larities, zeros, or constraints) in the invariant ampli-
tudes or form factors that multiply the covariants in
such a decomposition of a vertex is particularly de-
sirable when one wants to impose dynamical assump-
tions or extract dynamical information without worry-
ing about ambiguities of interpretation.

How to formulate this problem, the existence of
covariants that solve it, and the basic methods for
calculating them have been known for some time. '
Solutions where the internal leg is a vector have been
given in the helicity formalism, ' and in terms of
Joos-Stapp spinor amplitudes. 'e In the former ap-
proach, one has to be careful about kimenatic con-
straints, while in the latter approach, it is, in general,
dificult to write down amplitudes with definite spatial
reAection properties. Solutions in terms of covariant
polynomials have also been indicated. by the use of the
Rarita-Schwinger basis. ' However, because of the sub-
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CERN Report, 1969 (unpublished).
i A. Joos, Fortschr. Physik 10, 65 (1962); H. P. Stapp, Phys.

Rev. 125, 3129 (1962).
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sidiary conditions which must be imposed on the Rarita-
Schwinger wave functions, it is not straightforward
in general to reduce the covariants into an independent
set, at least if one wants to extend this approach to the
four-spin problem.

We have already indicated that we follow the invari-
ant-amplitude or form-factor approach. In this paper
we present the actual construction of covariants for
three-point vertices where one leg corresponds to a
totally symmetric tensor and is off its mass shell,
while the other two legs correspond to particles on shell
and having any spins with integer sum, described by
Fierz-Bargmann-Wigner' (FBW) equations. This covers
a large, but not necessarily exhaustive, class of models
where there is an exchanged boson with any spin, or
where there is one-particle saturation of tensor densities.
Because of their relative importance, we give the
results for scalars and pseudoscalars, vectors and
pseudovectors, and second-rank tensors in some detail.
For symmetric tensors of rank 3 or greater, we describe
the answer and how to get it, but we do not write down
the details of the counting that prove its correctness.
That is a straightforward exercise for the reader who

really needs to know, but it is not otherwise instructive.
It is also quite straightforward to take into account an
additional restriction that the off-shell leg be a conserved
tensor, at least for vectors and second-rank tensors,
or that a second-rank tensor be traceless, or conserved
and traceless. We feel no temptation at present to treat
such conditions on higher-rank tensors.

In view of the avalanche of literature on the subject
of kinematic singularities in recent years, we want to

IIzsto~ical note. The equations in question are a refinement of
the higher-spin-wave equations studied earlier by Dirac, Proc.
Roy. Soc. (I.ondon} A155, 447 (1936).However, M. Fierz [Helv.
Phys. Acta 12, 3 (1939)) was apparently the first to make clear
the spin content and parity properties of these equations, along
with their second quantization; and he was apparently the first
to emphasize their arrangement in a form relating the chain of
Si(2,C) representations: (s,0), (s—-'„-,'}, , (-,', s——',), (O,s). This
was exactly the form used by Bargmann and Wigner LProc.
Natl. Acad. Sci. U. S. 34, 211 (1946}] in their proof that the
unitary, irreducible representations of the Poincare. group for
positive mass and energy correspond to positive-energy solutions
of higher-spin-wave equations, although they used a Dirac spinor
notation while Fierz used the van der Waerden —Uhlenbeck-
Laporte notation: B. van der Waerden, Nachr. Akad. Kiss.
Goettingen II Math. Physik. IQ. 100 (1929); O. Laporte and
G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931).Thus, we think it
reasonable to use the designation "Fierz-Bargm ann-Wigner
equations. "
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emphasize what we think the merits of our construction
are as follows.

(1) The FBW formalism for the spinning external
particles turns out to be technically well suited to the
problem of vertex functions. It makes the algebra
relatively simple; the tedious part of the work is con-
tained in a few identities similar in nature (although
they are a little more complicated) to the familiar Fierz
identities. Besides, since the FBW wave functions can
be written as a direct product of Dirac wave func-
tions, not much need be learned before one can master
them.

(2) Some of the technical disadvantages of decom-
posing scattering amplitudes into invariant amplitudes
are absent for vertex functions, because of their simpler
structure. Space inversion symmetry is no problem,
and the angular momentum decomposition is not overly

complicated (although we do not discuss that point).
Calculations involving unitarity may still be compli-
cated compared to the helicity formalism, but that is not
clear when the kinematical constraints on helicity
functions are included. Thus, it seems less costly than
it would be for scattering amplitudes to take advantage
of the strong point of invariant-amplitude formalisms,
i.e., the fact that they suffer from no "conceptual
difficulties" about the analytic structure in the invariant
variable. Once we have found such a set of independent
amplitudes which are free of kinematic singularities,
we are finished. There are no kinematic zeros or
constraints.

