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An analysis of the recently measured photon-proton total cross sections is performed. Smooth fits to the
cross sections are obtained and used to calculate, by means of the forward dispersion relation, the real part of
the spin-averaged forward amplitude. The resulting predictions for the real part are given. At high energies,
the fits to the present total cross-section data, together with the calculated real part, suggest the presence
in the high-energy behavoir of an extra real constant in addition to what one would have predicted from
Regge theory and the high-energy behavior of the imaginary part. This extra real constant, which is consis-
tent in sign and magnitude with the Thomson limit, —a/M, could correspond to a fixed pole at J=0 in
Regge-pole language. Possible ways to test the forward dispersion relation are discussed.

I. INTRODUCTION

N the 15 years that have passed since the introduc-
tion of dispersion relations into elementary-particle
physics, originally within the context of quantum field
theory, a large literature has grown up on their theo-
retical basis, on extensions and applications to new
processes, and on their comparison with experiment.
While first proposed for the amplitudes in forward
Compton scattering by Gell-Mann, Goldberger, and
Thirring,! dispersion relations were soon written down
and proved, with varying degrees of rigor, for forward
pion-nucleon scattering, other forward amplitudes,
various off-shell amplitudes, and vertex functions, and
for nonforward amplitudes.? These integral relations
between the dispersive and absorptive parts of the
scattering amplitude have been most thoroughly tested
experimentally in the case of forward pion-nucleon
scattering. Starting with the work of Anderson et al.3
in the resonance region and proceeding through the
recent high-energy measurements of the real part of the
forward amplitude and its comparison with the pre-
dictions of the forward dispersion relations by Foley
et al.,* the pion-nucleon dispersion relations have been
subjected to extensive testing by comparison with both
low- and high-energy experiments.

While all these tests in strong interactions have been
successful, somewhat surprisingly the first such relations
to be written down, those for forward Compton scatter-
ing, are still essentially untested. First, this is because
the imaginary part of the forward Compton amplitude,
in the form of total photoabsorption cross sections, has
not been systematically measured until this past year.

* Work supported by the U. S. Atomic Energy Commission.

T National Science Foundation Predoctoral Trainee.

1 M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys.
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2 See, for example, the rapporteur talks by M. L. Goldberger
and S. Mandelstam, in Tke Quantum Theory of Fields, Proceedings
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science Publishers, New York, 1961), pp. 179-196 and 209-224.
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charge exchange by W. Risk, Phys. Rev. 167, 1249 (1967), and
references therein.

4 I%) J. Foley et al., Phys. Rev. Letters 19, 143 (1967); 19, 857
(1967).
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Previously, one only had the results of integrating the
single-pion photoproduction differential cross sections
over all angles to obtain the total cross section near
threshold and in the first resonance region (say, up to
1.300-GeV center-of-mass energy) and some scattered
bubble-chamber measurements at higher energies.
Second, the real part of the forward amplitude for
Compton scattering was, and still is, unmeasured in
both magnitude and sign.

Within the past year this situation has changed
rather dramatically. We now have good systematic
measurements of the unpolarized total photoabsorption
cross section (and therefore the imaginary part of the
spin-averaged forward Compton amplitude) from
threshold up to laboratory photon energies of almost
20 GeV. This permits one to calculate rather accurately
the real part of the spin-averaged forward amplitude
using the dispersion relation originally proposed by
Gell-Mann, Goldberger, and Thirring.! The result of
this calculation can be compared in magnitude with
forthcoming measurements at SLAC of the forward
Compton-scattering differential cross section. Further-
more, it now appears possible that by observing the
interference between the known Bethe-Heitler ampli-
tude for producing electron-positron pairs and the
Compton contribution to pair production, both the sign
and magnitude of the real part of the Compton ampli-
tude may be determined.’

With all this in mind, we have done a careful analysis
of, and fit to, the total photoabsorption cross-section
measurements, and have calculated the real part of the
forward Compton amplitude, both to look for places
and ways to test the forward dispersion relation and to
investigate certain questions of theoretical interest
concerning the asymptotic behavior of the real part. In
Sec. II we discuss kinematics, the definition of the
relevant amplitudes, and the corresponding dispersion
relations. We follow this with an analysis of, and fits to,
the total photoabsorption cross sections at low and high
energies in Sec. II1, in preparation for the actual calcu-
lation of the real part of the spin-averaged forward
amplitude in Sec. IV using the dispersion relation. The

§S. J. Brodsky et al., Phys. Rev. (to be published).
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results of this calculation lead us to a discussion of the
probable existence in the high-energy behavior of the
forward amplitude of an extra real constant part in
addition to what one would have predicted from Regge
theory and the behavior of the imaginary part. This
could be due to a fixed pole at J=0 in Regge language;
such a real constant part is detectable both by a direct
calculation of the real part of the amplitude using the
dispersion relation, and by certain sum rules discussed
in Sec. V. Finally, conclusions and suggestions for
further experimental measurements are given in Sec. VI.

II. FORWARD COMPTON AMPLITUDES

If the S-matrix element for the process
v (k)4 N (p1) — v (k2)+ N (p2)

is written as

Spi= Bﬁ+(27r)4i5(4)(p2+k2—ﬁl—k1)

MNZ 1/2
x( > i(p)Tu(py), (1
WrabnFnEn w(pa)Tu(ps), (1)

where %; and p1 (ks and p») are the four-momenta of the
initial (final) photon and nucleon, respectively, then the
differential cross section in the center-of-mass frame is
given by

do/dQe.m.= | fo |2, )

with the center-of-mass scattering amplitude f¢™ being
Jom = (Mu/4xW)a(p2) Tu(ps) . ©)
Here I is the total center-of-mass energy;
W2= (p1tk1)*= (pot ko).

If we specialize to the case of forward scattering, then
there is only one remaining continuous variable on
which the scattering depends. We take this to be W as
defined above, or instead of I7/, we often use the energy
of the photon in the laboratory, », which is related to
W by

v=(W2—Mn?/2My. 4)

It will, in fact, generally be convenient to work in terms
of laboratory quantities. To this end, we define the
forward scattering amplitude in the laboratory, f(»),
which is related to the center-of-mass amplitude by a
simple factor of W/My:

)= W/Mx) fer-. ©®)

Written out between the Pauli spinors of the initial and
final nucleons, which are at rest in the laboratory, f(»)
must have the form!

