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Forward Compton Scattering*
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An analysis of the recently measured photon-proton total cross sections is performed. Smooth fits to the
cross sections are obtained and used to calculate, by means of the forward dispersion relation, the real part of
the spin-averaged forward amplitude. The resulting predictions for the real part are given. At high energies,
the 6ts to the present total cross-section data, together with the calculated real part, suggest the presence
in the high-energy behavoir of an extra real constant in addition to what one would have predicted from
Regge theory and the high-energy behavior of the imaginary part. This extra real constant, which is consis-
tent in sign and magnitude with the Thomson limit, —n/3II~, could correspond to a 6xed pole at J=0 in
Regge-pole language. Possible ways to test the forward dispersion relation are discussed.

I. INTRODUCTION
' 'N the 15 years that have passed since the introduc-
~ - tion of dispersion relations into elementary-particle
physics, originally within the context of quantum Geld

theory, a large literature has grown up on their theo-
retical basis, on extensions and applications to new
processes, and on their comparison with experiment.
While first proposed for the amplitudes in forward
Compton scattering by Gell-Mann, Goldberger, and
Thirring, ' dispersion relations were soon written down
and proved, with varying degrees of rigor, for forward
pion-nucleon scattering, other forward amplitudes,
various off-shell amplitudes, and vertex functions, and
for nonforward amplitudes. ' These integral relations
between the dispersive and absorptive parts of the
scattering amplitude have been most thoroughly tested
experimentally in the case of forward pion-nucleon
scattering. Starting with the work of Anderson et ul. '
in the resonance region and proceeding through the
recent high-energy measurements of the real part of the
forward amplitude and its comparison with the pre-
dictions of the forward dispersion relations by Foley
et al. ,

4 the pion-nucleon dispersion relations have been
subjected to extensive testing by comparison with both
low- and high-energy experiments.

While all these tests in strong interactions have been
successful, somewhat surprisingly the first such relations
to be written down, those for forward Compton scatter-
ing, are still essentially untested. First, this is because
the imaginary part of the forward Compton amplitude,
in the form of total photoabsorption cross sections, has
not been systematically measured until this past year.

*Work supported by the U. S. Atomic Energy Commission.
t National Science Foundation Predoctoral Trainee.
~ M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys.

Rev. QS, 1612 (1954).
'See, for example, the rapporteur talks by M. L. Goldberger

and S. Mandelstam, in The Qaantnns Theory of Feelds, Proceedhngs
of the Twelfth Solvay Conference, Brussels, Belgium, &61 (Inter-
science Publishers, New York, 1961), pp. 179—196 and 209—224.

s H. Anderson et al. , Phys. Rev. 100, 339 (1955). See also the
more recent comparison in the resonance region in pion-nucleon
charge exchange by W. Risk, Phys. Rev. 167, 1249 (1967), and
references therein.

4 K. J. Foley et a/. , Phys. Rev. Letters 19, 143 (1967); 19, 857
(1967).

I

Previously, one only had the results of integrating the
single-pion photoproduction di6erential cross sections
over all angles to obtain the total cross section near
threshold and in the first resonance region (say, up to
1.300-6eV center-of-mass energy) and some scattered
bubble-chamber measurements at higher energies.
Second, the real part of the forward amplitude for
Compton scattering was, and still is, unmeasured in
both magnitude and sign.

Within the past year this situation has changed
rather dramatically. We now have good systematic
measurements of the unpolarized total photoabsorption
cross section (and therefore the imaginary part of the
spin-averaged forward Compton amplitude) from
threshold up to laboratory photon energies of almost
20 GeV. This permits one to calculate rather accurately
the real part of the spin-averaged forward amplitude
using the dispersion relation originally proposed by
Gell-Mann, Goldberger, and Thirring. ' The result of
this calculation can be compared in magnitude with
forthcoming measurements at SLAC of the forward
Compton-scattering differential cross section. Further-
more, it now appears possible that by observing the
interference between the known Bethe-Heitler ampli-
tude for producing electron-positron pairs and the
Compton contribution to pair production, both the sign
and magnitude of the real part of the Compton ampli-
tude may be determined. '

With all this in mind, we have done a careful analysis
of, and fit to, the total photoabsorption cross-section
measurements, and have calculated the real part of the
forward Compton amplitude, both to look for places
and ways to test the forward dispersion relation and to
investigate certain questions of theoretical interest
concerning the asymptotic behavior of the real part. In
Sec. II we discuss kinematics, the definition of the
relevant amplitudes, and the corresponding dispersion
relations. We follow this with an analysis of, and fits to,
the total photoabsorption cross sections at low and high
energies in Sec. III, in preparation for the actual calcu-
lation of the real part of the spin-averaged forward
amplitude in Sec. IV using the dispersion relation. The