In Secs. 2 and 3, we describe our notation and give a
precise formulation of the problem. Then in Secs. 4—9
we list the basic identities we need and go through the
reduction and classi6cation of the vertex covariants into
minimal sets, free of kinematical singularities. The
FBW equations make this quite easy when the external
spins are equal, or when one external particle has no
spin. More general external-spin configurations require
more complicated identities, which we write down as
they are needed.

The results through symmetric second-rank tensors
are listed in a series of tables. Instructions for reading
the tables are given at the end of Sec. 3.

Pote added ie proof. After completing this paper, we

learned of a related work by T. L. Trueman, Phys.
Rev. 182, 1469 (1969), which analyzes kinematic
singularities and zeros in a special Lorentz frame, the
o8-shell leg being any irreducible tensor. Trueman also

gives Bargrnann-Wigner amplitudes for the case of
scalar or pseudoscalar form factors, when the external
legs have equal spins.

2. SPIN CONVENTIONS

We describe the spinning, massive particles by the
FBW equations; i.e., ip„...„,(k) is symmetric in its

FIG. 1. f-channel vertex.

Dirac indices a;, and satisfies

y dI.
a.1 ~'aa2" a2$ " y'CI ~ .a2sy

(positive energy) k k= nz') 0. (1)

The metric is (+ ———), and fV„,'Y„)=2g„„. The
adjoint spinor is

where
8—'Y„tB='Y„, 8=Bt, detB= 1.

Define the Dirac raising and lowering symbol E:
E, =E ~, EV IC '=V„~, E~= —IC=E ', detE=1.

Then E is a scalar under parity: poEpo =E, and is
otherwise Lorentz-invariant: If S(A) is the represen-
tation of Sl.(2,C) for AQSI (2,C), equivalent to (2,0)
Q+(0, i2), and corresponding to a fixed, irreducible
representation of the Dirac algebra, then

S(A)ES(A)r= E.
Everything we have just said is of course independent

of any special representation of V„. The representation,
plus the conventions listed above, fixes 8 and E up to
a sign, as is well known. There is another possibility for
a raising and lowering symbol, the charge-conjugation
matrix C:

C& ~C '= —&„~, C~= —C=C—' detC=1.

It transforms as a pseudoscalar: 'YOC'Yo = —C. The
unique solution, up to a sign, is C=&~E, where i'Y5

=
VOTED Y2 Y3. In the van der Waerden representation, we

have, in terms'of Pauli matrices,

~p ~p e
& op& 2L ps~&j'cxP . - hP

Then we write the Dirac bispinor index, = (, ') for a
lower index and '= (, ') for an upper index. In this
representation, the identity between the Fierz and
Bargmann-Wigner equations is apparent.

3. STATEMENT OF PROBLEM

We assume that s'& s. (An analogous discussion holds
for s'&s.) For the present, we discuss the t-channel
vertex, as in Fig. I, where the vertex function has the
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form

Pk (k k) —Pc&' Iz&ac&d&'' &g&&g(k )
gTT~ &1 ~ .&2s t(~) r 1~ ~ 02s~l&1" ~~d~ ys, " »(k) &

s+6=—s', (2)

Then the spin states carrying the indices P are described
by a symmetric spinor of rank 2s. It is clear by inspec-
tion that F is analytic if T is.

Conversely, for any analytic spinor-covariant F,
symmetric in its dotted and undotted indices, we can
find several T's that satisfy Eq. (2). For example,
define

F K], ''K g]oooga
(y) ~s+1" ~2s '

Pq+1 ~ P2s

m=1

j
F 0 ~

(8)+1"'+2s&P1"'P2s LL
m'

which are solutions of the Fierz equations, and let these
be the matrix elements of T+(„) in the van der Waerden
representation, i.e.,

where T~~„~(k',k) is covariant and has signature &
under parity. The index (i&) stands for tensors of any
rank; in this paper it will denote totally symmetric
tensor s.