) =X Lf()e* - ertio- (2" Xe) () i, (6)

where ¢ and e, are the polarization vectors of the initial
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and final photons, respectively. Clearly, if we average
over nucleon spins in the amplitude, we are left only with
f1(»), which we therefore call the spin-averaged forward
amplitude. The amplitudes f1(v) and f»(v) are separable
if we are able to do experiments with polarized photons:
f1(¥) corresponds to parallel and f,(») to perpendicular
linear polarization vectors of the initial and final
photons, respectively.

Another way of discussing the relationship between
fi and f, is to relate them to the two independent
helicity amplitudes for forward scattering. If the photon
and proton spins are parallel (i.e., photon helicity =1,
nucleon helicity = —1% in the center-of-mass frame), then
we have

To@)=W/My) frgge™ )= 1)~ fo(»), (7a)

while if the spins are antiparallel (i.e., photon helicity
=-+1, nucleon helicity=-+% in the center-of-mass
system), we have

Ja@)=W/Mx) fyo™ ()= p)+ (). (Tb)

It is the amplitudes f, and f, which are then related
simply by the optical theorem to the total cross sections
for photon-+nucleon — hadrons (we work only to order
¢? in the amplitude) when the photon spin is parallel or
antiparallel to the nucleon spin:

Imfp(v)= (v/47)op(v), (8a)
Imfo(v)= (v/47)o.(v). (8b)

Thus we have
Imfi(v)= (v/47)3[0.(»)+0op(»)]= (v/4m)or(v), (9a)

where o7 (») is the spin-averaged total cross section, and

Imfo(v)= (v/4m)3[oa(v) =0, (»)]. (9b)

Again, in the absence of both a circularly polarized
photon beam and a polarized proton target, it is only
the combination of cross sections corresponding to
Imfi(») which is measured experimentally. Note also
that while Imf,, Imf,, and therefore Imf; are positive
above threshold for pion photoproduction, Im f, may be
either positive or negative there.

In the absence of polarized targets or beams one
simply measures the differential cross section

(djz;>0=0°= | fO) 2= A0 4] £20)]? (10a)
or
do T )
ol =l
_ [ox()

m
+ D Refit)]?
o V2| efi(v)|

+ 1S, (100)
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where ¢ is minus the square of the four-momentum
transfer. We have explicitly isolated the term propor-
tional to [or(¥) %, which has now been systematically
measured experimentally, to emphasize the remaining
terms on the right-hand side of Eq. (10b), which are
uncalculated and unmeasured up to now.

If we know their imaginary parts, we may calculate
Refi(r) and Ref.(v) by means of dispersion relations.
Using the fact that f1() is even and f3(») is odd under
crossing (i.e., v — —v), we have!

p2 < dy'? Imfi(y)
Refi(v) = f1(0)+—P / ——~  (11a)
w S V2= V2
and
2 r°od
Refo(v) = —P/ Imfo(v'). (11b)
T Jyy V2—0?

Both integrals start at vo=m+m.*/2M n, the threshold
for photoproducing single pions. In hopes that we can
get away without a subtraction, and since we know of
no experimental or theoretical reason for one, we have
written an unsubtracted dispersion relation for fi(v).
The amplitude fi(»), on the other hand, requires a
subtraction, both because of the observed behavior of
Imfi(») for large » and because an unsubtracted dis-
persion relation for fi(») would predict f1(0)>0,
contradicting the Thomson limit, f1(0)=—a/Mn. We,
in fact, know from rather general theorems®? that

as v —0,
f1(») = f1(0)=—a/Mn, (12a)
the Thomson limit, while
f2(V)/v—_) f2l(0)= _a(#anom)z/ZMN2. (12b)

The second result, Eq. (12b), together with the dis-
persion relation (11b), gives rise to the sum rule

4MN2 il dVI
(llvanom)2 = / —,—2 Imf2(V,)

T Jyy V

M2 red/
My [ —Lop(0)—0a()].

2% Jyy v

(13)

This is just the Drell-Hearn-Gerasimov sum rule,?
which appears to be satisfied when saturated with low-
lying resonances.’ Unfortunately, the lack of direct

6 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433
(1954); F. Low, ibid. 96, 1428 (1954).

7 We shall use a notation where a=¢?/4r=1/137. All energies
are in GeV, with M y=0.94 GeV, m,=0.14 GeV in all numerical
computations.

8S. D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966) ; S. B. Gerasimov, Soviet J. Nucl. Phys. 2, 430 (1966).

9Y. C. Chau, N. Dombey, and R. G. Moorhouse, in Proceedings
of the 1967 International Symposium on Electron and Photon
Interactions at High Energies, SLAC, Stanford, California, 1967,
p. 617 (unpublished); G. C. Fox and D. Z. Freedman, Phys. Rev.
182, 1628 (1969). It should be noted that although the sum rules
for the proton or neutron separately appear to be satisfied, their
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experimental measurements of Imf,(») means that one
must construct it from partial-wave analyses of wV
(and if one is brave enough, wA) photoproduction.®*?
While this is probably adequate for calculating f»'(0),
the difficulties and ambiguities in this procedure even
in the resonance region presently make evaluation of the
dispersion relation for f(») a meaningless exercise for
values of » greater than a few hundred MeV. We will
return to the question of measuring f»(v) in the final
section, and turn our attention now to the evaluation
of the dispersion relation for fi(v), which, with the low-
energy theorem value for f1(0), now reads

2 0 d /2 I /
Ref1(v)=~Mi+V_P v ImA)

/2

N T Sy Vi v
or (14)
a v? © dy'
Ref1(l') =— + _P/ O'T(V/) .
My 2m% J,, v2—v

III. FITS TO TOTAL PHOTOABSORPTION
CROSS SECTIONS

In order to carry out the principal-value integral in
Eq. (14), we need the total cross-section measure-
ments'>™ shown in Fig. 1. In fact, we need them in a
locally smoothed form in order to carry out the limiting
procedure inherent in the definition of a principal-value
integral, and furthermore, at least in principle, we need
to know the cross sections out to infinite values of the
energy.

At least this last difficulty is not difficult to overcome
if we are willing to assume that at high energies the
behavior of total cross sections with energy is smooth
(say, a sum of powers of » to good approximation). In
particular, this is the case in Regge-pole theory where
at high energies one writes for the imaginary part of the
amplitude at ¢{=0:

T fi(r) = (ei/ Ao, (15)

so that
or(v) =2 cap*i®-1,

2

(16)

where the c¢; are constants and the «;(0) are the =0
intercepts of the Regge trajectories a;(f), which can be
exchanged in the ¢ channel. Such parametrizations give
very good fits to the energy dependence of purely
hadronic total cross sections (like 7%p, K*p, etc.). There
it is found that the leading isospin=0 and 1 trajectories

difference (which involves an isoscalar-isovector photon inter-
ference) does not appear to be satisfied according to Fox and
Freedman.

