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A previous calculation of the radiative corrections to the rate for pure Fermi P decay in the V—A theory,
computed to first order in e and to zero order in the lepton momenta, is extended here to include, in addi-
tion, the corrections linear in the product of a lepton momentum and a nuclear charge radius. These addi-
tional contributions are shown to modify the Coulomb correction to the positron wave function to account
for the finite distribution of electric and isotopic charge within the nucleus. They are evaluated and taken
together with the other electromagnetic corrections, the origin of which are reviewed in the text, to reassess
the question of the universality of the weak vector coupling constant. The conclusions obtained, although
basically in agreement with the results of others, differ in detail from previous surveys of universality, gen-
erally in a direction to strengthen the concept of universality in the sense of Cabibbo.

decay amplitude which arises from the vector hadron
current is unaffected by the details of the strong inter-
actions. This result depends only on standard equal-
time commutation relations involving charge densities
and on the condition that the initial and final hadrons
in the decay are members of the same isomultiplet.
Consequently, it applies when the hadrons are nuclei,
as well as it does when they are nucleons or pions.

In Ref. 7 the electromagnetic corrections to P decay
were calculated to first order in n and to zero order in
the lepton momenta. Because of the independence of
strong-interaction dynamics mentioned above, the
results were essentially the same as what had been
obtained before" by ignoring the strong interactions.
Here the work of Ref. 7 is extended to include, in
addition, the corrections proportional to the product of
a lepton momentum and a nuclear charge radius; other
terms proportional to a lepton momentum are ignored
on the grounds that they must also be proportional to
an inverse nucleus mass —inasmuch as these are the
only masses occurring explicitly in the problem —and
are therefore totally negligible (lepton momentum times
an inverse nucleus mass is (10 4 always). It is shown
that the only appreciable effect of these charge-radii-
dependent terms is to modify the Coulomb correction, "
which arises from using a Coulomb wave function for
the positron instead of a plane wave, to account for the
finite sizes of the electric and isovector nuclear charge
distributions. The specific forms which result for these
corrections differ in detail from those that have been
obtained previously. ' ' To make these points evident,
and to clarify the conceptual basis of our work, the
essential features of Fermi's calculation" of the Coulomb
corrections are sketched in Sec. IV.

In Sec. II we outline the general framework of the
calculation and discuss the origin of the various cor-
rections which are included in the summary given in
Sec. IX. For the sake of completeness, we derive in
Sec. III, to zero order in e, the correction to the rate

I. INTRODUCTION

ITHIN the context of the U —A theory of weak
~ ~

~

~ ~

interactions, ' including the possibility that the
currents are mediated by a vector meson, ' ' a calcu-
lation is given of the electromagnetic and "finite nuclear
size" corrections to the decay rates of seven carefully
measured 0+ —+ 0+ P+ transitions, "where in each decay
the initial and final nuclei belong to the same I=1
isospin multiplet. The results obtained are combined
with the effects of electron screening' and of com-
petition with K capture, ' as extracted from the work of
others, ' ' to assess the universality of the weak vector
coupling —by comparing the coupling constants in the
various nuclear decays with each other and with the
coupling constant for p decay. Despite important
differences in detail, the numerical conclusions are
similar to those obtained previously, ""namely, that,
considering the combined experimental and theoretical
uncertainties, the different nuclear decays, including
the decay of "Al, exhibit the same coupling constant,
which is equal to the coupling constant for p decay in
the Cabibbo form" of the U —A theory.

The motivation for the calculation given here is the
result derived previously' that to first order in 0,, and to
zero order in the lepton momenta, the part of the p

*Supported in part by the National Science Foundation.
'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(1958);R. E. Marshak and G. Sudarshan, ibid. 109, 1860 (1958).
'T. D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960);

T. D. Lee, ibid 128, 899 (196.2).' C. S. Wu, Rev. Phys. 36, 618 (1964).
4 J.M. Freeman, J. G. Jenkin, G. Murray, and W. E. Burcham,

Phys. Rev. Letters 16, 959 (1966);J. M. Freeman, J. G. Jenkin,
D. C. Robinson, G. Murray, and W. E. Burcham, Phys. Letters
27B, 156 (1968).

5 M. E.Rose, Phys. Rev. 49, 727 (1936);J.J.Matese and W. R.
Johnson, ibid. 150, 846 (1966); L. Durand III, ibid. 135, B310
(1964).' E. Feinberg and G. Tripp, Rev. Mod. Phys. 22, 399 (1950).

7 E. S. Abers, D. Dicus, R. E. Norton, and M. R. Quinn, Phys.
Rev. 167, 1461 (1968).' B. Chem, T. A. Halpern, and L. Logue, Phys. Rev. 161, 1116
(1967).

L. Durand, L. F. Landovitz, and R. B, Marr, Phys. Rev.
1188 (1963)."N. Breene, M. Roos, and A. Sirlin, Nucl. Phys. B6, 255 (19

» N. Cabbibo, Phys. Rev. Letters 10, 531 (1963).

130, "T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959);
S. M. Berman and A. Sirlin, Ann, Phys. (N. Y.) 20, 20 (1962).

68). "E. Fermi, Z. Physik 88, 161 (1934)."M. Morita, Phys. Rev. 113, 1584 (1959).
I 1360



UN I VE RSAL IT Y OF WEA K VECTOR COU PL I N G CON STAN T 136i

proportional to the root-mean-square isovector charge
radius; electromagnetic corrections to this small effect
are ignored. At this time we will also make clear why
we do not include any correction coming from the
interference between the allowed and "second-for-
bidden'"' "matrix elements, where the latter arises
from the space components of the weak vector current.
This contribution is customarily taken into account by
resorting to a calculation"" based on a picture of the
nucleus as a fixed pot of stewing nucleons; as will be
elaborated, we believe this effect has been considerably
overestimated in the past.

In Secs. V and VI the corrections of order n are
considered, and the terms proportional to the product
of a lepton momentum and a charge radius are sepa-
rated from the radiative corrections, which contribute
to zero order in the lepton momenta. The latter are
shown to be the same as the corrections calculated in
Ref. 7; in accord with the statement of a recently
published theorem, ' they exhibit the interesting prop-
erty of being independent of Z—except for the Coulomb
term of order Z, which was omitted from the calculation
in Ref. 7, and which is omitted here from the radiative
corrections computed in Sec. V, as discussed below. The
former are evaluated in Sec. VI. In Sec. VIII, a brief
discussion is given to support the view that the presence
of operator Schwinger terms" in the current commuta-
tion relations would not appreciably inhuence the
numerical conclusions based on the calculations in the
remainder of the paper.

The effect on our conclusions of the existence of an
intermediate vector meson of mass 1VI~ is discussed in

Sec. VII. By extending a previous argument' to include
the charge-radii-dependent corrections considered here,
it is shown that the conclusions concerning universality
are the same in the intermediate meson theory as in the
local theory, except that the cutoff occurring in the
latter should be interpreted as Mg.

In Sec. IX the various numerical corrections are
combined to obtain the ft values for seven 0+ —&0+

nuclear decays. These corrections and the resulting ft
values are listed in Table I for two different choices of
the radius R at which the Fermi function is evaluated.
The ft values for the best case of the two are shown in

Fig. 2 in order to portray graphically the extent of their
uniformity.

The Appendix is devoted to elaborating a detail which
arises from the particular manner in which the Coulomb
corrections are taken into account. As discussed in
Secs. II, IV, and V, the order-ZO, part of Coulomb
correction to the positron wave function is counted
twice: once by using a Coulomb wave function for the
positron, as included in the Fermi function F(Z,E,),
and again in the order-n electromagnetic effects calcu-
lated in Sec. V. Consequently, in Sec. V this contribu-
tion is recognized and thrown away.