The aim is to find a decomposition of T+(„) into a set
of covariant, parity-definite polynomials, which are
independent after sandwiching between the FBW
wave functions, and such that the corresponding invari-
ant form factors are analytic functions of (= (k' —k)'
wherever T+~» is analytic in k and k' (on their mass
shells). That is, we want a ininimal set of standard
vertex covariants that is parity definite and free of
"kinematic singularities. "

The vertex covariant T+(„) is analytic on the mass
shell of k and k' if and only if the spinor form of the
vertex function F+&» (in the 3E-function representation)
is analytic. To get the spinor form of F+(„), we just
choose the 2s+1 independent solutions of the FBW
equation for positive energy according to a spinor
convention; e.g. , in the van der Waerden representation

1 (k 0jm)u, P;)
P......„(k)p, ...p„——sym II — l. (3)

iv2 =5"'"t&,. )

where T; and V; run over the complete set of Dirac
matrices I, 7,, 'Y„, V„V„, 0„„, and where (X;) and (p;)
represent their tensor indices. The coefficients
k~" &z~~„&(k',k) can be calculated in the obvious way by
taking traces with Dirac matrices on each factor in the
tensor product, and thus are analytic covariant func-
tions if and only if T(» is.

The work of Hepp' on functions of two four-vectors
(not necessarily on-shell) assures us that any set of
polynomials that analytically decomposes all simple,
covariant tensor monomials formed from k, k', g&",

and el"""&also decomposes the analytic functions h(&) (),) (,)
without kinematic singularities. Thus, our problem is
solved by the familiar rule: Contract all such simple
monornials (of appropriate rank) with all covariant
matrices of the form ;T, IS,V,E, and apply the
constraints due to the FBW equations to reduce these
to a minimal set, being careful at each step never to
introduce singularities. We know we are finished when
we arrive at the correct number of independent covari-
ants, which we know beforehand by any of the standard
counting techniques.

Any minimal set of standard vertex covariants
found in this way for the t channel is also a good set
for the s channel. All we have to do is to change each
of the 2s' lower Dirac indices to an upper index by oper-
ating with the constant matrix E, and to replace k

by —k (or k' by —k').
The details of our construction are described in the

following sections. The complete sets of covariants that
result, free of kinematic singularities and zeros, are
listed in Tables I—X, through second-rank symmetric
tensors. The entries in the tables represent tensor
products of 4&4 Dirac matrices, except for occasional
numerical vector and tensor factors formed from the
momenta and g&". The first 2s factors in the tensor prod-
uct are of type T;, and the remaining 6 factors are of
type V;E. The tensor product gets separately sym-
metrized in the two types of factor when sandwiched
between FBW spinors. Each factor in a bracket is to
be combined with each factor in all the other brackets
of a given table, taking due account of the symmetry.
For example, 2s factors of the form

8 0 ~ ~ 13

where

P+ il "-is X].'"Xy' ~

+1 "+2s ~ (P) 7i+1""Y2s' ~j+1'"~2s
~ —V+ ~ ~

~l'''~2s&Pl" P2s
'

(P) 0'1"'+2s'&Pl' "P2s &

represent the same thing as the big bracket in Table I.

4. BASIC IDENTITIES
c= (",; ) and d = (i,") .

Any covariant T(„) can be written as a sum of tensor
products of matrices in the Dirac algebra:

()I 1) ~ ~ ~ (&2 ) (Vl) ~" (Va)T(~) —~ ~;(u)

28

&& T,&"'~ Im V;~~~K, (6)
j=1 j=1

In order to reduce the covariants to a minimum set,
certain identities are needed. In the following, we shall
write down some important ones. They are valid in a
general representation for p„, unless we say otherwise.
The first of those below~ is trivial in the van der Waerden

This is similar to the Pauli-Fierz identity: M. Fierz, Z. Physik
104, 553 (j.937); %'. Pauli, Ann. Inst. Henri Poincare 6, 109
(1937).
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representation; the rest follow from it (plus elementary
properties of the Dirac algebra):

Covariants Number

TABLE I. Independent scalar and pseudoscalar covariants.

b7zv d —E Ebd (7 K) (E7 ) bd+g dg 5

—75,"75,'. (7)
IS SI
I|3v ~ v I75

&vgv kE ~ v5 vkE

In the following identities, the notation =. means the
equation is valid when all lower indices are contracted
with indices of the FBW wave function f(k')~z"'»'
of sufficiently high spin; and the notation =.

'
means the

equation is valid when the upper indices are also con-
tracted, with an FBW wave function p ,5„5.(. .k) of
sufficiently high spin. For example, the identity
P(k') z 5' E„,"=O, which follows fromthe antisymmetry
of E, is written E=. O.