©E. D. Bloom e al., Stanford Linear Accelerator Center
Report No. SLAC-PUB-653, 1969 (unpublished).

uD. O. Caldwell et al., Phys. Rev. Letters 23, 1256 (1969) ; and
D. O. Caldwell (private communication).

2 H. Meyer et al., DESY reports, 1969 (unpublished).

18 J. Ballam ef al., Phys. Rev. Letters 21, 1544 (1968).

4 J. Ballam et al., Phys. Rev. Letters 23, 498 (1969).
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Fic. 1. Total photoabsorption cross section o7 (v) for y-p — hadrons measured in recent experiments (Refs. 10-14).
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[those with @;(0)>07] are the Pomeranchukon (cor-
responding to diffraction scattering and constant total
cross sections) which has ap(0)=1 and the P’, 4,, p, and
w trajectories, all of which have a(0)~0.5 as determined
either from drawing the usual linear Regge trajectories
(with slope =~1/GeV?) through the observed physical
particle positions or from fits to the:hadron-hadron
total cross sections at high energies}%F or Compton
scattering only #-channel trajectories Jwith C=+41
contribute, so we can restrict our attention here to only
the P’ and A4, trajectories in addition to the Pomeran-
chukon. We take ap(0)=1 and the effective intercept
at =0 of the P’ and 4, to be %, i.e., ap (0) =4, (0)=3.

We have therefore made fits to the high-energy data
(v>2 GeV) of the form

ar(v) =citco/v'2.

In Fig. 2 we see the high-energy total cross-section data
from the extrapolation of electron scattering to ¢*=0.
They are plotted against 1/»'/2 so that if Eq. (17) is to
be a good fit to the data points, they should fall on a
straight line. In Fig. 2 the solid line represents or(»)
=107.5+64.0/»/2, which is a best fit statistically of the
form of Eq. (17) to the data from the extrapolation of
electron scattering. In Fig. 3 we have the data from the
direct measurements of the counter and bubble-

an
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F16. 2. High-energy total photoabsorption cross sections (Ref.
10) from the extrapolation of inelastic ep scattering to ¢2=0
plotted versus 1/»!/2. The solid line is a best fit to these data of the
form or(v) =c14-ca/v'’2, with ¢;=107.5 ub, ¢;=64.0 ub, and »
measured in GeV. The dashed line is a similar fit to all the high-
energy data with ¢;=96.6 ub and ¢;=70.2 ub.

chamber experiments. The solid line is a best fit to these
counter and bubble-chamber experiments of the form
or(r)=99.2+59.6/v'/2, Also shown in Figs. 2 and 3 is a

2.0 GeV

- W

1 1 1 1 1 1 1

1
170 |-
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T ,50 I
Fic. 3. High-energy total photo- — B
absorption cross sections (Refs. 11-14) o 10
from counter and bubble-chamber \:}
measurements plotted versus 1/»'/2
The solid line is a best fit to thesedata -3 130 |
of the form 0‘T=61+Cz/1'1/2 with N
€1=99.2 ub, ¢3=59.6 ub, and » meas- <
ured in GeV. The dashed line is a b" 120 |
similar fit to all the high-energy data
with ¢1=96.6 ub and ¢2=70.2 ub.
110 |
100 |+
1
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15 See, for example, the review by V. Barger, in Proceedings of the CERN Topical Conference on High-Energy Collisions of Hadrons,

Geneva, 1968 (CERN, Geneva, 1969), Vol. 1, p. 3.
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dashed line, corresponding to a best fit to all the high-
energy data of the form or(v)=96.6470.2/»"/2

It is clear from the figures that the data from the
electron scattering extrapolation is systematically high
by about 8 ub compared to the other data, but has about
the same slope as a function of energy. This is all well
within the quoted® 8%, over-all systematic error of
the electron scattering extrapolation. It is difficult to
know, however, whether the ‘“true” total cross sections
should agree with one of the present set of measure-
ments or another since each method of measurement
has different kinds of systematic errors associated with
it and an estimate of these errors is not always quoted
in the experimental papers. For this reason we have kept
three different fits of the form of Eq. (17) to the high-
energy (v>2 GeV) total cross sections in doing the
dispersion integral : a fit to the electron scattering extrap-
olation cross sections alone (labelled 4), a fit to the
counter and bubble-chamber measurements alone
(labelled B), and a fit to all the total cross-section
measurements (labelled A&B). If we were to show a
prejudice for one fit over another, it would be in favor of
the fit (B) to the counter and bubble-chamber measure-
ments which, when extrapolated to lower energies, joins
on better to the total cross-section measurements at the
end of the resonance region coming from both the elec-
tron scattering extrapolation to ¢*=0 and from the
counter and bubble-chamber measurements.

It is also to be noted that the size of the present
experimental error bars does not permit one accurately
to determine «(0) in a fit to the total photoabsorption
cross sections of the form o7(v)=ci+cw*@~1. While
values of «(0) equal to 0 or 1 are probably already ruled
out by the present data, fits with values of «(0) ranging
from 0.3 to 0.7 were tried and the resulting values of X2
of the best fit for each value of a(0) were not signifi-
cantly different. We thus have to rely on the much more
accurate hadronic total cross-section data to determine
«(0). This is no great misfortune, since: (1) the strong
interaction data are accurate enough to show that in a fit
of the form o7(v)=c1+cw*@1 that 0.3<a(0)<0.7 for
the P’ and A4,; (2) there is no reason to assume, in
contradiction to Regge-pole theory, that the value of
ap(0) or as,(0) changes in going from one process to
another; (3) a fit of the form of Eq. (17) is an excellent
fit to the photoproduction data, particularly the counter
and bubble-chamber data with small error bars in Fig.
3. In any case, the exact value of «(0) makes little
difference in the calculated values of Refi(») at low
energy and we shall return to the question of the
sensitivity of the calculation at high energy to the value
of a(0) in Sec. V.