Except for the Coulomb corrections to the positron
wave function, no attempt is made here to include
corrections of higher order than the first power in e. For
nuclei of large Z this could be ruinous if the expansion
in n contained terms proportional to powers of Z'n,
which is roughly 5 for the heaviest nuclei considered.
However, as has been stressed recently, " the isoscalar
part of the electromagnetic interaction —from which the

TAnLE I. Corrections to the ft values for seven nuclear decays. The half-life is in seconds. The end-point energy is expressed in units
of electron mass. fo was calculated from the usual tables of the Fermi function which use an effective radius of the nucleus of 1.37A'" F.
However, because the answer is very sensitive to this number, the corrected ft values are given for effective radii of 1.37 and 1.208'Is F.
The method for changing fo to other values of the radius is given in the text. The corrections were calculated using the root-mean-
square radius =1.03A'" F. The table applies whether or not the weak interactions are mediated by a vector meson. If they are, the mass
of the meson was taken to be 30 BeV; otherwise, 30 BeV is the high-momentum cutoff. Q=-,'. The experimental errors are taken from
Ref. 4.

Nucleus 14O

Half-life 71.360+0.09
End-point energy 4,540+0.003

fp(Z, 3f M') 42.6—3
jot 3042

Corrections, % of fo
0.01

8@+6@ 0.29
~EV —0.09
h„(electron

screening) 0.10
Srr (K capture) 0.09
&z 2.82

Total correction 3.22

'4Cl 4'Sc 4'V ~Mn '4Co

0.04
0.89—0.26

0.12
0.08
2.57
3.44

0.07
1.68—0.49

0.14
0.06
2.49
3.95

0.12
2.61—0.76

0.14
0.09
2.45
4.e5

0.15
3.29—0.97

0.15
0.09
2.43
5.14

0.19
3.98—1.17

0.15
0.10
2.41
5.66

0.24
4.76—1.41

0.15
0.10
2.39
6.23

6.376~0.006 1.565w0.007 0.6830&0.0015 0.4259+0.0010 0.2857&0.006 0.1937&0.001
7.278+0.005 9.727&0.008 11.585 +0.005 12.812 &0.005 13.933 &0.005 15.144 +0.007

473.1 1951 4408 7051 10 421 15 299
3017 3053 3011 3003 2977 2963

(1) 8=1.37A "3F 3140~12
(2) R =1.20A'13 F 3141

3121m9
3124

3173&20
3179

3151~9
31.60

3157~10
3168

3145~9
3158

3147~17
3162

~s E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).
''i T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
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ts J. Schwinger, Phys. Rev. Letters 3, 296 (1959);J. Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955).
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II. OUTLINE OF PROBLEM

The problem is to calculate the decay rate of a nucleus
1V of mass M and charge Z+1 into a positron of
momentum e, a neutrino of momentum v and a final
nucleus Ã' of momentum y', mass M', and charge Z.
The nuclei Ã and Ã' both have spin zero, even parity,
and belong to the same isospin multiplet. Because III
and M' refer to the nuclear mass, M—M' is the maxi-
mum energy of the positron.

Because of the manner in which the Coulomb inter-
action between the positron and the daughter nucleus
E' is taken into account —namely, by simulating the
charge of 3l' by a 6xed point charge of strength Z—it
is conceptually necessary to imagine the nucleus Ã well
localized at the position of the charge Z. The extent of
this localization is dictated by the fact that in the
calculation the isospin charge distribution of the nucleus
is related to the nuclear isovector charge radius, and not
to where in space the nucleus is located. Consequently,
in view of the uncertainty principle, the momentum
space wave function for I A), defined by"

1 d pI»&=, «(p-p-)') I»,
(2s)s 2E„

(2.1)

where p„= (O,M), must contribute over a range of
momenta large compared to an inverse nuclear charge
radius. On the other hand, the decay rate we calculate

"The insertion of one photon propagator to a diagram adds
three propagators, two vertices, and one closed loop, Each
propagator contributes (2x) ', each vertex adds (2~)'(4xZn)'12,
and each closed-loop integration adds a factor ~' from the four-
dimensional solid angle. Thus, counting only powers of ~ and Zn,
each additional power of Zn is accompanied by a factor + "
x~'x+=~ '.

-
21 We use relativistic notation for the center-of-mass motion of

the nuclei, although the nuclear velocities are suKciently small to
make this unnecessary.

Z dependence arises —conserves isospin, and thus the
Ward identity guarantees that it cannot, by itself,
renormalize the isovector coupling constant. This part
of the electromagnetic Hamiltonian can thus be included
with the strong interactions and the expansion con-
sidered in powers of the isovector Hamiltonian. As
shown in Ref. 18, each term in this expansion gives no
contribution where the power of Z exceeds the power
of n. Even so, however, Z'n' 4% for cobalt, so that it
is still not clear that signi6cant corrections are not being
ignored for the four or 6ve heaviest nuclei considered in
this paper. The fact that there is no systematic devi-
ation from universality with increasing Z in our results
(a correction of 4'%%uo would shift the ft values by 120 in
Table I) suggests that these Zsns corrections are not
very important. Our guess is that once the Coulomb
corrections are eliminated, the expansion parameter for
the remaining corrections is really Zu/s. , as is suggested
by a naive counting of the more or less explicit powers
of x.20

is to refer to a nucleus at rest. Thus, because of time
dilation, there should be a negligible probability of
ending momentum components in the state IX) for
which p'M ' approaches unity. The products of mass
and charge radius for all the nuclei considered here are
of the order of 10', so that these two opposing conditions
on the wave functions can both be well satisfied. Fur-
ther, once the wave functions P have been selected to
ful611 these requirements, the calculated decay rates
will be independent of the speci6c forms chosen.

We take the state IE) normalized to unity, "
'p

(~v Iiv) =
(2s-)' 2E„

(2.2)

Dz= d *(p'+,Ix„( ) Iiv) (2.4)

and
~ = sG~2it.v.(1+75)4.(&x+~x). (2 ~)

The t/'q and Aq are the charge-lowering components of
the vector and axial-vector hadron isospin currents, G
is the weak coupling constant times the cosine of the
Cabibbo angle, and it „and it, are the lepton fields.

The neutrino field f„ in (2.5) is a solution of the free
Dirac equation, whereas the equation satisfied by the
it, includes the usual j A electromagnetic interaction
and a Coulomb potential Zn/r to account for the
Coulomb repulsion between the positron and the
daughter nucleus. The effects of the Coulomb potential
will be included to all orders in Ze by using a Coulomb
wave function for the emitted positron; the Coulomb
corrections to the positron propagator are ignored, as
discussed below. The j A interaction is calculated in
perturbation theory up through order 0.. As should be
apparent, this procedure will take into account the
order-Zn part of the Coulomb force between 2P and the
positron both in the explicit Coulomb potential and in
the j A interaction. This double counting will be cor-
rected in Sec. V; for the present, however, we proceed
ignoring this detail.

The matrix element in (2.4) is given by the sum of the
Feynman graphs shown in Fig. 1. Hy adhering strictly
to the program outlined initially above, the positron
propagators in Figs. 1(c) and 1(d) should include the
effects of the Coulomb field. However, free propagators

"Our notation and normalization is the same as in Ref. 7; see
particularly Ref. 17 therein.