The other identities are

E =. y5K =. y„K=. 0,
k" v. k k„' 7-k k. k'

75o.„„—K =. 757„E=. —75E——7„75K —, (9)
m m m'm mm'

7b a„.E+7„Sa„zK+7„ o g„E

&~xpv p 3opa~5K

=. i e),„„pIQ'Y p'YSK,

7X8aivv75K+Ylv 8 ave 5E+7v Sabzv75E

&&Xpv ~ SO'p5t+

=. 55'„vv75Z37v75Kv (11)
where e"23= 1; and

(7,7z).,"(7"7zz).,"
=(7z).*"(7zz).,"—(757z).5"(757»).," (12)

(7.7zE)...,(7"7zzE)...,
(7rK) 5 5(7zzE) (757zE) 5 5(757zzK), (13)

(7„7rE)...,(7~7zz).,
=. (7zE) ...(7zr), '—(757zE) ...(757zz) ', (14)

where 'Y& and 'Y&z are any arbitrary 4X4 matrices.

S. PRELIMINARY REDUCTION

We proceed to look into the structure of T&», which

is a sum of monomials. We can assume that the mono-

mials can have at most one e, because of the well-known

identity that expresses a product of two e's as a deter-
minant of g's. If we include y5o.„„among the basic
Dirac matrices, we can make the rule that a monomial

with one e is never contracted with a tensor product
containing a factor o.„„orp5o-„„, because of the identity
O'pv 2&&lj,vXp+5& ~

1 '
Xp

Now the FBW equations permit us to forget about

any factor e altogether, because at least one of its indices
must be contracted with 7, =. (7 k'/m') 7,= (k'"/m')a„,
+kv'/5zb' or with 757„with similar identity. Any 5

factor is eliminated from the o- term as above, and

~ ~ ~

P~ v ~ v +5
2s factors 5 factors Total: 2s+1

either the k' term kills the 5 (which can have at most one
free index) because of another k' factor, or the 5 has
another index contracted with Vq or 'Y5'Yq. In the latter
case, we repeat the argument until e is gone. Next,
consider monomials that have one or more factors of g.
We get something different only if each g connects two
different factors among T; and/or V;E in the tensor
product. Only in the case of tensors of second rank or
higher do we have a g with two free indices. However,
because of identities (12)—(14), all polynomials that
have one or more pairs of factors connected in this way
can be reduced to a sum of terms with no connected
factors.

From here on, we shall discuss vertices with different
tensor transformation properties separately.

I, y5, ~-k, ~-k', y5~ k, y5y. k', o„„k~k", ~,o„„k~k'v.

They are to be multiplied by E, in the case of factors
of the type V;/C. After applying the FBW equations,
they reduce to: (i) type T; (one upper and one lower

index), I, 75, (ii) type V;K(two lower indi'ces), 75, 7 kE.
We know that we have found a minimal set, free of

kinematic singularities, because there are exactly 2s+1
of them. These are given in Table I.

'7. VECTOR AND PSEUDOVECTOR
FORM FACTORS

The set from which we started reduces to simple
tensor products of 4&4 matrices which are chosen from

among the following (or one of the following times K,
in the case of factors of type V;K'):

(a) I, 7„7 k, 7 k', 7,7 k, 7,7 k', a„„k~k'", 75a„,k~k'",

or at most one factor can be of the form

(b) 7„, 757„, o„vk"v avvk'", 75a„vk", 75a„,k'", k„, k„'.

To reduce these further, we look separately at factors
of types T; and t/;E:

0. SCALAR AND PSEUDOSCALAR
FORM FACTORS

There are 2s+ 1 scalar and pseudoscalar vertex
covariants. It is clear that the set of 4&(4 matrices for
~i ls
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TABLE II. Independent vector and pseudovector
covariants when s= s'.

Covariants

'I -.I@II|3" (SI(3~
X~ I -.p6y5 ~

vsQx Qxv&

2s factors

Ig I
i&, l@, Is sv,

vsi3 vs'
2s—1 factors

Number

2X(2s+1)

2X2s

Total: 8s+2

Special Cases

As long as s'=s, or s=O, the reduction we just
carried out is complete.

(A) s'= s. The complete symmetry in upper and lower
Dirac indices reduces us to the distinct vertex co-
variants given in Table II.

(8) s=o. There are four covariants, owing to sym-
metry in the interchange of pairs of lower Dirac indices.
They are given in Table III.