Once we have a fit of the form of Eq. (17) to the high-
energy data, we use it to give us the total cross section
over the entire high-energy region for use in doing the
dispersion integral. We also join on to it the data in the
low-energy region, which we take to be from threshold,
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W=1.08 GeV (»=0.150 GeV), to a center-of-mass
energy W=2.01 GeV (»=1.68 GeV), where the syste-
matic measurements of o7(») in steps of 0.015 GeV in
center-of-mass energy by the electron scattering group
end. This includes the region of the four prominent
resonances in pion-nucleon scattering at W=1.236,
1.520, 1.690, and 1.920 GeV, respectively. To the total
cross sections determined by extrapolation of electron
scattering we have added the total cross-section data up
to W=1.32 GeV obtained by integrating single-pion
photoproduction data.®

We have then smoothed, again with the use of some
physics: We fitted these low-energy data to a sum of
Breit-Wigner resonance forms plus a polynomial back-
ground, demanding that at W =2.01 GeV the fit join on
smoothly to one of the high-energy fits discussed above.
Specifically, we used five Breit-Wigner resonance forms
and a sixth-order polynomial in (W-W yreshotd) to obtain
our best fits to the data. The masses of the first three
resonance forms were only roughly constrained (to
within £-0.100 GeV) to lie in the vicinity of the promin-
ent resonance bumps, and their widths were also only
roughly constrained (to be less than 0.5 GeV). The
fourth resonance was fixed with a mass and width of
1.920 and 0.200 GeV, respectively, since it otherwise
had a tendency to wander to lower energies. The fits
were improved if the fifth resonance mass was con-
strained to lie between 1.400 and 1.470 GeV, i.e., in the
region of the Roper resonance, in order to fit the
shoulder in the data on the low-energy side of the second
resonance. Otherwise all masses, widths, and strengths
of the resonances were left free to vary, as were all the
coefficients in the polynomial in W-W reshold.

The fit to the low-energy data which joins on to
or(v)=96.6+70.2/»'/2, the best fit to all the high-energy
data, at W=2.01 GeV (where or=151 ub) is shown in
Fig. 4. Obviously we have a very good (as statistical
tests also show) smooth fit to the total cross-section
data. Its stability is shown by the fact that changing the
form of the high-energy cross section from one of our
fits to another [so that at W =2.01 GeV, the energy at
which we join the low-energy to high-energy cross
sections, o7 (W= 2.01 GeV) changes by ~3%, or ~5ub]]
does not change the fit by more than 19, at any point
up to W=1.95 GeV. The fit is stable as well against
taking a lower degree polynomial to describe the back-
ground. Also the values of the resonance widths which
come out of the fit are in good agreement with the
accepted ones. Armed with our smooth fits to both the
low- and high-energy total cross sections, we are ready
to evaluate the dispersion integral.

18 R. T. Beale, S. D. Eklund, and R. L. Walker, California
Institute of Technology Synchrotron Laboratory Report No.
CTSL-42, 1966 (unpublished). In the region of the first resonance
the total cross sections obtained from extrapolation of inelastic
ep scattering to ¢*=0 (Ref. 10) agree quite well with these single-
pion cross sections, which are a little higher below resonance and
a little lower above resonance.
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IV. CALCULATION OF REAL[JPART OF}f;(v)

For each of our three fits to the high-energy data we
have made a fit to the low-energy data which joins on
smoothly at W=2.01 GeV, and then have used the
total smoothed fit over the whole energy range from
threshold to infinite energy as input to a computer
calculation of the dispersion integral for Refi(»). We
have tested our program for doing the principal-value
integrals by taking explicit forms for the total cross
section for which we were capable of doing the principal-
value integral analytically and then comparing the
analytic solution with the computer calculation. In
particular,

| INTIN I NS SRR N NN N AN RNTI BT 1
1300 1450 1.600 1750 1.900 2.050 2.200
W (GeV)—
4 avo\ [ v? a2
_"Imfl(V)=¢7T<V)=(_><*“—1> , forv>yy
v v / \p?
=0, for v<vy (18)
where ¢ is a constant, leads to
Refi(v) = f1(0)
Voo v? al2 1
+—L—(cot%wa)<——1) + ——:] (192)
4w vo? sinira
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24

O
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Ref, (W) (Lb-GeV) —=

Fic. 5. Argand diagram of fi1(W) for forward photon-proton scattering where Refi(W) was computed using the dispersion relation,
Eq. (14). The input total cross sections are shown at low energy by the solid in line Fig. 4 and at high energy by the dashed line in
Figs. 2 and 3.

I I |

for v>vq and for y<wo. For a=% we find that our program gives
Refi(v) in agreement with the analytic solution to
Refi(v) = f1(0) better than 19} accuracy from »=0 to 50 GeV with the

exception of a small region near threshold (0.9v,<»

2\ af2
4 i‘f[_ 1 (1 e ) + 1 _:I (19p) <1L.vo) where dfi(v)/dv is discontinuous for the
4rl  sinra vo? sinira analytic solution and where the finite step size (=0.1v,)
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TaBLE I. Calculated values of Refi(») for forward photon-proton scattering. The input values of or(v)= (4n/v) Imfi(»)
[from the smooth fit at low energy which joins on to the fit (A&B) to all the high-energy data] as well as the resulting values
of Ref; (V‘)]—Refl(O) and Refi(») are listed in steps of 0.015 GeV in W up to W=2.01 GeV, and then in steps of 1.0 GeV in » up to

=20 Ge
Ref1 (V) Refl (ll)