~ S. J. Brodsky et al. , Phys. Rev. (to be published).
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results of this calculation lead us to a discussion of the
probable existence in the high-energy behavior of the
forward amplitude of an extra real constant part in
addition to what one would have predicted from Regge
theory and the behavior of the imaginary part. This
could be due to a fixed pole at J=0 in Regge language;
such a real constant part is detectable both by a direct
calculation of the real part of the amplitude using the
dispersion relation, and by certain sum rules discussed
in Sec. V. Finally, conclusions and suggestions for
further experimental measurements are given in Sec. VI.

II. FORWARD COMPTON AMPLITUDES

If the S-matrix element for the process

Y(ki)++(pi) ~ v(k2)+&(pg)

is written as

Sg,= bf +e(2 )g'rib"'(p +2k y pi ki)

2 1/2

n(py) Tn(pi), (1)
4''10~ 20~1~2

where ki and pi (kg and p,) are the four-momenta of the
initial (final) photon and nucleon, respectively, then the
differential cross section in the center-of-mass frame is
given by

~ /«. -.= If'
Imf, (v) = (v/4m. )o v(v),

Imf. (v) = (v/4m. )0..(v) .
(ga)

(gb)

and final photons, respectively. Clearly, if we average
over nucleon spins in the amplitude, we are left only with

fi(v), which we therefore call the spin-averaged forward
amplitude. The amplitudes fi(v) and f2(v) are separable
if we are able to do experiments with polarized photons:
fi(v) corresponds to parallel and f2(v) to perpendicular
linear polarization vectors of the initial and final
photons, respectively.

Another way of discussing the relationship between
fi and f, is to relate them to the two independent
helicity amplitudes for forward scattering. If the photon
and proton spins are parallel (i.e., photon helicity = +1,
nucleon helicity = ——', in the center-of-mass frame), then
we have

fv(v) = (W/~N) fi-:,i-:™(v) = fi(v) —f2(v) y (7a)

while if the spins are antiparallel (i.e., photon helicity
=+1, nucleon helicity=+2 in the center-of-mass
system), we have

f (v) = (W/~~)fi:. i (v) = fi(v)+f2(v) (&b)

It is the amplitudes f„and f. which are then related
simply by the optical theorem to the total cross sections
for photon+nucleon y hadrons (we work only to order
e' in the amplitude) when the photon spin is parallel or
antiparallel to the nucleon spin:

Thus we have
with the center-of-mass scattering amplitude f' being

where o.z (v) is the spin-averaged total cross section, and

Imf2(v) = (v/4r)-', Lo. (v) —o (v)7. (9b)
Here t/t/ is the total center-of-mass energy;

W'= (pi+ki)'= (p2+k2)'.
Again, in the absence of both a circularly polarized
photon beam and a polarized proton target, it is only
the combination of cross sections corresponding to
Imfi(v) which is measured experimentally. Note also
that while Imf„, Irnf„and therefore Imf, are positive
above threshold for pion photoproduction, Im f& may be
either positive or negative there.

In the absence of polarized targets or beams one
sim 1 measures the differential cross section

If we specialize to the case of forward scattering, then
there is only one remaining continuous variable on
which the scattering depends. We take this to be t/t/' as
defined above, or instead of 8", we often use the energy
of the photon in the laboratory, v, which is related to
8' by

v = (W' —iJIIN2)/2~N .
pyIt will, in fact, generally be convenient to work in terms

of laboratory quantities. To this end, we define the do
forward scattering amplitude in the laboratory, f( )
which is related to the center-of-mass amplitude by a
simple factor of W/cV~.

(10a)V = 1P 2P

or

I f ()=(/4 )-:L.()+ .()]=(/4 ) () (9a)= Mig 4mW u p2 Tu pi . 3

f(v) = (W/~~) f'
Written out between the Pauli spinors of the initial and
final nucleons, which are at rest in the laboratory, f(v)
must have the form'

f(.) =x,*If,(.)..*',+' (.,*x.,)f,(.)~~„(6)
where e1 and ~2 are the polarization vectors of the initial

do 7l

V
2

dt g 0 V2

oy' P

+—l«f ()I'
16m V2



M PTPN CA ITF RI NGF p R~A R D C p M 1321

Im fs(v') .f()=-
vp P —P

(11b)
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P P P2 /2
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2
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I those with n, (0))0j are the Pomeranchukon (cor-
responding to diffraction scattering and constant total
cross sections) which has cr p(0) = 1 and the P', A s, p, and
co trajectories, all of which have cr(0) 0.5 as determined
either from drawing the usual linear Regge trajectories
(with slope =1/GeV') through the observed physical
particle positions or from fits to the'. hadron-hadron
total cross sections at high energies. "' For Compton
scattering only 3-channel trajectories '„"with C=
contribute, so we can restrict our attention here to only
the I' and 32 trajectories in addition to the Pomeran-
chukon. We take tr~(0) =1 and the effective intercept
at g= 0 of the P' and As to be -'„ i.e., cr p (0)=cr~, (0) =-', .