General Cases

So far, we have used only the simple identities
(7)—(9).If s')s) 0, our reduction gives 2s+1 too many
covariants, and further identities have to be applied.

First, whenever s+-„we can use the cyclic identities
(10) and (11),whose derivation from the simple identi-
ties (7)—(9) and (14) is only moderately tedious, to
eliminate o„.k"E from the factors of type (b), by pairing
it with a factor I or 7& of type (a). For example, we have

k" k' 7
75tao „„—E =. —75 Iso.„,.—E

m m' m

(i) Type T;. The two FBW equations reduce us,
without singularities, to

(a) I, vs,

(b) v„7sv. .
(ii) Type V;K. Now there is only one FBW equation,

but the identities (8) and (9) reduce us to

(a) V,V kE,
(b) vsv„K, o„„k"K.

where (8) has been used to get the last line. Now we

can write ie&,„„,vs= —A(v&v„v„v,), where A anti-

symmetrizes the tensor indices that follow, and use the
irac algebra and the two FBW equations to reduce

the left-hand factor in the last line, which gives

k k'
vso„„E=:—icy„„' —Vssv—,vsK=:

i
1 —-- —I

m m' m i mm'

k„' ) vk
V„vsK+ ——7„ igI—VsK. (15)

m' ) m
Similarly, we have

k" t| k'
I o„„E=:—1—+—757„75E

m mm'
fk„'

+i —7„ iv, g
km'

vsK. (16)

A count shows that now we have 10s+3 covariants.
For s= —,

' that is all.
(C) s')s=-,'. There are eight covariants, given in

Table IV.
(D) s')s)I. There are still too many covariants,

but none of the identities used so far reduces them. If
that were possible, one of the minimal sets already
found would be reducible. We get the final identity by
applying the cyclic identity (10) and (11) to 757„7&K,
which yields

75ta 75 7p75K

k„'i v k k k'
=. V,

i v„y—" isv, g)—v,K—v,gv, g v„v,K
mm

+ieg„„Vs—3I7 '7sK—;
m m

and by applying the identities (15) and (16) just derived,
to get

k'i v k l k'i v k

i
v„—"i3I8- V,K+v, i v„+—" isv, g v,-E

k k'i
(iSISv.vsK

mm')

k k'i
+(1+ ~7 SV SY„Y K (17).

mm'I

7 u 7 t' 7 u 7 e'
=. +757„ K+7 sjm 'Y„E

m m' m m'

TAsLE III. Independent vector and pseudovector
covariants when s=0.

Eypv p 75S7p7
m'm

k'~ k"
+zsgpp 75vpvQK

m'm

Covariants

( "I Xyg k&(3 .13vg kEik„

p g Eg&5& kE3 g&5y kK
0 k"Egypt& kE; ~ ~ gv5. &kE

Number

Total: 4
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This identity allows several choices for removing the
unwanted covariants, so we write down all 10s+3
(Table V) and allow the reader to choose for himself.

For example, we could remove the 2$—1 covariants
where there are two factors 'Y5'Y„'Y5, leaving the right
number, Ss+4.

8. SYMMETRIC SECOND-RANK TENSOR
FORM FACTORS

As preliminary for the discussion of the general case,
we shall consider $= $'. All factors here are of the type
T;. After applying the FBW equations, we And that
they are of the foHowing categories:

(a) J 7'
one of the following factors:

(b) Vi'87", VsV"87sV", VsV"87"+VsV"SV",
V~k +7"k~ 7~7 k"+7"7 k»~k'"+7"k'"

7~7 k'"+7"7 k", gN", k~k", k"k'";
(c) k'"k "+k'"k"

Altogether, we can form 22s+1 (s&-,') covariants. Since,
by standard counting, only 20s+2 (s& s) can be inde-
pendent, we have to eliminate 2$—1 of these. This
can be accomplished by the following identity:k„p k„' k„'
Vs87;I 7„+7, —VsSVsl Vp——+7. —

i "m m m' m'

k k'i
, IVsV 87sV+I 1+, 17~87

mm'f i mm')

+I 1+-, IVsSVC,.+I 1———,IIIg"
mm') i mm')

TAsrE V. Vector and pseudovector covariants when s'&s)1.
One should use identity (17) to strike out properly 2s—1 of them
to obtain the independent set Lsee discussion after identity (17)g.