w v or(v) Imfi(v) —Refi(0) Refi(y) w v ar(v) Imfi(») —Refi(0) Refi(v)
(GeV)  (GeV)  (ub) (ubGeV) (ubGeV) (ub'GeV) (GeV)  (GeV)  (ub) (ubGeV) (ubGeV)  (ub GeV)
0.945 0.005 0 0.0 + 0.0018 — 3.0 1.635 0.952 219 16.6 — 4.3 - 73
0.960 0.020 0 0.0 0.030 — 3.0 1.650  0.978 221 17.2 — 4.2 — 7.2
0.975 0.036 0 0.0 0.094 — 29 1.665 1.005 225 18.0 — 43 — 7.3
0.990  0.051 0 0.0 0.20 — 28 1.680 1.031 232 19.1 — 47 - 7.7
1.005 0.067 0 0.0 0.35 — 27 1.695 1.058 239 20.2 — 6.1 — 9.1
1.020 0.083 0 0.0 0.55 — 2.5 1.710 1.085 236 20.3 — 82 —11.2
1.035 0.100 0 0.0 0.82 — 22 1.725 1.11 219 19.4 — 938 —12.8
1.050 0.116 0 0.0 1.2 — 1.8 1.740 1.14 201 18.3 —10.3 —13.3
1.065 0.133 0 0.0 1.7 — 1.3 1.755 1.17 187 174 —10.1 —13.1
1.080 0.150 0 0.0 2.7 — 0.3 1.770 1.20 176 16.8 — 938 —12.8
1.095 0.168 75 1.0 3.7 + 0.7 1.785 1.22 168 16.4 — 93 —12.3
1.110 0.185 114 1.7 4.0 + 1.0 1.800 1.25 163 16.2 — 88 —11.8
1.125 0.203 145 2.3 4.5 + 1.5 1.815 1.28 159 16.2 — 8.2 —11.2
1.140 0.221 182 3.2 5.3 + 23 1.830 1.31 158 16.5 — 7.6 —10.6
1.155 0.240 233 44 6.2 + 3.2 1.845 1.34 158 16.9 - 7.0 —10.0
1.170 0.258 307 6.3 7.0 + 4.0 1.860 1.37 161 17.5 — 6.6 — 9.6
1.185 0.277 404 8.9 7.1 + 4.1 1.875 1.40 164 18.3 — 6.5 — 9.5
1.200 0.296 499 11.8 5.6 + 2.6 1.890 1.43 167 19.0 — 6.6 — 9.6
1.215 0.315 546 13.7 2.4 — 0.6 1.905 1.46 170 19.7 — 7.0 —10.0
1.230 0.335 522 13.9 — 13 — 43 1.920 1.49 170 20.2 — 7.6 —10.6
1.245 0.354 449 12.7 — 41 - 71 1.935 1.52 168 20.4 — 8.2 —11.2
1.260 0.374 366 10.9 — 54 — 84 1.950 1.55 165 20.3 — 8.7 —11.7
1.275 0.395 292 9.2 — 5.7 — 8.7 1.965 1.58 160 20.2 — 9.0 —12.0
1.290 0.415 235 7.8 — 5.2 — 82 1.980 1.62 156 20.1 — 89 —11.9
1.305 0.436 196 6.8 — 43 — 7.3 1.995 1.65 153 20.0 — 838 —11.8
1.320 0.457 172 6.3 — 31 — 6.1 2.010 1.68 151 20.2 — 8.5 —11.5
1.335 0.478 162 6.2 - 19 — 49 2.16 2.0 146 23.4 — 82 —11.2
1.350 0.499 164 6.5 — 0.7 — 3.7 2.55 3.0 137 32.6 — 9.5 —12.5
1.365 0.521 175 7.2 + 0.3 - 27 2.90 4.0 132 419 —10.9 —13.9
1.380 0.543 190 8.2 + 0.9 — 21 3.21 5.0 128 51.0 —12.2 —15.2
1.395 0.565 207 9.3 + 12 — 18 3.49 6.0 125 60.0 —13.3 —16.3
1.410 0.587 220 10.3 + 1.1 - 19 3.75 7.0 123 68.7 —14.3 —17.3
1.425 0.610 228 11.1 + 0.9 — 241 3.99 8.0 121 713 —15.3 —18.3
1.440 0.633 234 11.8 + 0.8 — 2.2 4.22 9.0 120 86.0 —16.3 —19.3
1.455 0.656 241 12.6 + 1.0 — 2.0 4.44 10.0 119 94.6 —17.2 —20.2
1.470 0.679 253 13.7 + 11 — 1.9 4.64 11.0 118 103 —18.1 —21.1
1.485 0.703 271 15.2 + 0.8 — 2.2 4.84 12.0 117 112 —18.9 —21.9
1.500 0.727 288 16.6 — 0.5 — 3.5 5.03 13.0 116 120 —19.7 —22.7
1.515 0.751 290 17.3 — 2.5 — 5.5 5.22 14.0 115 129 —20.5 —23.5
1.530  0.775 275 17.0 — 43 — 173 5.39 15.0 115 137 —21.3 —24.3
1.545 0.800 255 16.2 — 5.1 — 8.1 5.56 16.0 114 145 —22.0 —25.0
1.560 0.824 239 15.6 — 5.2 — 8.2 5.73 17.0 114 154 —22.6 —25.6
1.575 0.849 228 15.4 — 49 - 179 5.89 18.0 113 162 —23.2 —26.2
1.590 0.875 222 15.4 — 47 - 7.7 6.05 19.0 113 170 —23.8 —26.8
1.605 0.900 219 15.7 — 45 - 75 6.20 20.0 112 179 —24.5 —27.5
1.620 0.926 218 16.1 — 43 - 73

in our integration routine gives a computed real part
which is 209, less than the exact analytic solution.
The actual results for Refi(IW), computed from the
fits to the measured total cross sections [where at high
energies we use the fit (4 & B) to all the high-energy
data of the form or(»)=96.6+70.2/»2], are shown in
Fig. 5 for W<2.2 GeV in the form of an Argand dia-
gram. Clear circles due to the first, second, third, and
fourth resonances are seen. A close inspection also
reveals a “wiggle” near W=1.430 GeV due to the
shoulder on the low-energy side of the second resonance,
which could be due to the Roper resonance. A similar,
but smaller, wiggle appears near threshold due to the
large s-wave shoulder on the low-energy side of the first
resonance. Using a different fit to the high-energy total

cross sections leaves Fig. 5 essentially unchanged—the
only noticeable change is in the size of the loop due to
the fourth resonance and involves changes in Ref;(»)
of less than 109, for any given value of ». The numerical
values of the input total cross sections Im f; (W) and the
resulting values of Ref;(W) appear in Table I in steps
of 0.015 GeV in W up to W=2.01 GeV, and then in
steps of 1.0 GeV in » up to »=20 GeV.

Near »=0, we have from the dispersion relation that

o Imfi(v')

2
0o V

14 ™

. i) —£1(0) lfde'Z
lim——mm— =
»—0 y

1 * dy’
—ar().
2n% J,, v'?

(20)
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Ref, (v) (Lb-GeV) ——

-24 -

-26 -
-28

1 1 1 1 1 1

| 1
0O 2 4 6 8 10 12 14 Ie
v (GeV)——

F1c. 6. Values of Refi(») at high energy calculated using the
dispersion relation, Eq. (14), are indicated by the solid lines for
three different fits (4, B, and 4 &B) to the high-energy total cross
sections (see text). The real parts expected from Regge theory and
the observed behavior of the imaginary part of the amplitude are
indicated by the dashed lines for each of the three high-energy fits.