We have therefore made its to the high-energy data
(v)2 GeV) of the form

os(t)=ct+c /s't't. (17)

In Fig. 2 we see the high-energy total cross-section data
from the extrapolation of electron scattering to q'=0.
They are plotted against 1/t '" so that if Eq. (17) is to
be a good fit to the data points, they should fall on a
straight line. In Fig. 2 the solid line represents o.r(t)
= 107.5+64.0/o'", which is a best fit statistically of the

form of Eq. (17) to the data from the extrapolation of

electron scattering. In Fig. 3 we have the data from the

direct measurements of the counter and bubb]e-
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10) from the extrapolation of inelastic ep scattering to g2=0
plotted versus 1/v'". The solid line is a best fIt to these data of the
form O.y(v) =c1+c2/s' ', with c1=107.5 pb, c2 ——64.0 pb, and p
measured in GeV. The dashed line is a similar fit to all the high-
energy data with c& =96.6 p,b and c2 ——70.2 pb.

!70—

I60 — L

l50—

FIG. 3. High-energy total photo-
absorption cross sections (Refs. 11—14)
from counter and bubble-chamber
measurements plotted versus 1/y'".
The solid line is a best fit to these data
of the form 0 z =c1+c~/~'f' with
c~=99.2 pb, c2=59.6 pb, and ~ meas-
ured in GeV. The dashed line is a
similar 6t to all the high-energy data
with ci =96.6 pb and c2 ——70.2 p,b.

!40—

~ )50—

120—

]!0—

l00—

CD

O
Al
ll

~~ L+
I

a

I I 1

l 0 09 08 07 0.6 0.5 0.4
t

1/(v/GeV} a

I 1
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dashed line, corresponding to a best fit to all the high-
energy data of the form &rz(v) =96.6+70.2/v'i'.

It is clear from the figures that the data from the
electron scattering extrapolation is systematically high

by about 8 pb compared to the other data, but has about
the same slope as a function of energy. This is all well
within the quoted'0 &8% over-all systematic error of
the electron scattering extrapolation. It is difficult to
know, however, whether the "true" total cross sections
should agree with one of the present set of measure-
ments or another since each method of measurement
has different kinds of systematic errors associated with
it and an estimate of these errors is not always quoted
in the experimental papers. For this reason we have kept
three different fits of the form of Eq. (17) to the high-

energy (v&2 GeV) total cross sections in doing the
dispersion integral: a fit to the electron scattering extrap-
olation cross sections alone (labelled A), a fit to the
counter and bubble-chamber measurements alone
(labelled B), and a fit to all the total cross-section
measurements (labelled ARB) If we .were to show a
prejudice for one fit over another, it would be in favor of
the fit (B) to the counter and bubble-chamber measure-
ments which, when extrapolated to lower energies, joins
on better to the total cross-section measurements at the
end of the resonance region coming from both the elec-
tron scattering extrapolation to q'=0 and from the
counter and bubble-chamber measurements.

It is also to be noted that the size of the present
experimental error bars does not permit one accurately
to determine n(0) in a fit to the total photoabsorption
cross sections of the form o.r(v)=ci+c2v i'& '. While
values of n(0) equal to 0 or 1 are probably already ruled
out by the present data, fits with values of n(0) ranging
from 0.3 to 0.7 were tried and the resulting values of X'

of the best fit for each value of n(0) were not signifi-

cantly different. We thus have to rely on the much more
accurate hadronic total cross-section data to determine
n(0). This is no great misfortune, since: (1) the strong
interaction data are accurate enough to show that in a fit
of the form or(v) =ci+c2v i" ' that 0.3&n(0)&0.7 for
the I" and A2., (2) there is no reason to assume, in
contradiction to Regge-pole theory, that the value of
nv (0) or n~, (0) changes in going from one process to
another; (3) a fit of the form of Eq. (17) is an excellent
fit to the photoproduction data, particularly the counter
and bubble-chamber data with small error bars in Fig.
3. In any case, the exact value of n(0) makes little
difference in the calculated values of Refi(v) at low

energy and we shall return to the question of the
sensitivity of the calculation at high energy to the value
of n(0) in Sec. V.