"By using the correct relativistic energies for the initial and
anal nuclei in the 5 function, one gets a correction to (2.3}propor-
tional to (p'M~)=J'dp(2x) '(23PZ„) 'p')P(' which, as we have
said, is negligible.

so that the decay rate is"

d'p' d'e d'v
dr=(2~)-s Q ImIs-

spxns 2Ep 2Be 2Ev

)& 8(M'+E.+E. M), (2—.3)
where
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(c)

FIG. 1. Decay S~ E'+e++v and its electromagnetic corrections.

mill be used in the calculations of Secs. V and VI, and
our arguments to support this neglect —in addition to
the fact that it is easier and coincides with what others
have done in the past—are as follows:

(1) Since it is the long-range feature of the Coulomb
potential which makes its effect on the rate appreciable
even in the higher orders of Zo. , the higher-order cor-
rections from the Coulomb potential should not be
important during the distance of a Compton mave-
length, or less, over which the positron travels betmeen
its interactions shown in Figs. 1(c) and 1(d).

(2) It will become clear as we proceed that a question
arises as to whether or not the Fermi function F(Z,E,)
Lsee Eq. (2.7) and Sec. IVj should multiply the con-
tribution to the rate coming from the radiative cor-
rections in Figs. 1(c) to account for replacing a plane
wave for the positron by a Coulomb wave function. The
square root of F(Z,E,) is essentially the ratio of the
amplitude of the Coulomb wave function to a plane
wave evaluated inside the nuclear isovector charge
distribution. . As discussed in Sec. IV, it is clearly the
appropriate factor to multiply all the other matrix
elements in Fig. 1, since these involve integrals of the
positron wave function weighted with this charge
distribution. Homever, as already mentioned, in Fig.
1(c) the positron wave fun. ction extends out a Compton
wavelength from the nucleus, and this is a hundred or
more nuclear charge radii. Nevertheless, in the calcu-
lations we will include the factor LF(Z,E,))"' with the
matrix element of Fig. 1(c). This will tend to over-
estimate the effect of the Coulomb potential for this
part of the matrix element; on the other hand, the
neglect mentioned above will tend to decrease the
strength of this amplitude, since it ignores the Coulomb-
induced acceleration, and thus the increased electric
current, which the positron acquires prior to its final
interaction with the radiation field.

The matrix element in Fig. 1(a) can be written as an
integral over the positron Coulomb wave function g as

OR =-', G&2N(v)y&, (1+yp) d'x

Xe-""y(x)(p'~ V,(x) ~
A ), (2.6)

where the matrix elements of the vector current (the
axial current gives nothing between 0+ states) is to be
evaluated ignoring the electromagnetic corrections
illustrated in Figs. 1(b)—1(d). Since the nucleus state
~cV) is well localized, the values of ~x~ which contribute
to (2.6) are of the order of the nuclear isovector charge
radius (rr). As (e( (ry) and

~
v~ (ry) are (10 ', it is a

good approximation to ignore all but the low-order
terms in these products. Except for a small correction
(called 8o in what follows), the matrix element in (2.6)
computed to zero order in the lepton momentum is
simply LF(Z,E,)j'I' times the same matrix element
evaluated by ignoring the Coulomb potential. This
feature will be discussed in Sec. IV. The corrections to
the part of the rate coming from the square of the
matrix element in (2.6) which are proportional to the
first powers of a lepton momentum and a charge radius
are also explicitly proportional to n. As discussed in
Sec. IV, these terms are contained in the matrix element
of Fig. 1(c), and they will be included correctly in the
rate if they are ignored when computing OR, in (2.6) but
included in the calculation of Fig. 1(c).

In Sec. IV we will try to make clear why, except for
the small correction 8g—and with the proviso discussed
under (2) above —the effect on the rate of the Coulomb
correction to the positron wave function is adequately
taken into account if the matrix elements shown in Fig.
j. are calculated using a plane wave for the positron and
the resulting rate multiplied by F(Z,E,). Anticipating
this result, we will use a plane mave for the positron to
derive the correction to the part of the rate coming from
the square of (2.6) which is proportional to the second
power of the lepton momenta and the root-mean-square
isovector charge radius. There is, of course, nothing new
in this calculation; we give it mainly for completeness,
but also because we wish to take the opportunity to
discuss the other part of the second-forbidden matrix
element —the part linear in the lepton momentum, but
involving the space components of the isovector current—to show why we think its contribution is negligible
and should not be included in the corrections to the
decay rate, as it has been previously. ' ""

In Secs. III—VII, the various electromagnetic and
nuclear structure corrections to the rate are calculated.
Excluding the effects of electron screening and of com-
petition with K capture, which are also taken into
account in the numerical results presented in Sec. IX,
the general expression for the rate can be written as

dI'= dF pF(Z, L',) (1+8„2+hc+8s+8p+Bzr+6~) ) (2.7)

mhere

dI', = (2m') '(I—I,+1)(I+I,)G'(M —M' —E,)'
X~e(E.dE. , (2.g)

and I, I3 are the isospin quantum numbers of the initial
nucleus. The factor (I—Ip+1)(I+Ip) is equal to 2 for
the nuclei explicitly considered in Sec. IX. The signifi-
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cance of the different corrections indicated in (2.7),
together with where in this paper they are discussed, is
as follows:

(1) 8„2 is the correction to the rate proportional to the
product of the square of the lepton momenta and the
root-mean-square isovector charge radius of the nucleus.
It is calculated in Sec. III.

(2) Ba is a small [see Eq. (4.5)] term reflecting the
effect of the Coulomb potential to the part of the rate
con;ing from the square of the matrix element in (2.6)
which is not taken into account by including the Fermi
function F(Z,E,) in (2.7). This correction is discussed
in Sec. IV.

(3) 8s is the correction to the effect of the Coulomb
potential on the rate to take into account the finite size
of the electric charge distribution of the nuclear sys-
tem. '4 It is calculated to order o, in Secs. V and VI.

(4) 8v is the same as 8s, except that it refers to the
isovector charge distribution of the nucleus. It is also
computed in Secs. V and VI.

(5) Bsv is a term which arises from the particular
manner in which the corrections b~ and by are defined
(see Secs. V and VI); it reflects the fact that the effects
of a finite electric charge distribution and of a finite
isovector charge distribution are not simply additive in
the rate. It is computed together with 8@ and 8y in
Secs. V and VI.

(6) 8g expresses the combined effect of all radiative
corrections; these can be thought of (except for the
double-counted Coulomb term, to be omitted) as the
part of the corrections arising from the matrix elements
in Figs. 1(b)—1(d) which contribute to zero order in the
lepton momenta together with the rate for brems-
strahlung. This correction is discussed in Sec. V.

These corrections differ from those previously used
by the addition of bzy and the omission of the recoil
part of the second-forbidden transition. The fact that
bgy turns out to be negative leads to important changes
in any discussion of the "anomaly" of "Al .

IIL RATE AND (r„') CORRECTION

In this section we derive an expression for the decay
rate with a sufficiently general matrix element to
accommodate all of the corrections indicated in Fig. 1.
We will use a plane wave for the emitted positron and
rely on the discussion of Secs. II and IV to make clear
that the Coulomb potential is adequately taken into
account if the rate calculated here is simply multiplied
by the Fermi function F(Z,E,), as is indicated in Eq.
(2.7).

Anticipating the form of the matrix element to be
obtained in subsequent sections, we take the 5K defined

"See also Ref. 9.

in (2.4) to be

where

p =p'+e+v p, =E = (p'+3P)'"

M~ ~= [(I+I,) (I I,+1—)]'"
(3 2)

(3.3)

and where fv is the nuclear isovector form factor
defined by

(p'I v
I p) =m [y.((p —p')')(p+ p')

+av((p —P')') (P —p') ~]; (3 4)

note that the contribution of gy to the rate is ignored
bees, use (1) it vanishes to zero order in u, and (2) the
p —p which it multiplies is of the order of the electron
mass divided by the nucleus mass, and is less than 10 4

compared to p+p'. The quantities indicated by a and b

in (3.1) are of order tr, and only the interference between
these two terms and the term coming from the explicit
1 will be kept in calculating IORI'. The form factor fv
occurring in (3.1) and (3.4) is taken to satisfy"

and

fv(0) =1,
f '(o)= ——:(r'),

(3.5a)

(3.5b)

u Jv'(u ) = —;~(rv), (3.5c)

where the order-n correction to (3.5a) is included in the
correction indicated by a in (3.1).