Covariants

X ~ v kvsEg) ~ ~ ~

g l3 ~ |3 SV kx~g

- lsd„V5Ey k&5E|3 ~ ~

Number

2X (2s+1)

2X2s

2$+ 1

Total: 10s+3

+k'"ki' terms, except two:

(c')
II . I

(k'~k" +k'"k~),I3IS . @I'~,
without introducing kinematic singularities. The
number that has been reduced in this way is exactly
2$—j.. The independent covariants are given in Table
VI.

We now look into the general case. When $—$'&2,
there should be altogether 20s+10 covariants. As
before, factors of the type T; must be of the form

(I) (a)8 8 (a);
(a)S 8 (a) 8 (b) or (e');

while factors of the type V,E should be products of

(II) (A) VsV kE;

(3) 7~7sES 7"VsE; 7»,Ek"+7"V,Ek~,
»VsKk'"+7"V,Kk'~.

To form the complete set of covariants, besides
taking direct products from (I) and (II), we also have
terms like

k) p k, '—ISI 7„—+7,—I-ISI 7„—+7,—
Ikm mi E m'

k„k„') (k„k,' k. k„')+ISII,+, I-VsSVsl, +, I (»)
Em m' m m'& km m' m m'&

For example, we can use it to eliminate all the k'&k"

TAsx.E IV. Independent vector and pseudovector
covariants when s'&s= ~.

8 8 8 (7"87"VsK+7"87"VsK)
75 75

8(VsV kE)8 8(VsV kE),

8 8 S('47"87"7&+7,7s87"7~)
75 75

8(7 V.kK) 8 "8(7,7 kK).

We find that there are 20s+2+ (10s+3) of them. Some
must therefore be dependent. By employing identity
(17), we can eliminate all terms like

Covariants

g~~~ kE ~ ps' kEk I
k„'

vgv kE(3. v5v. kE
V{jVy

gvsv„Evg-vkE-. vga kEI
V$

Number

2$—2

87sS (7"Vsk'"+7"Vsk'I') VsV kE, 2$—1
~ ~ 8&575&I"8&5&"'Yg'V kE, 2$—2

~ ~ ~ 87sS(VsV"87"+VsV"87'') 87sV kE,
Total: 8 ~ ~ ~ 8Vs (VsV"87"VsK+VsV" Vi'VsK)

S&57 kE, 2$—i.
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The extra 2s+1 dependent invariants are eliminated
by the following three identities:

TmLE VI. Independent covariants for symmetric tensor
of second rank when $= $'.

0=:
i

1— —iV„SISV„VaK
mm')

k k'

+I 1— 'Y„'Y,'Y„'Y„'Y, K
mm'

7 Ia

gV„S~ —V„~S V,E

(
+~ Vyr ~7))75S75S 75E

km
"i"

m

Covariants

.8 k»k"

8 8I8 k»k "+k"k

v»|3V"' a " a(' ja ~ v,av+v ~,av )v v»8V v"
v»k" +v"k»

v.v»k" +vsv'k"
vsf vs v»k'"+v"k'»

V5v"k "+VGV"k»

Number

3(2$+1)

3(2$—1)

4(2$)

Total: 20$+2

kp
+2—VaSVaSV„VaE, (19)

0=: ] 1— —~VaV„8ISV,VaK
mm')

+~ 1+ — V„SVaSV„VsK
mm'

where A is any 4)&4 matrix. For example, we can use
(20) and (21) to reduce all the 7)'V,Ek"+7"V,Ek)'
terms, of which there are 2s+1. All in all, the 20s+10
independent covariants for a symmetric second-rank
tensor can be chosen as those given in Table VII.

The discussion is still incomplete unless we include
all the special cases.

(A) s=0, A&Z. As has been pointed out in the last
sections, the factor o„„k"E cannot be reduced when s =- 0.

+VaV„S
~

——V„~S V,E"Em )
TABLE VII. Independent covariants for symmetric tensor of

second rank when s' —$&2, s/0, —',.

Vk+()„—"~)„av,a ),z
m') m

and

2 ISVaSV„V—aE—, (20)

k k'~—
i 1+ —iV„SISV,VaK

mm'i
"

Vk—V,V„SV,
~

—+V„~S V,E
km' i m

( k k'i
0=:

) 1+ ~757„SVaSV„VaK

Covariants

I a a)(I k»k"
k'»k"

8vgv kK8 ~ ~ 8v;v kKI" I
(~ u"+Su")I8 ~ ~ 8I8v

8vsv kE 8vsv kK

"ja" a)(' java»
vsv kE8 ~ ~ 8vg kK

vs»8 vs"' "' v,v»8V+v. v 8V»
jsvgv kEjs ~ .8vgv kE

v»k"+v"k»
8 ~ .8 8 v»k v+vvk»

v"vs"+v"v k»VQ

8vg kE8 ~ 8vv kE
IS" SIS(7~78'"+7"Yak")