Once we have afitof the form of Eq. (17) to thehigh-
energy data, we use it to give us the total cross section
over the entire high-energy region for use in doing the
dispersion integral. We also join on to it the data in the
low-energy region, which we take to be from threshold,

W=1.08 GeV (v=0.150 GeV), to a center-of-mass
energy W=2.01 GeV (v=1.68 GeV), where the syste-
matic measurements of O.r(v) in steps of 0.015 GeV in
center-of-mass energy by the electron scattering group
end. This includes the region of the four prominent
resonances in pion-nucleon scattering at H/"=1.236,
1.520, 1.690, and 1.920 GeV, respectively. To the total
cross sections determined by extrapolation of electron
scattering we have added the total cross-section data up
to 1/t/=1. 32 GeV obtained by integrating single-pion
photoproduction data. "

We have then smoothed, again with the use of some
physics: We fitted these low-energy data to a sum of
Breit-Wigner resonance forms plus a polynomial back-
ground, demanding that at 8'=2.01 GeV the fit join on
smoothly to one of the high-energy fits discussed above.
Specifically, we used five Breit-Wigner resonance forms
and a sixth-order polynomial in. (W-Wii, „„s,id) to obtain
our best fits to the data. The masses of the first three
resonance forms were only roughly constrained (to
within +0.100 GeV) to lie in the vicinity of the promin-
ent resonance bumps, and their widths were also only
roughly constrained (to be less than 0.5 GeV). The
fourth resonance was fixed with a mass and width of
1.920 and 0.200 GeV, respectively, since it otherwise
had a tendency to wander to lower energies. The fits
were improved if the fifth resonance mass was con-
strained to lie between 1.400 and 1.470 GeV, i.e., in the
region of the Roper resonance, in order to fit the
shoulder in the data on the low-energy side of the second
resonance. Otherwise all masses, widths, and strengths
of the resonances were left free to vary, as were all the
coefficients in the polynomial in W-Wth„, h,&d.

The fit to the low-energy data which joins on to
0 z(v) = 96.6+70.2/v't', the best fit to all the high-energy
data, at W= 2.01 GeV (where o.r ——151 pb) is shown in
Fig. 4. Obviously we have a very good (as statistical
tests also show) smooth fit to the total cross-section
data. Its stability is shown by the fact that changing the
form of the high-energy cross section from one of our
fits to another Lso that at W= 2.01 GeV, the energy at
which me join the low-energy to high-energy cross
sections, o.&(W= 2.01 GeV) changes by 3% or 5 pbj
does not change the fit by more than 1% at any point
up to 8'=1.95 GeV. The fit is stable as well against
taking a lower degree polynomial to describe the back-
ground. Also the values of the resonance widths which
come out of the fit are in good agreement with the
accepted ones. Armed with our smooth fits to both the
low- and high-energy total cross sections, we are ready
to evaluate the dispersion integral.

«R. T. Bea],e, S. D. Eklund, and R. L. Walker, California
Institute of Technology Synchrotron Laboratory Report No.
CTSL-42, 1966 (unpublished). In the region of the first resonance
the total cross sections obtained from extrapolation of inelastic
ep scattering to q'=0 (Ref. 10) agree quite well with these single-
pion cross sections, which are a little higher below resonance and
a little lower above resonance.
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Iv. QALQULATION OF REAL+ART OF)fs(v)

For each of our three fits to the high-energy data we

have made a 6t to the low-energy data which joins on

smoothly at 5'=2.01 GeV, and then have used the
total smoothed 6t over the whole energy range from
threshold to infi. nite energy as input to a computer
calculation of the dispersion integral for Ref~(v). We
have tested our program for doing the principal-value

integrals by taking explicit forms for the total cross
section for which we were capable of doing the principal-
value integral analytically and then comparing the

analytic solution with the computer calculation. In

p articular,

4m 0Vp P—iaaf, (.) = r(.) =
P P Vp

=0, for v(vq (18)

where o- is a constant, leads to

Ref~(v) = f~(0)

PpO V2 n/2 ]
+——(cot-', ~n) ——1 + — (19a)

4' — Pp
2 slnzzn1
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Fro. 5. Argand diagram of fi(W} for forward photon-proton scattering where Ref~(W) was computed using the dispersion reiation,
Eq. {14).The input total cross sections are shown at low energy by the solid in line Fig. 4 and at high energy by the dashed line in
Figs. 2 and 3.

for pQ po aIlcl.