If the expression for OR in (3.1) is substituted into
(2.3) and the summation over the spins performed,
there results

d'p' d'«" Ik[(p —P~)']I'
dI'=(2 ) '4G'3XI~ ~'

2E„'28, 2E„48„2
Xyv'[(p —p') ]~(m'+E,+E„—m)

X((1+2Rea)[(E„+E„)'(E,E„+e v)

2(E„+E„)(E„e+—E,v) (2p'+e+v)]

+2m Reb [(E„+E„)E, (2p'+e+v) v]), (3.—6)

where, in the bracket multiplying (1+2 Rea), we have
ignored terms of order P'M s, as discussed in Sec. II.
According to (3.2), (3.5a), and (3.5b), we can write

2 2 ~ 2 2

+(e+v) &'I4[(p' p~)']I' (3 7a)—
"The moments of the isovector charge radius used in (3.5b)

and (3.5c) are related to the diagonal matrix element of the third
component of the isovector charge density Vo' in the well-localized
state ~N)by(r~)=h 'J'd'x[x~ (ilr~V0'(x)[X). Forotherrelations
involving these radii, see Ref. 9.

4[(p —p~)']
OR= —', Gv2 3f~ ~fv[(p p'—)']

2E„

X ()(1—v)[(1+ )(P+P')+f] (), (3.1)
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and

fv2[ (P P')'j = 1+~~ (rr')[ (M—M')' —(e+v)'j (3.7b)

plus terms that can clearly be ignored. In (3.6) the term
proportional to (E„+E„)in the bracket multiplying
(1+2 Rea) comes from the interference between the
space and time components of the vector current; this
is the contribution to the rate described in Secs. I and
II as the interference between the allowed and second-
forbidden matrix elements. By looking at (3.7a), and
understanding that the wave function has been selected
to be spherically symmetric in the directions of p, it is
clear that this contribution to the rate must be of order
[e+v[E„' [e+v[M '(10—' compared to the con-
tribution coming from the square of the allowed matrix
element. It is thus ignored in the remainder of this
paper. "

With the neglect of the second-forbidden contribution
just discussed, and also the other term of this order
coming from the second term on the right of the coeffi-
cient of Reb in (3.6), the substitution of (3.7) into (3.6)
leads to

dl' =dl'0( (1+2 Rea) [ 1+—'(rr')((M —M')' —
I e
['

—(M M' E.)' ,'p—[e[ (M——M—' ——E,))j
+(m/ME, ) Reb L1+x3(rv')

X((M—M')' —(e['—(M' M' E)'))) —(3 8—)

where p is the positron velocity and dI'0 is given by Eq.
(2.8). By comparing (3.8) with (2.7), it follows that

&.2= 3(rv')[ (M —M')' —[e['—(M—M' —E )'
——;P[e[(M M' E.)].—(3.9)—

The last three terms of (3.9) are given, for example, by
the third term on the right-hand side of Eq. (141.) in
Ref. 9.

The corrections to the rate indicated by a and b in
(3.8) are computed in Secs. V and VI.

IV. COULOMB CORRECTION

In this section we outline briefly the calculation of the
correction to the rate due to the use of a Coulomb wave
function for the emitted positron instead of a plane
wave. We wish to show that except for the small cor-
rection indicated by 5g in (2.7), and except for con-
tributions to the rate proportional to Zo. multiplied by
the square of the product of a lepton momentum and a
charge radius, the Coulomb correction is taken into
account by simply multiplying the rate calculated using
a plane wave for the positron by the Fermi function
F(Z,E,). We also want to provide the background for

' This correction to the rate has previously been included in the
nuclear structure corrections and is given, for example, in the
second term on the right-hand side of Eq. (142) of Ref. 9. In Sec.
VI we will run into the correction given by the 6rst term on the
right-hand side of this equation, which is the part of the inter-
ference with the second-forbidden matrix element explicitly
proportional to Zu. We will argue that it too can be ignored.

the interpretation of the nuclear structure corrections
calculated in Secs. V and VI.

The positron wave function p, which is a solution to
the Dirac equation containing the Coulomb potential,
can be written" in a multipole expansion:

y(x) = Q yA,.(x),
k=—oo (&0)

(4.1)

where k specifies both the angular momentum and the
parity, according to'~

and where

(k) 0)
= —k —1 (k (0),

(4 2)

4~(x): (I&l I&l)'"' """"'
~

x-+0
(4.3)

When the expansion (4.1) is used for g(x) in the matrix
element in (2.6), and the result substituted into (2.3)
to obtain the rate, the cross terms in [p[' involving
different values of k in (4.1) give zero when the inte-
gration over the directions of the positron is performed.
This fact and the limit (4.3) imply that contributions
to the rate coming from successively higher values of

[k[ involve two more powers of [e[ [x[ each time [k[
is increased by unity. From the form of (2.6), this means
that all the multipoles with [k [

& 2 in (4.1) contribute
to the rate in orders that are higher than, or equal to,
the square of the product of a lepton momentum and a
charge radius. In Sec. II we calculated the correction to
the rate of this order in the lepton momenta, but to zero
order in Zn, we are not considering carefully the order-
Zo. corrections to this small effect. Thus, with this
understanding, the expansion in (4.1) can be restricted
to the two terms with k =~1.

For & =&1, the multipoles in (4.1) have the general
form

y~, (x) =IF(Z,E,)J"p~g([e[ [x[,E„8i,Zn), (44)

where p+q is expanded as a power series in [e[ [x[, and,
in view of the above discussion, only the constant term
and the term linear in [ e[ [x [

need be retained; F(Z,E,)
is the Fermi function. The terms linear in e [x[ in
this expansion and the terms linear in [vl x, which

occur in the expansion of the exponential in (2.6),
contribute corrections to the rate proportional to

Znl e[ (rr) and Zn[v[ (rr); that these corrections must
be multiplied by Zn follows from the fact that there are
no corrections of this kind to zero order in n, as calcu-
lated in Sec. II. Since F(Z,E,) ~z 01, it follows from
the form of (4.4) that if these terms proportional to
(rr) in the rate are calculated to first order in n, and if
this result is multiplied by F(Z,E,), then all the higher-

"M. K. Rose, Eetutimstic E/ectron Theory (John Wiley 8z Sons,
Inc. , New York, 1961).
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order-in-o. contributions of the Coulomb potential are
correctly taken into account. But Figs. 1(b)-1(d)
include all the electromagnetic corrections of order 0,,
including the Coulomb correction. Thus, we can ignore
the (rr)-dependent corrections coming from the square
of the matrix element in Fig. 1(a), compute them in the
matrix element of Fig. 1(c) by using a plane wave for
the positron, and then multiply the resulting contri-
bution to the rate by F(Z,E,).

The part of the rate which results from keeping only
the constant terms in the expansions of p+~ in (4.4)
contributes the correction indicated by bc in (2.7).This
turns out to be""

r.
l (1 Z2+2)1/2 1) (4.5)

and is given, for example, by the 6rst term on the right-
hand side of Eq. (141) of Ref. 9.

We have seen that except for the correction (4.5), and
except for Zo. corrections to terms quadratic or higher
in the lepton momenta, the effect of the Coulomb
potential is simply to multiply the rate calculated in its
absence by F(Z,E,). Thus, in the remaining sections,
we will use a plane wave for the positron.