18 20

From our fit to the data we find
1 r~d/ 72 ub

— | —or0)=—", 21

272 J,y v GeV

with a 29, variation depending on exactly which com-
bination of low- and high-energy data we use for the
total cross section. Clearly the integral converges
quickly and its magnitude depends very weakly on the
high-energy data. Near »=0 we thus have, for forward
photon-proton scattering,

(di1b>a=0°= | A@] - A6) P (ﬂ—%)
L)

Myme? r=dv' a \?2
== [ e o0 | (o)
ar? J,, 2 =0 \} »

0

x[1 —0.88<L>2+O(V4):| .2

M

At high energies calculated values of Refi(v) are
shown by the solid lines in Fig. 6 for the three cases of
high-energy fits to or(v) of the form

or(»)=107.54+64.0/»'/2 (labelled 4), (23a)
or(¥)=99.24+59.6/»/2  (labelled B), (23b)
or(v)=96.6+70.2/»"2  (labelled A&B). (23c)

M. DAMASHEK AND F. ]J.

GILMAN 1

In addition, the ratio of real to imaginary parts at high
energies is shown in Fig. 7. Also shown in Fig. 6 by the
dashed lines are the real parts we might have naively
expected on the basis of the imaginary part of the ampli-
tude (the total cross sections) and Regge behavior for
the whole amplitude. In other words, if we find that

v/
—Imfi(r)=0r(r) > 2 cy* @' asy—ooo,
v 3

we expect that such an Imfi(») came from a Regge
expression for the full amplitude of the form

_1_e—i1rai(0) Cs
A6 — z(———)(-)w«n @

v sinma;(0) 4

where we have simply restored the signature factors due
to the exchange of even signature (P, P/, and 4,) tra-
jectories. Thus we expect

Refi(v) — Z(—cot%—/rai(O))(:—i)v“i ©, (25)

y—o0 1§

For our particular fits, which are of the form o7(v) —
c1tco/vM? we then expect that

Refl(v) - - (02/41r) p1/2 5 (26)

which is represented by the dashed lines in Fig. 6 for
each of our high-energy fits. For our high-energy fits of
the form (17) this is clearly not the case, there being
always a constant difference of about —3 ub GeV
between the real part calculated from the dispersion
relation and the real part in Eq. (26) which is predicted
naively from Regge theory and the behavior of the
imaginary part of the amplitude. That we should have
expected (as in actuality we did) such a constant
difference between the calculated real part and the real
part predicted from Regge theory and the high-energy
behavior of the imaginary part of the amplitude is
shown in Sec. V.

o T 1 T T T T T T T T
-0+ A -
i )
o -0.2F AaB—|
g
2 o3t .
S
x 041 5 _
-05[1*8 -
B
_06 1 | 1 1 [ 1 [ | | 1
2 4 6 8 1012 14 16 18 20 22

v (GeV)——

F16. 7. Ratio of real to imaginary part of fi(») at high energies
calculated using the dispersion relation, Eq. (14), for each of the
fits to the high-energy total cross sections.
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V. ASYMPTOTIC BEHAVIOR OF Refi(v)

Suppose we have an amplitude f(v) which has the
high-energy behavior

—1—¢imai(0) Cs
-—**—-—(-—)V‘”(O)
sinra;(0)  \dr

+-C+(terms which go to zero as v—),

fo)— 2

7,a(0)>0
@7

where we have explicitly separated the term C (which
is a real constant) which corresponds to a term in the
sum with «;(0) =0. The behavior of the real and imagin-
ary parts following from Eq. (27) is

Ref(r)= 2 (ci/4m)(—cotdma;(0))yei®

i,2:(0)>0
+C-+(terms which go to zero as y— ),

Imfr)= 3. (ci/dm)p=®

7,ai(0)>0

(28a)

-+ (terms which go to zero as y—»). (28b)
Now let us define f® (v) for all » as

__1__ —imai (0) Ci
—-(—~>v°"‘(°) +C. (29)
sinma;(0)  \drw

Clearly, %) (») differs from f(») only in terms which go
to zero as » —o. This new function obeys the dis-
persion relation

SR6)=

7, (0)>0

a2 ®) (!
F®e)=C4 / /e

2—p2—1e 2

(30)

as is easily verified by explicit calculation, while it is
assumed that the original amplitude f(») obeys a
dispersion relation of the form

dv'?

Imf(")

V2—p2—ie 2

f0)=F0)+ = / 31)

Now, from the way in which f®)(v) was defined and
Eq. (27) we have that
f@)—f® () >0 asy—w,

Subtracting Eq. (30) from Eq. (31), and letting » —,
we then obtain

1 rody/?
0=£(0)— - / & mf)

TSy V'?

© dy'?
= [, @
mJo 1/2

or
1 v
C=for+= [ =)
© dy'?
+[ S I ®E 1)1 33
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The last term in Eq. (33) involves a convergent integral
because f@® (v)— f(v) goes to zero as » —oo. In fact, in
an actual calculation one usually assumes that for
sufficiently large values of », say »> N, one has Im f(»)
=Imf® (y) to arbitrarily high accuracy if IV is chosen
large enough. This is, of course, just what we have done
in our calculation of Refi(») when we used our Regge
fits to the hlgh -energy total cross sections above
W=2.01 GeV in evaluating the dispersion relation. If
we use the assumption that Imf® (»)=Im f () for
v>N in Eq. (33), then it becomes

2 Ny
C=f0+= [ = mpew)

2 Nd
S / —Imf(') (34a)
T Jog v
or

Nei(0)

" ‘or(v') = f(0)— C+z<6i2)a(0)’

so that it has the form of a finite-energy sum rule.”
Equation (33) for the case f(v)= fi(v) was first derived
in this form by Creutz, Drell, and Paschos.!®

Equation (33) or (34) tells us that purely from a
knowledge of the imaginary part of f(») and f(0), we
can determine C, i.e., from the behavior of Imf(») at
high energies we can determine Im f®)(») and then an
integral over all energies of Im[ f(»)— f® (v)] gives us C
if we know f(0). All this of course should be no surprise
—given the imaginary part of f(») and f(0), the dis-
persion relation gives us Ref(») and we can then deter-
mine the constant C by comparison with Ref® ().
This, in fact, is just what we did in Sec. IV. What all the
above manipulation does for us is to bypass the actual
calculation of the principal-value integral and to give
us a simple sum rule, Eq. (34), from which we can
calculate C immediately by doing an ordinary integral
over total cross sections.