«ft(v) =fi(o)

@00 p2 a/2

1-— +,
4m sin-,'xo. so' sin-', en

(19b)

for v&vo. For o.=—,'@re find that Our program gives
Ref, (v) in agreement with the analytic solution to
better than 1% accuracy from v=0 to 50 GeV with the
exception of a sma11 region near thresho1d (0.9vs(v
& 1.1vs) where dfi(v)/dv is discontinuous for the
analytic solution and where the finite step size (=0.1vs)
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TABLE I. Calculated values of Ref& (v) for forward photon-proton scattering. The input values of o r(v) = (4v/v) Im f&(v)
Drom the smooth fit at low energy which joins on to the ht (ARB) to all the high-energy dataj as well as the resulting values
of

Reft�(v)

—Ref&(0) and

Ref~~(v)

are listed in steps of 0.015 GeV in W up to W= 2.01 GeV, and then in steps of 1.0 GeV in v up to
v=20 GeV.

(GeV) (GeV)

Ref1(v)
0r (v) Im f& (v) —Refq (0)
(p,b) (pb GeV) (p,b GeV)

Ref1 (v)
(p,b GeV) (GeV)

Reft�(v)

or(v) Imfr(v) —Refa(0)
(pb) (pb GeV) (p,b GeV)

Ref&(v)
(jttb GeV)

0.945
0.960
0.975
0.990
1.005
1.020
1.035
1.050
1.065
1.080
1.095
1.110
1.125
1.140
1.155
1.170
1.185
1.200
1.215
1.230
1.245
1.260
1.275
1.290
1.305
1.320
1.335
1.350
1.365
1.380
1.395
1,410
1.425
1.440
1.455
1.470
1.485
1.500
1.515
1.530
1.545
1.560
1.575
1.590
1.605
1.620

0.005
0.020
0.036
0.051
0.067
0.083
0.100
0.116
0.133
0.150
0.168
0.185
0.203
0.221
0.240
0.258
0.277
0.296
0.315
0.335
0.354
0.374
0.395
0.415
0.436
0.457
0.478
0.499
0.521
0.543
0.565
0.587
0.610
0.633
0.656
0.679
0.703
0.727
0.751
0.775
0.800
0.824
0.849
0.875
0.900
0.926

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

75 10
114 1.7
145 2.3
182 3.2
233 4.4
307 6.3
404 8.9
499 11.8
546 13.7
522 13.9
449 12.7
366 10.9
292 9 2
235 7.8
196 6.8
172 63
162 6.2
164 6.5
175 7 2
190 8.2
207 93
220 10.3
228 11.1
234 11.8
241 12.6
253 13.7
271 15.2
288 16 6
290 17.3
275 17.0
255 16.2
239 15.6
228 15.4
222 15.4
219 15.7
218 16.1

+ 0.0018
0.030
0.094
0.20
0.35
0.55
0.82
1.2
1.7
2.7
3.7
40
4.5
5.3
6.2
7.0
7.1
5.6
2.4—1.3—4.1—5.4—57—5.2
43
3 0 1
1.9—07

+ 0.3
+ Q9
+ 1.2
+ 1.1
+ 0.9
+ 0.8
+ 1.0
+ 1.1
+ 0.8—0.5—2,5

43—5.1—5.2
49
47—4,5—4.3

—3.0—3.0—2.9—2.8
2.7—2.5—2.2—1.8—1.3—0.3

+ 0.7
+ 1.0
+ 1.5
+ 2.3
+ 3.2
+ 4Q
+ 4.1
+ 2.6—0.6—4.3

7.1—8.4—8.7—8.2—7.3—6.1
49
3 7—2.7—2.1
1.8
1.9
2 0—2.2—20
1.9—2.2—3.5—5.5
713—8.1—8.2—7.9
70 7
7v5—73

1.635
1.650
1.665
1.680
1.695
1.710
1.725
1.740
1.755
1.770
1.785
1.800
1.815
1.830
1.845
1.860
1.875
1.890
1.905
1.920
1.935
1.950
1.965
1.980
1.995
2.010
2.16
2.55
2.90
3.21
3.49
3.75
3.99
4.22
4.44
4.64
4.84
5.03
5.22
5.39
5.56
5.73
5.89
6.05
6.20

0.952
0.978
1.005
1.031
1.058
1.085
1.11
1.14
1.17
1.20
1.22
1.25
1.28
1.31
1.34
1.37
1.40
1.43
1.46
1.49
1.52
1.55
1.58
1.62
1.65
1.68
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0