V. RADIATIVE AND STRUCTURE CORRECTIONS

In this section and the next, we consider the electro-
magnetic corrections indicated in Figs. 1(b)-1(d).These
will be separated into two parts: the part which con-
tributes to zero order in the lepton momentum and the
part proportional to the product of a lepton momentum
and a nuclear charge radius —either the electric or the
isovector charge radius. The first of these two parts is
the radiative corrections which contribute the 5g to the
expression for the rate in Eq. (2.7). The second is the
electromagnetic nuclear structure corrections, which
give the terms indicated by b~, b~, and b~y. As we will

show, these structure terms modify the Coulomb cor-
rection to the positron wave function, as included by
8o and F(Z,E,) in (2.7), to account for the 6nite distri-
butions of electric and isovector charge within the
nucleus. The speci6c forms of b~, by, and bgy will be
evaluated in Sec. VI.

In the calculation of the radiative corrections, we will
take over the methods and results of Ref. 7; in fact, the
expression used for 8~ in (2.7) is the long term propor-
tional to n/min Eq. (6.8) o.f that reference. Here, how-
ever, we will encounter an additional Z-dependent term
(ignored in Ref. 7) which contributes to zero order in
the lepton momenta. With the help of the Appendix,
we will show that this extra piece is only the ZQ. part of
the Coulomb correction, which is already accounted for
to all orders in Za by the presence of 8o and P(Z,E,) in
(2.7). It will therefore be omitted, as it was in Ref. 'I.

The Feynman graph in Fig. 1(b) involves the order-n
part of the nuclear matrix element of the isospin
current. This matrix element is a four-vector described
by one invariant amplitude, sine" as discussed in

where j is the electric current and where the argument
of the wave function P is given by Eq. (3.2). Because of
the standard equal-time commutation relations among
the charge and current densities, ' it follows that

&.v..(&,p', P) = —(P'I v, l P), (5.3a)

&.v. (»P' P) = (P'I v I P) I:v.—v:+D.h —(5 3b)

where

D„(»p', p) = d'& &-'" *(p'
I 2'La„v„(o)J„(&)]I p). (5.4)

In the calculations below, the term in the square bracket
of (5.3b) will be ignored on the grounds that it con-
tributes to the matrix element only in order o.',. note also
that the pole terms, from which a q(r) dependence could
conceivably arise, cancel at q=0 between the two terms
in this bracket.

"See also G. Preparata and W. I. Weisberger, Phys. Rev. 1VS,
1965 (1967).

"We ignore the problems associated vrith the infrared diver-
gence—these are fully discussed in Ref. 7—and thus ignore any
6ctitious mass term in the photon propagators. A —ie (c —+ 0+)
has been suppressed from the denominator of all Feynman
propagators.

connection with Eq. (3.4)—the amplitude proportional
to the total lepton momentum (—=q=e+t) can be
ignored. This amplitude is a function of three variables,
which can be taken as p2—=3I2, q', and —(p+q)'
=M"; but since we are ignoring terms quadratic or
higher in the lepton momenta, these can be replaced

immediately by —p', 0 and —p' —2p q. Suppose the
amplitude is expanded through terms linear in q. Do any
terms develop where q is multiplied by a charge radius P

We will assume that the answer to this question is no,
and will therefore put q=0 in the calculation of the
matrix element in Fig. 1(b), becaus- as we stated in
Sec. I—we are assuming that dependencies on charge
radii arise only in the dependence of the invariant
amplitudes on the squares of the virtual masses carried
by the currents. That is, we assume that it is the singu-
larities in the channels with the quantum numbers of
the currents which cause the dependence on charge
radii.

Given that the matrix element in Fig. 1(b) can be
taken with q =0, we can employ the methods of Ref. 7

I see particularly Eqs. (4.6) and (4.7) and the Appen-
dix)28 to obtain"

fL(P P//)'j ~ —G
DRg = —

I
1+4'(8/BA') )u(v) (1—y~)

2E~ 4n'v2

d4k A'
~v-(~,p,p) (~), (5.1)

k' k'+h. '
where

v„„(u,p', p)—= i d ~e "'(p'Ir[-v„(o)~„(*))Ip), (5.2)
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The matrix element in Fig. c is where'

—' Z, —1)=Ll+A'(8/BA'))B(A', m')V (5.8)

()( — )2E„4rr'v2

k' k'+A. ' k' —2e k

B(A',m') =
2' 37S2

d4k A' (e k)(m'-e k)

k4 k2yA' k' —2e k

If we employ the identity

where

(5.2) but with the vector currentan
gyp

dA is thesameas . u

d b the axial-vector curre
The matrix element of Fig. ( ) is

4L(p —p~)') G,
2E, V2

T), v(e)
(5.6)= V),„+~i„

5 5 make use ofr of the integrand in 5.
th

states, the sum o
and (5.7) can be written as corn

X»(1+~) ()(p'IV. IP), (5 7) Ref. 7)

4L(p —p~)') i~G
I rV..(k,p', P) V..(k,p,p-))

42 k2 —2e A
~(v)(1—v5)—~b+c+d

d4k A' (e k)(m' —e»
+ l

1+—A'(8/BA') ) —— »
m2

kV„„(k,p,p)
k' k'+A'

4v v2

~. 'Iv lp)
k' k'+A. 'k' 2e k

AV„„(k,p,p) —2 „y
k4 k2 —e k

8

d4k A2

k„Ag„(k,p', p) v(e). (5.11)
k' k'+A'k' —2e k

(5.13)

imate the amplitudes Ii; byterms on the rig t-hand si e we can approxima eth
2 $2ortional to a lepton momentum,

l to the inverse of a p,l ed is proportiona o
P

the integral involve
'

p
'

o
um. However, as discusse i

4fv k')f(k')

k'(k' —2v)
ce the singularity as k —+ 0 is who y con a

v(k') f'(k')

this part of the amph . r

Z, (5.14)
interested in keeping erm

onl if they multiply a nuc ear c
n k' v

here fv and f a

se we are assuming t a

are the isovector an erise only from t e mom
w e

' el. Notethat t e a

charge radii arise on y
ce of the nuclear orm

f 5.12) is require o s

squared dependence o

r;ght hand side ofreplace V„„in the first three terms o

the first term an sihe rigroviding we retain t e co

p
i

s. That is, in the gene alfactors aat the current vertices. T a is, i
v—=—k p)

5 14) is replaced by
form for V„„given by (v=-

k „k„„)+v'5„,)pi(k', v)

M ~ (5.12) vergeiice.k k k 5 )F2(k v)+2(pvpv/v)MN'Qv ~ vej4 V
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AC(k —q)'). This follows from our assumption that the
only relevant q dependence of U„„is in the form factors.
The M~ ii& occurring in (5.12)—(5.14) is defined in

Eq. (3.3).
If the result .of substituting (5.13) and (5.14) into

(5.12) is expanded in powers of
~
k/p (, we need to retain

only the terms of lowest order. The justification for this
simplification is based on the following observations:

(1) The first three terms on the right-hand side of

(5.11) which we are considering are proportional to

lepton momenta, except for the contributions to the
integrals coming from the range ~k &

~
e~. Thus, for

these parts, the corrections of order k/p( are & ~e/p)

( e/M (
and are negligible.

(2) For the remaining parts of the integrals ~k~

&(r) ', so that ~k/p~ &M '(r) '. But these parts are
proportional to lepton momenta, and hence they can at
most be of order (q) (r)M—'(r)—'-(q)/M.
With this simplification the result of substituting (5.13)
and (5.14) into (5.12) can be written as

4P.P 1
+4ZP.P + +Cf (k')f(k') —»

k' —2p. k k' —2p k k'+2p k

1 l k„p„+k„p„-
)& (Z+-',)4p„p„+ +2p„p„

kz —2p k k'y2P k k' —2p k k'+2p. k)
(5.15)

with a similar expression for V„„(k,p', p), except that
fv(k') is replaced by AC(k —q)').