8vsv kK8 ~ 8vg kE

Number

2(2s+1)

2$—1

3(2s)

V,
8. .8 v, g"

8v,v kEta. .tav, v kK
I I
VQ

8 o ~ o 8 8V»v&E8vvv5E
vg

8V v kE8 "8v,v kE' ja "R(~ )a&a,vs), "+v,~za").
8vsv kE8 .8vv kK

(' a a('ja(b'av. ~z+'a».vs)
8vgv kE8 ~ .8vp kK

I8 ~ .8I8(v v 8v v"E+v"v 8v v E)
8Vp .kE8. ~ 8vgv kE

'7 k
+ ——V„~V„SIS VaE

m' )
Jkp

+2 IS V„E. (21)—
m

All these can be derived from

Vk
+i 7„—A VaE, (—22)

m' m

k k' V kg
Za),„„a——VaA SV&VaE =. — ——

~A SV„V„.E
mm' mm' m )

2$+1

2$+ 1

2$+1

2$

1
Total: 20$+10
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However, the relation

0= —0. k"Egg k"K+k Vg75ESV kVgE
'

k„' k. k'
+kg'Y„V,K7 kV.E. +-7k—75E —7„75K ~-

m' m' )
gpv

kl'kv
k'~k'"

krak v+.kvk

Covariants Number

Tmr, E IX. Independent covariants for symmetric tensor of
second rank when s=-,' and s' —s&2.

kg
S —7 kvgE—

m'

l
7&75E

I f„&7—k75K37 kV,K
m'

7"75ES&"75E

(which appear in the general spin case of A&2); there

—m'7 75KVgV:E (23)

restricts it to appear at most once in a product. The
number of covariants is 10 (= 20s+10) (Table VIII).

(8) s= —'„6&Z. The covariant amplitudes are
given in Table IX.

(C) 6=1.When 6= 1, we realize that there can be
no terms of the form

Qxq~q kEQx Qx.q~q kE

(k, k'
)( . l+(kk')'

SV5v kES -S757 kE

, (k'~V &7"IC+k'"7&V~E)

Sv5v kES. ~ - Sv5v kE

Sv"75K+ „Svt'75E
Qxqg kEQx . Qxqsq kE.

I SYI"75KSvvv5E
V5

Sv5v kES -.Sv57 kE

S~-k,E+ 7 S~"k„E7 V5 7 75
SV57 kES ~ ~ S757 kE

Total: 20= 20s+10

Covariants Number

TABLE VIII. Independent covariants for symmetric tensor of
second rank when s=0 and s' —s&2. briefly describe it as follows: If s&r and A&r, we form

all products

tv
k~k

757 kES .Sv57 kE
k~k"+k k'~.
75vt'Ek" +757"Ekl'
757pEk v+757vEk I

"k,Ek+o-k, Ek "7 kE "37'7 kE
~~"k Ek"+oak Ek'~

vt"75ESY"75ES757 kES. . Sv5v kE
vt"75K@~v.k,ES757 kES. . S757 kE

(k„,k„',Vg,V;V„E,g.g)

S 0 ~ 0 S Svv kES .Svv-kE

we can think of which have the proper tensor indices.
We shall have the correct number of independent ampli-
tudes (2s+1)L1+(11/6)r+r'+ —,'r'j if we drop terms of

Total 10

are 2s+1 of these. On the other hand, identity (17)
cannot be used to eliminate terms like

Vgg (VgV"gl 7"7gE+7gV"87"75E)

of which there are 2s —1. Therefore the number of
independent covariants is

20s+ 10—(2s+ 1)+(2s —1)= 20s+8,

which is correct. We write them down in Table X.
The two special cases s=0, 6=1 and s= —,', 6=1 can

be read off from the corresponding cases when A&2
by striking out those terms which require at least two
V;E factors in the products. The number of covariants
are, respectively, 8 and 18 (=20s+8).