219 16.6
221 17.2
225 18.0
232 19.1
239 20.2
236 20.3
219 19.4
201 18.3
187 17.4
176 16.8
168 16.4
163 16.2
159 16.2
158 16.5
158 16.9
161 17.5
164 18.3
167 19.0
170 19.7
170 20.2
168 20.4
165 20.3
160 20.2
156 20.1
153 20.0
151 20.2
146 23.4
137 32.6
132 41.9
128 51 0
125 60.0
123 68.7
121 77.3
120 86.0
119 94.6
118 103
117 112
116 120
115 129
115 137
114 145
114 154
113 162
113 170
112 179

—4.3—4.2—4.3—47—6.1—8.2—9.8—10.3—10.1—9.8—9.3—8.8—8.2—7.6—7.0—6.6—6.5—6.6—7.0—7.6—8.2—8.7—9.0—8.9—8.8—8.5—8.2—9.5—10.9
12.2—13.3—14.3—15.3—16.3
17.2—18.1—18.9—19.7—20.5
21.3—22.0—22.6—23.2—23.8—24.5

703
7.2
703—7.7—9.1—11.2—12.8—13.3—13.1—12.8

123—11.8—11.2—10.6—10.0—9.6—9.5—9.6
—,10.0—10.6

11.2—11.7—12.0—11.9—11.8—11.5—11.2—12.5—13.9—15.2—16.3—17.3—18.3—19.3—20.2—21.1—21.9—22.7—23.5—24.3—25.0—25.6—26.2—26.8—27.5

in our integration routine gives a computed real part
which is 20% less than the exact analytic solution.

The actual results for Reft(8'), computed from the
fits to the measured total cross sections Lwhere at high
energies we use the fit (A 8z 8) to all the high-energy
data of the form or(v) =96.6+70.2/v'~'j, are shown in
Fig. 5 for W'(2.2 GeV in the form of an Argand dia-
gram. Clear circles due to the erst, second, third, and
fourth resonances are seen. A close inspection also
reveals a "wriggle" near 8'=1.430 GeV due to the
shoulder on the lour-energy side of the second resonance,
which could be due to the Roper resonance. A similar,
but smaller, wiggle appears near threshold due to the
large s-weave shoulder on the lou-energy side of the first
resonance. Using a different Qt to the high-energy total 27r2

dP—O'Z' V e
I2

pp P
(20)

cross sections leaves Fig. 5 essentially unchanged —the
only noticeable change is in the size of the loop due to
the fourth resonance and involves changes in Reft(v)
of less than 10%%uz for any given value of v. The numerical
values of the input total cross sections Im fi(W) and the
resulting values of Refr(W) appear in Table I in steps
of 0.015 GeV in 8" up to 8"=2.01 GeV, and then in
steps of 1.0 GeV in P up to V= 20 GeV.

Near P=O, me have from the dispersion relation that

fi(v) —fi(0) 1 "dv"
lim-— —Im fi(v')
v~o P2 X P'4

Vo
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V. ASYMPTOTIC BEHAVIOR OF Refi(v)
Suppose we have an amplitude f(v) which has the

high-energy behavior

~
—ivrei(o)

f()
', '&o)» sin7rn, (0) 4ir

+C+(terms which go to zero as v —+~), (27)

where we have explicitly separated the term C (which
is a real constant) which corresponds to a term in the
sum with n, (0)=0. The behavior of the real and imagin-
ary parts following from Eq. (27) is

Ref(v) = g (c,/4&r)( —cot-', 7m, (0))v"'")
i, a;(o))o

+C+(terms which go to zero as v~u&), (28a)

Imf(v) = P (c,/47r)v '& &

The last term in Eq. (33) involves a convergent integral
because f&~) (v) —f(v) goes to zero as v —+~ . In fact, in
an actual calculation one usually assumes that for
sufIiciently large values of v, say v&Ã, one has Imf(v)
=Imf'"&(v) to arbitrarily high accuracy if cV is chosen
large enough. This is, of course, just what we have done
in our calculation of Refi(v) when we used our Regge
fits to the high-energy total cross sections above
H/'=2. 01 GeV in evaluating the dispersion relation. If
we use the assumption that Imf'~)(v)=Imp(v) for
v&2V in Eq. (33), then it becomes

2 Ndv'
C= f(0)+— —Imf~~)(v')

7I p v

2 dv—Imf(v') (34a)
I

7l 0 v

or
i, a, (o)&o

+(terms which go to zero as v). (28b)

Now let us def&ne f&~)(v) for all v as
27l

N (c, X '&')

dv'o r(v') =f(0) —C+P~, (34b)
(27r' n.(0)