In (5.15) the kz in the denominators can be ignored

compared to 2p. k, because of the two arguments given
above. If this is done, the brackets proportional to Z
and Z+—,

' look like they vanish. Actually, because of the
—ie which has been suppressed, they are

=2~zr(2P k)—2p k —ze 2p k —ze

gran

= —~(k,)+O(lpl/M), (5.16)
M

The last two terms on the right-hand side of (5.15)
do not have the 5(ko) singularity. They are essentially
odd in k, and it is rather easy to check that they cannot
contribute to the first three terms on the right-hand side
of (5.11) in the order

( q( (r) or (e( (r). Therefore, this
part of (5.15) will be ignored also, and we are left with

4P.P
V„.(k&p,p) =MN ~

k' —2p k

4~i
+(Z+-', ) P P.Cfv(k') f(k') 1)~(ko) —

)
(5.18a)

3f r
and

4+i
+(Z+2) P.P Cfr((k —q)')f(k') —1)~(ko)

~
(5 18b)

f 4P.P.
where the term indicated by O(~ p (/M) can be shown. to V& (k&P &P) =MN'&vI

give a negligible contribution to (5.11), and is ignored
henceforth. If (5.16) is used for the bracket proportional
to Z in (5.15), it gives a contribution to the matrix
element in (5.11) equal to

AC(p —p~)') ZnGM
-Mw ~zz(~)(1 —vz)2Z„~'v2

d'k 2E,yp —k
i&(e), (5.17)

k' k' —2e k

ignoring terms coming from the space components of p,
since these will give corrections only of order p'M ' to
the rate. It is shown in the Appendix that the matrix
element in (5.17) is exactly the order-Zn correction to
the matrix element in Fig. 1(a), computed to zero order
in the positron momentum, which arises from using a
Coulomb wave function for the positron instead of a
plane wave. As discussed in Sec. IV, this correction to
the rate is already included by the presence of gg and
the Fermi function F(Z,E,) in (2.7). The second term
on the right-hand side of (5.15)—the term explicitly
proportional to Z—should therefore be omitted.

as the expressions for V„„to be used in evaluating the
first three terms on the right-hand side of (5.11).

To obtain the nuclear structure corrections, we
evaluate only the part of (5.12) which comes from the
second term on the right-hand side of (5.18). This
calculation will be given in Sec. VI.

The remaining part of the matrix element in (5.11)
gives the radiative corrections. By including the
brernsstrahlung rate, these corrections can be evaluated
by following the procedure of Ref. 7. In fact, except for
a numerically trivial difference, which arises since here
there is no 0 state to provide a Born pole term to the
calculation of the induced axial-vector correction, given
by the last term on the right-hand side of (5.11), the
radiative corrections are exactly the same as computed
in Ref. 7. Thus, with the understanding that M and M'
refer here to the initial and final nuclei masses, the
expression we use for the bii in Eq. (2.7) is the term
proportional to the u/zr in Eq. (6.8) of Ref. 7 (including
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the positive sign). The term —1.2X10 e in Eq. (6.8) and the part of (6.2) coming from the fv —1 can be
of Ref. 7 is not included in 5~, since it arose from the written as
axial-vector Born term.

4t:(P—P~)'j,
', G~&M-N'zen(Z+o)&&v)tt(&) (1—»)

VI. NUCLEAR STRUCTURE CORRECTIONS

The electromagnetic structure corrections to the
P-decay matrix element come from the part of the first
three terms of (5.11) which arises from the second terms
on the right-hand side of (5.18). If we indicate this part
of the matrix element with a superscript s and make use
of the identity

fvf 1=(f—1)+(—fv 1)+(—f—1) (fv —1), (6.1)

we obtain

4L(p P)z'—jn(Z+2) Gllf
5+c+d tlllz~ztt(v) (1—pe)2E„n'v2

d'k(2e PP 8(ke)

k'k M' k' —2e k

X((f(k') —1)+(f t (k —c)'j—1)

+(f(k') —1)(fvI.(k —V)'3 —1)} ~(e) (6 2)

Except for negligible corrections of order p2M ', which
we have ignored throughout the calculation, the first
term in the integrand of (6.2) can be replaced" by
2E,&e —A. By comparing (6.2) with the expression in
(5.17), and by referring to the Appendix, it becomes
evident that the structure corrections in (6.2) simply
modify the effects of the Coulomb potential, computed
for point electric and isovector charges, to take into
account the finite extent of these charge distributions.
The terms in (6.2) proportional to f 1, fv 1, and- —
(f—1)(fv —1) contribute, respectively, the corrections
indicated by 5z, bv, and 5zv in Eq. (2.7).

By expanding (6.2) out to first order in the lepton
momentum, and by noting that

Comparing these matrix elements with the general form
given in (3.1), it can be seen from the relation for the
rate in (3.8) that the matrix elements (6.4) and (6.5)
lead, respectively, to the following expressions for bg

and 5v in (2.7):
(6.6)

8v ——-,'n(Z+-,') (rv)L4E, +(m'/E. )+M—M'j. (6.7)

The expression for 8z in (6.6) can be compared with the
correction for a finite electric charge distribution calcu-
lated in Ref. 9 and displayed there in Eq. (139).These
two expressions are the same except for the term in
(6.6) proportional to m'E, ' which is absent in Eq. (139)
of Ref. 9; numerically, this difference is very small and
essentially insignificant. The correction for a finite
isovector charge distribution given in (6.7) is the same
as what has been obtained previously, ' as indicated by
the second term on the right-hand side of Eq. (141) of
Ref. 9.

To calculate the mixed correction given by the last
term on the right-hand side of (6.2), we take a general-
ized shell modeP' for f and fv'.

f=fv = [1—(1/18)k'(r')7exp( —ok'(r')) (6.8)

When the integrations are performed, we obtain for this
part of the matrix element in (6.2)

WHP pN)'j, —
-', GV2Mz tr-', n(Z+-,')L(r')/n-j"'u(v)

2E„

x(1—7")Hl&.+-'(tlf —~'))(P+P')+ 1'3 ( ) (6.9)

Comparison of this with (3.1) and (3.8) leads to

"dk 00—
Lf(k') —1)=2 dk f'(k')

0 k' 0

(6.3)
»v = —sn(Z+2) (&r'))'"

X/2. 268,+0.85m'/E. +0.28(M —M') j (6.10)

the first two terms on the right-hand side of (6.2) can be
expressed in terms of the isovector and electric charge
radii defined as in (3.5c). The part of (6.2) coming from
the f 1 in the integ—rand is equivalent to

4L(P —Pz)'3,
—,'G&2tM tr z-', n(Z+-,')(rz)tt(v)

2Ep
x(1—v5)L&.(P+P')+miff 3~(e) (6 4)

3'Note that by making this replacement we have ignored the
Zn part of the second-forbidden mtarix element mentioned in
Ref. 25.

for the mixed correction in (2.7).
The total structure correction is the sum of the cor-

rections 5„2, 5q, 5~, 5~, and 5~y given, respectively, in
Eqs. (3.9), (4.5), (6.6), (6.7), and (6.10).The correction
in (6.10) has not been included in previous calculations
of the nuclear structure corrections.

bzv is fairly large, equaling approximately —1.4%
for the decay with the largest Z. The fact that it depends
on Z and is negative is very significant, since it means
that the total structure correction, considered as a

» R. Hofetadter, Nucleon and Nucleon Structure (W. A. Ben-
jamin, Inc., New York, 1963).
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function of Z, increases more slowly than the structure
correction previously used. %e will see the effect of this
in Sec. IX.