For the particular amplitude we are interested in, we
have f1(0)=—a/My=—3.0 ub GeV. Furthermore,
from the measured total cross sections we see that above
W=2 GeV Imfi(v) appears to be rather smooth. This
is also the point at which systematic measurements in
small steps of IV stop at the present time and at which
we have joined the power-law fits to the high-energy
data onto the low-energy data in doing our calculation
of the dispersion integral. We are thus assuming that
above W=2.01 GeV the power-law fits are a good
representation of the total cross sections, i.e., above
W=2.01 GeV (»=1.68 GeV) we are assuming Imf(»)

27?

(34b)

(1197618{) Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
18 M. J. Creutz, S. D. Drell, and E. A. Paschos, Phys. Rev. 178,
2300 (1969).
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—Imf® (»)=0. The sum rule, Eq. (34), thus becomes

o 2 (1.68GeV) g,/
C=—— - — Imf;® ()
My wJo v '
2 (1.68 GeV) 7,/
— ~/ — Imfi(»"). (35)
T Jre v

For the quantity
o 2 (1.68GeV) dVl
——~—~/ —Imfi(),
» v

which just involves performing an integral over the
total cross-section data, we obtain —19.94-0.1 ub. The
“error” includes the answers obtained by taking differ-
ent computer-smoothed fits to the low-energy data
(which join onto different high-energy behaviors),
taking the unsmoothed data, or taking hand-smoothed
fits to the data. The value of

2 (1.68 GeV) )/
" / — Imfi®()
0

m 14

depends on exactly what kind of power-law fit we make
to which subset of the high-energy data. We list the
parameters for fits to the high-energy data subsets 4,
B, and A&B of the form o7 (v) =c1+c2(v/GeV) 2@~ for
a(0)=0.6, 0.5, and 0.4 in Table II, together with the

values of
2 1.68 GeV dVI
[ G
m™Jo V’

and C which they imply.

From Table II it appears that [[at least if «(0)>0.5]
C~—3 ub GeV, i.e., it has the magnitude and sign of
the Thomson limit, f1(0), a possibility first suggested
by Creutz, Drell, and Paschos.’® For the case a(0)=1,
the values of C computed in Table IT agree with those
found in the previous section (see Fig. 6) by direct
computation of Refi(») and comparison with the real
part expected from Regge theory and the behavior of
Imfi(v) at high energies.

The errors contained in such a calculation of C are
mainly of a systematic kind and hence difficult to
estimate. The integral over the low-energy total cross-
section measurements,

2 1.68 GeV d,/
- / (-) Im i),
™ Jyg v

M. DAMASHEK AND F.

J. GILMAN 1

TasLE II. Parameters for fits to the high-energy total cross-
section measurements of the form or(v)=ci14ca(v/GeV)*@OL
corresponding values of

2 [88GeV) g’
. / —TImfi® (),
0

™ v

and resulting values of C taking

a 2 (1.68 GeV) g,/
ot —-Imfi(+') =19.9 ub GeV.
MN ™ J !

0 14
2 /-(1.55 GoV) gy
Experi- T Jo v
mental XImfi® (»')
data c1 2}
subset a(0) (ub) (ub) (ub GeV) (ub GeV)
Ae 0.6 100.5 68.1 16.4 —3.5
Bb 0.6 93.5 61.7 15.1 —4.8
A&B 0.6 89.9 72.9 16.1 —3.8
Ar 0.5 107.5 64.0 17.5 —2.4
Bb 0.5 99.2 59.6 16.2 —3.7
A&B 0.5 96.6 70.2 174 —2.5
Ar 0.4 112.2 62.5 19.2 —0.7
Bb 0.4 102.9 59.9 18.1 —1.8
A&B 0.4 101.2 70.1 19.5 —0.4

& Reference 10,
b References 11-14,

involves over 60 data points with an assigned error of
about 10%,. If these were purely statistical errors, the
error on the value of the integral would be ~19,.
Similarly, given a value of a(0), the errors in ¢; and ¢
in the fit to the high-energy total cross sections (induced
from the guoted errors on or) lead to an uncertainty in

2 1.68 GeV dVI
L
m™Jo V’

of from 5%, (for fits to data set B) to 109, (for fits to
data set 4).

To change the value of C from —3 ub GeV to zero
requires a 20%, change in one or the other (or some
combination) of the two integrals discussed above. For
the integral over the low-energy total cross sections this
can only happen due to a systematic over-all shift
(downward) from the present data. We think such a
large systematic shift is unlikely because the total cross
sections obtained from the extrapolation of electron
scattering agree rather well in the first resonance region
with those obtained by directly integrating over single-
pion photoproduction differential cross sections.

A change in the value of the integral over the Regge
fit to the data could come about either because of a
systematic shift [upward, particularly at the low-
energy end, in order to give more energy dependence to
or(v)] in the high-energy total cross-section measure-
ments or a value of «(0)=0.4. A systematic shift in the
high-energy data certainly cannot be ruled out, but such
a shift upwards would be difficult to reconcile with a
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smooth joining on to the low-energy data, particularly
if one also wants to help decrease the magnitude of C by
a systematic shift downward in that same low-energy
data. It should also be noted that the fits (B) to only
the counter and bubble-chamber experiments at high
energies, which have the smallest quoted errors, give the
largest magnitude for C. As for the value of «(0), which
is representing here the effective Regge trajectory
intercept of the P’ and 4., we note first of all that the
most important of these two trajectories for the case at
hand appears? to be the P’. Secondly, the best fits to
the hadronic data of the form or=ci+cov® @7, es-
pecially recent fits® using both finite-energy sum rules
and the hadronic total cross-section data, show that
ap(0)=~0.5 or greater, not smaller.

Thus, while the possibility exists that a combination
of systematic shifts in the data and/or a change in
Regge parameters will result in making C consistent in
magnitude with zero,?! it is suggested by the present
data and our high-energy Regge fits to it that C0, and
in fact that C=>~—3 ub GeV, the value of the Thomson
limit. In Regge language, such a real constant term in
the high-energy forward amplitude could correspond to
a Regge pole with «(0)=0. Whether a(f)=0, so that we
are dealing with a fixed pole at J=0, can only be
established by calculations for ¢><0, which are outside
the scope of this paper. In any case, the presence of such
an extra real constant term at {=0 already has some
interesting consequences theoretically for other calcu-
lations and sum rules.?