~
—in ai(o)

f'&i'(v) = P ——v * "+C. (29)
(o)&o simrn, (0) 4&r

Clearly, f&")(v) differs from f(v) only in terms which go
to zero as v ~. This new function obeys the dis-
persion relation

Imf&~)(v')
(30)

v dv2
f"'(v) =C+-

p v —v —16 v 2

as is easily verified by explicit calculation, while it is
assumed that the original amplitude f(v) obeys a
dispersion relation of the form

v' " Im f(v')
f(v) =f(o)+-

p v —v —z6 v

dv2
(31)

"dv 2

0=f(0)—— —Imf(v')
/27i" P0 V

dv2—C+ — —Imf&s)(v'), (32)
7l' p v

01
I dv

C= f(0)+ —Imf"'( ')—
o

oa dV12

+ —
, I rf " ( )-f( )). (33)

v

Now, from the way in which f~"&(v) was defined and
Eq (2'7) vre. have that

f(v) —f&") (v) & 0 as v —+~ .
Subtracting Eq. (30) from Eq. (31), and letting v &~,
we then obtain

so that it has the form of a finite-energy sum rule. "
Equation (33) for the case f(v) = fi(v) was first derived
in this form by Creutz, Drell, and Paschos. "

Equation (33) or (34) tells us that purely from a
knowledge of the imaginary part of f(v) and f(0), we
can determine C, i.e., from the behavior of Irnf(v) at
high energies we can determine Imf'~)(v) and then an
integral over all energies of ImL f(v) —f'~) (v)jgives us C
if we know f(0) All this of. course should be no surprise—given the imaginary part of f(v) and f(0), the dis-
persion relation gives us Ref(v) and we can then deter-
mine the constant C by comparison with Refers)(v).
This, in fact, is just what we did in Sec. IV. What all the
above manipulation does for us is to bypass the actual
calculation of the principal-value integral and to give
us a simple sum rule, Eq. (34), from which we can
calculate C immediately by doing an ordinary integral
over total cross sections.

For the particular amplitude we are interested in, we
have fi(0) = n/M~= —3—.0 pb GeV. Furthermore,
from the measured total cross sections we see that above
W=2 GeV Imfi(v) appears to be rather smooth. This
is also the point at which systematic measurements in
small steps of 8' stop at the present time and at which
we have joined the power-law 6ts to the high-energy
data onto the low-energy data in doing our calculation
of the dispersion integral. We are thus assuming that
above 5"=2.01 GeV the power-law fits are a good
representation of the total cross sections, i.e., above
W=2.01 GeV (v=1.68 GeV) we are assuming Imf(v)

"R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(&968).

18 M. J. Creutz, S. D. Drell, and E. A. Paschos, Phys. Rev. 1'78,
2300 (1969).
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FORWARD COM PTON SCATTERI NG

smooth joining on to the low-energy data, particularly
if one also wants to help decrease the magnitude of C by
a systematic shift downward in that same low-energy
data. It should also be noted that the fits (8) to only
the counter and bubble-chamber experiments at high
energies, which have the smallest quoted errors, give the
largest magnitude for C. As for the value of n(0), which
is representing here the effective Regge trajectory
intercept of the I" and A2, we note erst of all that the
most important of these two trajectories for the case at
hand appears" to be the I".Secondly, the best 6ts to
the hadronic data of the form ar ——ci+csv &o& ', es-

pecially recent its" using both finite-energy sum rules
and the hadronic total cross-section data, show that
ai (0) 0.5 or greater, Not smaller.

Thus, while the possibility exists that a combination
of systematic shifts in the data and/or a change in

Regge parameters will result in making C consistent in
magnitude with zero, " it is suggested by the present
data and our high-energy Regge fits to it that C~O, and
in fact that C~—3 pb GeV, the value of the Thomson
limit. In Regge language, such a real constant term in
the high-energy forward amplitude could correspond to
a Regge pole with n(0) =0. Whether rr(t) =0, so—that we

are dealing with a 6xed pole at J=O, can only be
established by calculations for t/0, which are outside
the scope of this paper. In any case, the presence of such
an extra real constant term at 3=0 already has some
interesting consequences theoretically for other calcu-
lations and sum rules. "

VL CONCLUSION

Under the assumption that the forward dispersion
relation for fi(v) of Gell-Mann, Goldberger, and Thir-
ring is correct, we have calculated Reft(v) from the
measurements of the total photoabsorption cross sec-
tion. In the process we have made smooth fits to both
the low- and high-energy cross sections. Our results

suggest, but do not conclusively prove, the existence of
an extra real constant in the high-energy behavior of

fi(v) beyond what the energy dependence of the imag-

'o See the data on o.r(yp) —or(pn) of Refs. 11 and 12 and the
talk by H. Harari presented at the Fourth International Sym-
posium on Electron and Photon Interactions at High Energies,
Liverpool, England, 1969 (unpublished). From the data it appears
that the A~ contribution to the decreasing part of the total cross
section is less than 30 j& of the I" contribution.