VII. EFFECTS OF INTERMEDIATE
VECTOR MESON

In this section we discuss to what extent the calcu-
lations and results presented in the remainder of this

paper apply to a theory where the weak interactions are
mediated by an intermediate vector meson.

It was shown in Sec. VII of Ref. 7 that if the vector
meson is minimally coupled to the electromagnetic
field, then except for a universal, cutoff-dependent
renormalization which could be included in the defini-

tion of 6,"the radiative corrections in the intermediate
meson theory are the same as in the local theory,
providing the cutoff occurring in the latter is replaced by
the mass of the intermediate meson, Mg. Ke have
reviewed the arguments leading to this conclusion to see

if they can be extended to include terms linear in the
product of a lepton momentum and a nuclear charge
radius. It is straightforward to verify that no terms with

this kind of dependence on the lepton momenta have
been ignored in the steps associated with Eqs. (7.2)—

(7.6) of Ref. 7; and thus, just as in Ref. 7, except for
additional terms arising from the electromagnetic
corrections to the vector meson propagator, the order-n

radiative and structure corrections to the p+-decay
matrix element in the intermediate vector meson theory
are given by Eq. (5.11) with the cutoff A. replaced by
Ms. By referring to the discussion of Eqs. (7.7a)—(7.9)
of R.ef. 7, we can therefore conclude that all the electro-
magnetic corrections calculated in Secs. III—VI of this

paper can be made to apply to the theory with an
intermediate vector meson simply by replacing A

by Mg.
We should emphasize that this result is only true if

the vector meson is minimally coupled to the electro-
magnetic field. If the vector meson has an anomalous

magnetic moment

(g—1)eh/2m,

then there will be additional terms proportional to

(g —1) in both the order-a radiative and structure
corrections. 34

VIII. OPERATOR SCHWINGER TERMS

It is shown in Appendix D of Ref. 7 that the presence
of operator Schwinger terms in the commutators of the
weak and electromagnetic current densities does not
affect the radiative corrections to zero order in the
lepton momenta, except for a presumably small ( 0.1%%uz

in ff value) modification in the term involving the
derivative with respect to h.' in Eq. (5.11).The argu-

"A. Sirlin, Phys. Rev. Letters 19, 877 (1967).
'4 We thank Professor Ernest Abers for a discussion of this point.

ment leading to this conclusion indicates that the matrix
element in (5.11) applies whether or not Schwinger

terms are present. If they are present, the tensors V„„
and A„. occurring in (5.11) acquire "seagull" terms in

addition to the time-ordered products illustrated in

(5.2); but the relations in Eq. (5.3) remain valid.

The calculation of 5~ in Sec. V simply takes over the

result of Ref. 7, so that the limitation imposed by
Schwinger terms on this part of the calculation is as

mentioned above. The calculation of the structure
corrections 5~, 5y, and 5@y given in Secs. V and VI
makes use only of (5.11) and the Born approximation
for V„„expressed in terms of the nucleon from factors—
neither of which is affected by the presence of operator
Schwinger terms. Thus, the possible existence of these
terms in the current commutators has the same in-

Quence, or lack of it, on the calculations given here as

they do to the results for the radiative corrections
obtained previously.

Let us note, however, that if we had not restricted the
calculation of the corrections proportional to lepton
momenta by retaining only those parts also propor-
tional to a nuclear charge radius, the Schwinger terms

would have had a further effect; in fact, there would be
additional cutoB-dependent corrections with coefficients

depending on the lepton momenta. "

The experimental half-life is given by Eqs. (2.7)
and (2.8),

62 ] M

t x' ln2
dZ. ~6~x,Pr m' Z,)—~(Z,—Z,)

X(1+&,+&c+&v+&zv+&z), (9.1)

where we have replaced the isospin Clebsch-Gordan
coeKcient, Mzz of Eq. (3.3), by v2 as is appropriate
for I=1 decays. The integral in (9.1), with only the
correction bo, is called f, :

dx x(x' —1)'I'

&&L(M—M')/m —x$'(1+bc)F(Z,x), (9.2)

Gmft = (m' ln2)/m', (9 3)

and G will be universal if ft is constant for all decays.
The corrections are given by Eqs. (3.9), (4.5), (6.6),

(6.7), and (6.10). The radiative correction 8~ is given

by Eq. (6.8) of Ref. 7. 8z depends on p (=
~
e~/E, ) and

E, and thus involves an integral over F(Z,E).However,
over most of the range of integration, p is close to 1, so

the expression for 8g can be evaluated in this limit. ~

The integrand still involves 8,but the integral has been

and the corresponding integral including the corrections
is called f Then.
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h(ft) 3n - Mu= —(1+2Q) ln——
fl 2sr 30 BeV

30 BeV
+(2Q ——,') ln

iV
(9.5)

In particular, if sine, is as large as 0.25, Q=s is in-
compatible with muon-"0 universality unless M~ is
increased by more than a factor of 10.A variation in the
values of Q and Ms would not affect the uniformity of
the ft values between various nuclei but would simply
shift all the fl values by the same amount, as indicated
by Eq. (9.5).In what follows, we will take Ms ——30 BeV
and Q=-,'.

b, s, bz, by, and bury depend on the electron energy, and
to evaluate them we need the integrals

(ss—ss' ) t na

~ fs/fo'=—
0 1

.fa/fo-

Lx' —1j't 'L(M —M') —a]'
F(Z,*)(1+&,). (9.6)

The integrals (9.2) and (9.6) and the integral in Btt

were evaluated numerically using the tables of F(Z,E,)
X(1+bc) prepared by the Bureau of Standards. s' B„s,

s' Tables for the Analysis of Beta SPectra, National Bureau of
Standards Applied Mathematics Series No. 13 (U. S. Government

done with the result
i

n Mp 3Ig
btr

———3 ln +6Q ln —5.10, (9.4)
2sr 2(M M—') ster,

where, in a 8'-meson theory, M~ is the mass of the S'
meson. In a local theory, 3f~ is the cutoff which is
usually called h. . Q is the average charge and ster, is the
mass of the A~ meson.

There are really two tests of universality; one is the
consistency of the nuclear fl values as mentioned above,
and the other is a comparison of the coupling constant
as deduced from nuclear decay with the coupling con-
stant of muon decay. For this latter test it is best to use
'40 decay because the uncertainty in the corrections is
smallest for low Z. A comparison of "0and muon decay
was made in Ref. 7, but that was before the recent
change in the experimental value of the positron end
point energy. Because all the corrections except bz are
small for '40, its ft value really depends only on Q and

M~, and these can be adjusted to give muon-'40
universality. The values Q=sr and Ms =30 BeV give
essentially exact universality if the sine of the Cabibbo
angle is taken to be 0.22.'o Q = s is the value appropriate
for currents composed of quark fields. The changes in

Q and Ms necessary to maintain this universality for
different choices of 0, can be computed easily from

bg, by, and b~y also depend on the mean-square radius
g(rs), which we have taken to equal 1.03A'ts F.s'

Using all of this, we have calculated the uncorrected
ft value, the corrections, and the corrected ft values for
the seven decays where the half-life and the positron
end-point energy M —M' have been accurately mea-
sured. 3' The results are given in Table I. The experi-
mental errors are taken from Ref. 4. To discuss the
consistency of the nuclear fl values, it is helpful to plot
the results together with the experimental uncertainty.
This was done for one value of the effective nuclear
radius in Fig. 2. The effect of changing the nuclear
radius will be discussed below. For this best case the ft
values are roughly constant to within the experimental
errors. "Al at Z= 12 is a bit low but not so low as to be
considered anomalous. 34C1 at Z=16 is quite large but
the experimental error is large. In short, "Al and 'Cl
do not seem to be consistent with each other but either
one could be consistent with the other Ave.