9. SYMMETRIC TENSORS OF
ARBITRARY RANK

The identities we have derived provide us with a
simple method for constructing independent covariants
for any symmetric tensors of arbitrary rank r. We

Covariants

I )3 @ I )(k"k'

E
ki'k'"+kvk'I') SY57 kE

S .-S SY~SY"S757-kE

v57"S75v'IS' ' 'SIS S + S S757'kE

I 7&k"+7"k&
S .S ~S 7~75kv+Yvv5k~ S757 kE

75 V~k'"+7 k'» J
IS SIS(7~75k'"Xv"75k")Sv5v kK

S S g~ SY57 kE

S -.S S(7~57Ek'"+7"75Kk'~)
V5 75

~ ~

5 5

I S( I f Y~SY» E+7 SY57~E
, S S, S Y,Y„SY57,K+757,SY,Y„E

Number

2(2s+1)

2s—1

3(2s)

2$+1

2s+1

2(2s)

Total: 20s+8

TABLE X. Independent covariants for symmetric tensor of
second rank when s' —s=1 but s/0, ~.
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the type

(1) (k&7s7"E+k "7s7&E) (anything),

(2) 7e87"7s7s7 kE8(an'ything without k",

where v is a free index),

(3) (k&k'"+k"k'&)7s7s (anything) .

Rule (1) is due to identities (19)—(21), rule (2) to
identity (17), and rule (3) to identity (18). We do not
drop terms like

7, (7&7,k"+7"7ek&)7s7 kES (anything),

and vice versa. This means that we can reduce only one
of them.

We have applied this procedure to the third- and
fourth-rank cases and obtained the correct answer. A
general proof can be constructed, which is a matter of
some tedious counting. We leave it to the reader.

When A&r and/or s&r, we are in special categories.
The procedure described before is also enough to solve
the problem. One added complication is that cr„„k"E
can be introduced, with the following restrictions: (i)
Terms like

S (anything)

(kok"+k k'o)7, 7, 7s7 kIt S (anything),

because in reducing it, we shall come up with objects can be dropped, because of the identities (15) and (16),
like and (ii) it can appear only once in a product, because

of identity (23).
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Three-Point Functions and a Sum Rule from Radiative Corrections to pion,
y Decay A Uni6ed Description of Low-Energy Meson Phenomena*

HIROSHI NAMAIZA WA

Research Institnte for Fundamental Physics, Kyoto University, Kyoto
and

Department of Mathematical Physics, Seihei University, Mnsashino shi, Tohyot-
(Received 8 September 1969)

Combining conserved vector current, partially conserved axial-vector current, and the meson-dominance
approximation, we develop a theory of current algebra (SU&SU&) "on the mass shell" by means oi Ward-
Takahashi-type identities for three-point functions. Models of mixing are presented which are compatible
with the spectral-function sum rules derived from broken chiral SU3SU3 symmetry and with CVC to the
6rst order of symmetry breaking. Further, requiring absence of divergences from radiative corrections to
pion p decays, we deduce an asymptotic sum rule which relates two different types of three-point functions
and thus enables us to correlate two diferent meson processes: radiative and strong decays. In addition
to these decay processes, applications are made to electromagnetic form factors of mesons, E~3 form factors,
and n(K) ~ ivy decays. Agreement with experiments is very reasonable.

I. INTRODUCTION

HE hypothesis of current algebra has succeeded in

revealing many definite clues of symmetry in

nature. Particularly in low-energy meson phenomena,
the result obtained by the current-algebra method is

independent of how and to what extent the symmetry
is broken. ' As we know, the very success of current
algebra is closely related to another assumption: the
so-called "soft-pion" approximation. Owing to this we

have been able to extract symmetry aspects from the
current algebra without knowing too many details of

* Submitted to the Department of Physics, Tokyo University,
in partial fulfillment of the requirements for the Ph. D. degree,
1968 {in Japanese).

t Permanent address.
~ An excellent review and adequate references will be found in

S. L. Adler and R. F. Dashen, Current Algebras {W.A. Benjamin,
Inc. , New York, 1908).

the dynamics of strong interactions. However, it must
be noted that because of the soft-pion approximation,
the results obtained through the current-algebra ap-
proach are the "o8-the-mass-shell" threshold theorem,
and the same method cannot be applied to the phenom-
ena in the higher-energy region. Therefore it is not sur-
prising if we meet some serious difIiculties in applying
the usual "soft-pion" current algebra to phenomena in
which the relevant pions are no longer "soft."

Hence it would be very natural to inquire whether
any symmetry features could be revealed by current
algebra in the energy region above threshold, by ap-
pealing to appropriate assumptions other than the soft-
pion approximation. As we can see, this new assumption
should reflect, to some extent, certain dynamical condi-
tions which did not exist in the case of the soft-pion
approximation.