VI. CONCLUSION

Under the assumption that the forward dispersion
relation for f1(») of Gell-Mann, Goldberger, and Thir-
ring is correct, we have calculated Ref;(») from the
measurements of the total photoabsorption cross sec-
tion. In the process we have made smooth fits to both
the low- and high-energy cross sections. Our results
suggest, but do not conclusively prove, the existence of
an extra real constant in the high-energy behavior of
f1(») beyond what the energy dependence of the imag-

19 See the data on or(yp) —or(yn) of Refs. 11 and 12 and the
talk by H. Harari presented at the Fourth International Sym-
posium on Electron and Photon Interactions at High Energies,
Liverpool, England, 1969 (unpublished). From the data it appears
that the A4, contribution to the decreasing part of the total cross
section is less than 309, of the P’ contribution.

2 See V. Barger and R. J. N. Phillips, Wisconsin report, 1969
(unpublished). We thank Professor Barger for a discussion of this
work and other determinations of ap.(0).

21 We thank M. Creutz at SLAC and M. Wong at DESY for
discussions on their work and the possible errors in calculations of
the value of C.

2 See the discussion of the neutron-proton mass difference in the
talk of F. J. Gilman presented at the Fourth International Sym-
posium on Electron and Photon Interactions at High Energies,
Liverpool, England, 1969 (unpublished). Sum rules for forward
Compton scattering on /=1 targets (with /=2 in the ¢ channel)
could also be effected by a similar fixed pole at J=0. We thank
H. Harari for discussions on this subject.
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inary part and Regge theory would predict.!® This extra
real constant is consistent in sign and magnitude with
the value of the Thomson limit f;(0)=—a/Mn.

There are a number of experiments which could help
settle the question of whether the extra real constant C
is present. Obviously more accurate total photo-
absorption cross sections even at the energies already
measured will help. More important are systematic
counter or bubble-chamber measurements in the energy
range »=1.0-3.0 GeV. These are needed first of all to
make sure that the cross sections in the upper resonance
region, which come at present only from the electron
scattering extrapolation, are not systematically high or
low. Secondly, such measurements will show whether
above »=1.68 GeV (where we have joined on our high-
energy fits) the total cross section has any small
“bumps”’ left in it and more generally how well our
smooth fit to the high-energy data fits the total cross
sections just above the resonance region. Some total
cross-section measurements of high accuracy at the
other end of the energy spectrum, namely very high
energies (say, »=30-150 GeV at Serpukhov or Weston),
would be very useful in tying down the other end of our
high-energy fits. Between these two additional sets of
measurements we think one can settle the question of
whether C5#0 and whether it has the value of the
Thomson limit to within 509 of that limit.

Of course, all this could be best settled by a good
direct measurement of Ref1(»). This would also test the
validity of the forward dispersion relation, which we
have been assuming in our discussion of the magnitude
of C. At v=>5 GeV, for example, the presence of C= f1(0)
makes a 209, difference in the value of Refi(»). Un-
fortunately, it does not appear that we will soon have
such a measurement. Recall that (do/dl)i—o= | f1(»)|?
+ | f2(»)|? for Compton scattering. Thus the forth-
coming measurements of (do/dl),—o will give us
|Ref1(v) |2+ | f2(v) |2, since we know Imfi(») from the
total cross-section measurements. Since we find |Ref;/
Imf;| £0.3 for »>5 GeV, |Refi(v)|? contributes less
than 109, of (do/dt),—o for v>5 GeV. This is of the same
order as the error in |Imf1(») |2 due to the errors in the
total cross-section measurements, so the measurement
of (do/dt)s—o at high energy will only yield a very rough
upper bound® on |Refi(v)|. At the present time it is
probably more relevant to assume the forward disper-
sion relations are true and then to derive information
from (do/df);—o about |f»(v)|? at high energy, since
experimentally we know essentially nothing at present
about the high-energy behavior of fy(v).2

2 See in this connection J. K. Walker, Phys. Rev. Letters 21,
1618 (1968).

2t The energy dependence of f;(v) is interesting from the point
of view of Regge theory since it receives a leading contribution
from trajectories of even signature and odd parity which is other-
wise hidden by higher trajectories. See the discussion in S. L.
Adler and R. F. Dashen, Current Algebras (W. A. Benjamin, Inc.,
New York, 1968), p. 330.
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This leaves us with trying to measure Refi(v) at low
energies where it is large compared to Imf;(»). Because
of background from 7°— 2v it is extremely difficult to
measure (do/dt);—o for Compton scattering at low
energies. Our best hope of testing the dispersion relation
is then the possibility of measuring Refi(») by inter-
ference of the amplitude for electron-positron produc-
tion by Compton scattering with the Bethe-Heitler
amplitude,® and then extrapolating to zero invariant-
mass electron-positron pairs. Exactly how difficult this
will prove to be experimentally remains to be seen.

A side result of our calculation is that the ratio of real
to imaginary parts of the forward Compton amplitude
is much the same as that for most strong-interaction
forward amplitudes.? In particular, if we omit the
contribution of the possible extra real constant, then the
ratio of real to imaginary parts is less than 209, above
v=5 GeV, much as in pion-nucleon scattering (even
keeping the real constant, the ratio is less than 309).
If we assume the validity of the vector-dominance
model, then the forward amplitude for v+ p.— p+p
should have a similar ratio of real to imaginary parts.

% See V. Barger, Ref. 15. Our ratio of Ref1/Imf; also appears
to be in rough agreement with that found in a dispersion relation
calculation done at DESY with somewhat different initial input:
see J. Weber, DESY Internal Report No. DESY F1-69/3, 1969
(unpublished).
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The recently suggested? ratio of —0.45 at 6 GeV is then
much too large compared to our calculation or to other
strong-interaction processes.

So, although the prospects still do not look very good
for an early experimental test of the forward dispersion
relations, we have seen a number of interesting con-
sequences of our study of forward Compton scattering.
In particular, we hope that we have provided sufficient
encouragement to experimentalists to make further
measurements of the total photoabsorption cross
sections, to measure the magnitude of (do/df);—o for
Compton scattering, and to try to measure Ref;(») by
interference of the Bethe-Heitler amplitude with the
Compton amplitude for pair production.
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Conversely, if it is shown experimentally that the ratio of real to
imaginary parts of the forward amplitude for y+p— p+p is
—0.45, then the calculated ratio of real to imaginary parts for the
forward Compton amplitude, which is much smaller in magnitude,

would mean the vector-dominance-model connection between the
two processes breaks down.