2'Al is no longer anomalous, for two reasons. One is
the decrease in the experimental value of the end-point
energy of '40 which makes ft of 'eO smaller and thus in
better agreement with "Al . The second reason is our
additional correction of b~y, which is negative and has
the result of making the total correction increase more
slowly with Z. Thus the ft values of the large Z decays
are not pushed up as far relative to the fl value of "Al .
The effect of bury is partially balanced by the omission
of the recoil corrections previously used, which are
negative.

As has been mentioned, the results of Table I and
Fig. 2 use the tables of the Fermi function as put out by
the Bureau of Standards. 3' These tables evaluate
F(Z,E,) at the nuclear radius corresponding to a uni-
form charge distribution 8=1.37A'l3F. It has been
pointed out that there is a large uncertainty as to what
radius should be used, and therefore it has been pro-
posed that a more reasonable procedure would be to
de6ne F(Z,E,) in terms of the wave function at r=0,
not r=R.I~ Clearly there is an ambiguity as to what
radius to use in F(Z,E,). For this reason we have in-
cluded a second set of results in Table I, where F(Z,E,)
is evaluated at an effective nuclear radius of 1.20A "3F.
The results can be easily adjusted for different R by
using the fact that F(Z,E,) depends on R as R'&& '&

where 7= (1—Z' )'crtOsur corrections, which depend
on the nuclear radius b„a, b~, by, and bury, do not share
this ambiguity, since they depend explicitly on the
root-mean-square radius.

Printing Otiice, Washingron, D. C., 1952). These tables tabulate
(1+by)F(s,E,), as defined in the text. Thus the correction bg is
included in fot and should not be counted again as an additional
correction. However, this double counting of bg was made in an
original version of this paper, and we believe this same mistake
was made in Ref. 9.

I' In addition to these seven decays, the decay of "C has been
measured carefully but the experimental error is still too large for
it to be included here.

3~ H. Behrens and W. Biihring, Nucl. Phys. A106, 433 (1968).
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FIG. 2. Nuclear ft values for an effective

nuclear radius of 1.37A'" F showing the
experimental error.
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The effect of changing the radius used in F(Z,F,) is
to change the ft value by a correction of order Z'a', and
therefore it is impossible, without a calculation of all
the Z'o.' corrections, to determine what radius should
be used. It is interesting to notice, however, that our
correction agrees exactly with the same corrections
derived by expanding the position wave function' only
if the radius at which the wave function is evaluated is
equal to (r). LCompare i)„s+()v with Eq. (1) of Ref. 14.j

We also notice that the total correction is very
insensitive t.o changes in the experimental values used
for the radii so long as the radius used in F(Z,F.,) and
the radius used in ()„s+5s+()v+()~v both change in the
same way. This is because the effects of the two changes
on the ff values almost cancel.

There is much more still to be done on this problem.
Theoretically we need to know the Z'n' corrections as
we have just discussed. If a complete calculation is too
tedious, we at least need an estimate of their magnitude
and sign. Experimentally, we need to reduce the error
in "Cl and, of course, in the decay of "C. Accurate
measurements of decays other than those we have
treated would also be most interesting.
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1(x)=(e+l~r exp(uz d'yllyll Vvg)4(x) lo), (A1)

where (e+
~

is a plane-wave positron state and )P(x) is a
free field for the electron-positron system. Expanding
the exponential in (A1), the order-n part of P(x) is

1
Q (x) =ic(Z d'y(e+

~
Tgyo)P(y))P(x)] ~

0)—. (A2)

Expanding ~y~
—' in a Fourier series and applying the

usual Feynman rules leads to

d'k m —k+e
y()t)(e)e '( ") " (A3)

k' k' —2e k

If this expression is subltituted into (2.7), we obtain
(a=P P')—

o.GZAI
5R~ — lV)v')vQ(v) (1 rs)+4

m'V2

d'k m —0+e

, &Hp & p~)'j- —
XV4~(e) fvg(V —&)']

jV
(A4)

where p is given in Eq. (3.2).

APPENDIX

In this appendix we show that the expression in
(5.17) is the order-Z(r part of the matrix element (2.7)
computed to zero order in the charge radii.

The positron Coulomb wave function P(x) occurring
in (2.7) is
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In (A4) the dependence of the wave function g on le

can be ignored, sine" as discussed in Sec. II—the
nucleus is well localized compared to its charge radius,
and f is therefore essentially constant over the range of
k for which the form factor fv is appreciable. Also, we
can replace A~I, by E„.Once these replacements are
made, we can write

and note that it is the first term in (AS) which gives the
Coulomb correction to zero order in the isovector charge
radius. Retaining only this term in (A4), and employing
the identities

+40+4 A
p (A6a)

(A6b)74(rtt+e)'y4v(e) =E,&ev(e),

fv 1+(——fv 1)—
the matrix element in (A4) becomes identical to the

(A5) expression in (5.17).
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Magnetic Radiation in X+ ~ ~+~'~ Decays*

G. V. DAsst
Rutherford Laboratory, Chilton, Berkshire, United IA'ngdom

AND

A. N. KAMaL
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An estimate of the strength of the magnetic radiation term in E+—+ 7i-+~'y decays is made by relating it,
to the ~+ decay rate and using the Veneziano model to give the off-mass-shell dependence of the amplitudes.
We find this strength to be small ( ~

x
~
&0.14) and practically constant in the kinetic-energy range 55 Mev

&T' +&80 MeV. The results are discussed in the light of K+ —+ 71.+71'y data, particularly for possible CI'-
violating sects.

~ 'HE possibility' of CP-noninvariant effects in
E+—+ x+&'y decays has led to considerable

experimental' ' and theoretical' ' activity. The results
of extensive experiments at 8rookhaven National
Laboratory, CERN, and Berkeley are expected to be
available soon. Since the possible charge asymmetries in
E+~x+x'p decays arise from interference between
inner bremsstrahlung amplitude and the direct ampli-
tude, ' it would be desirable to have a reliable theoretical
estimate of the strength of the direct amplitude in order
to get an estimate of the expected asymmetry. In the
present work we have estimated the strength of the
magnetic part of the direct amplitude by relating the
amplitude for K+ —+ z+x'p to the 7-+ decay amplitude
which we take from experiment. If one sums over the

* Work supported in part by the National Research Council
of Canada.

$ On attachment from the Atomic Energy Research Establish-
ment, Harwell, Berkshire, United Kingdom.
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photon polarizations, the charge asymmetry is directly
proportionali to Imx, (x, is the strength' of the direct
electric amplitude). Though we cannot estimate the
strength x, of the direct electric term, a knowledge of
the strength x of the direct magnetic term is important
for at least two reasons: First, attempts to determine g,
from the present experimental data would no longer
require arbitrary assumptions about x, and second, if
the polarizations are observed, one may observe effects"
duetox .

Using the Veneziano model" to give the off-mass-shell
extrapolations of various amplitudes, Lovelace" has
been able to reproduce many of the results known from
experiments, PCAC (partial conservation of axial-
vector current), and/or current algebra. In particular,
considering the pole-model type of diagram shown in
Fig. 1 (symbol A in this diagram stands for a strange-
ness-zero 0 system, not just a pion), I.ovelace was able
to reproduce the experimental decay spectra in g —& 3z.
and K~3w decays. However, the process shown in
Fig. 2 would also contribute"" to these spectra. It has

' In fact, if the Gnal-state interaction factor is unfavorable for
appreciable asymmetry after polarization summation, it could be
very favorable for detecting polarization asymmetry effects due
to x . See Ref. 1, Eqs. (7) and (8).' G. Veneziano, Nuovo Cimento 5'7A, 190 (1968)."C.Lovelace, Phys. Letters 288, 264 (1968).
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Cimento 63A, 574 (1969).
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