'0 See V. Barger and R. J. N. Phillips, Wisconsin report, 1969
(unpublished). We thank Professor Barger for a discussion of this
work and other determinations of a~. (0).

We thank M. Creutz at SLAC and M. Wong at DESY for
discussions on their work and the possible errors in calculations of
the value of C.

22 See the discussion of the neutron-proton mass diRerence in the
talk of F. J. Gilman presented at the Fourth International Sym-
posium on Electron and Photon Interactions at High Energies,
Liverpool, England, 1969 (unpublished). Sum rules for forward
Compton scattering on I=1 targets (with I=2 in the t channel)
could also be eRected by a similar fixed pole at J=0. We thank
H. Harari for discussions on this subject.

inary part and Regge theory would predict. "This extra
real constant is consistent in sign and magnitude with

the value of the Thomson limit fi(0) = —n/~~.
There are a number of experiments which could help

settle the question of whether the extra real constant C
is present. Obviously more accurate total photo-
absorption cross sections even at the energies already
measured will help. More important are systematic
counter or bubble-chamber measurements in the energy
range v=1.0—3.0 GeV. These are needed first of all to
make sure that the cross sections in the upper resonance

region, which come at present only from the electron
scattering extrapolation, are not systematically high or
low. Secondly, such measurements will show whether
above v= 1.68 GeV (where we have joined on our high-

energy fits) the total cross section has any small
"bumps" left in it and more generally how well our
smooth fit to the high-energy data fits the total cross
sections just above the resonance region. Some total
cross-section measurements of high accuracy at the
other end of the energy spectrum, namely very high
energies (say, v= 30—150 GeV at Serpukhov or Weston),
would be very useful in tying down the other end of our
high-energy fits. Between these two additional sets of
measurements we think one can settle the question of
whether C/0 and whether it has the value of the
Thomson limit to within 50% of that limit.

Of course, all this could be best settled by a good
direct measurement of Refi(v). This would also test the
validity of the forward dispersion relation, which we

have been assuming in our discussion of the magnitude
of C. At v= 5 GeV, for example, the presence of C= fi(0)
makes a 20% difference in the value of Refi(v). Un-

fortunately, it does not appear that we will soon have
such a measurement. Recall that (do/df)i=o~ ~fi(&) ~'

+
~ fs(v) ~' for Compton scattering. Thus the forth-

coming measurements of (do/dk), o will give us

I
Reft(v) I'+

I fs(v) I'»»nce we k»w Imfi(v) from the
total cross-section measurements. Since we find ~Reft/
Imfi~ &0.3 for p)5 GeV, ~Reft(v) ~' contributes less
than 10%of (do./dt), o for v) 5 GeV. This is of the same
order as the error in ~Imfi(v) ~' due to the errors in the
total cross-section measurements, so the measurement
of (do/dt) &=o at high energy will only yield a, very rough

upper bound" on ~Reft(v) ~. At the present time it is

probably more relevant to assume the forward disper-
sion relations are true and then to derive information

from (do'/df)i=o about
~ f, (v) ~s at high energy, since

experimentally we know essentially nothing at present
about the high-energy behavior of f, (v).s4

"See in this connection J. K. Walker, Phys. Rev. Letters 21,
1618 (1968).

"The energy dependence of f&(v) is interesting from the point
of view of Regge theory since it receives a leading contribution
from trajectories of even signature and odd parity which is other-
wise hidden by higher trajectories. See the discussion in S. L.
Adler and R. F. Dashen, CNnent Algebras (W. A. Benjamin, Inc.,
New York, 1968), p. 330.
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This leaves us with trying to measure Reft(v) at low
energies where it is large compared to Imft(v). Because
of background from z' —+ 2p it is extremely difficult to
measure (do/dt) ~ s f—or Compton scattering at low
energies. Our best hope of testing the dispersion relation
is then the possibility of measuring Reft(v) by inter-
ference of the amplitude for electron-positron produc-
tion by Compton scattering with the Bethe-Heitler
amplitude, ' and then extrapolating to zero invariant-
mass electron-positron pairs. Exactly how difficult this
will prove to be experimentally remains to be seen.

A side result of our calculation is that the ratio of real
to imaginary parts of the forward Compton amplitude
is much the same as that for most strong-interaction
forward amplitudes. " In particular, if we omit the
contribution of the possible extra real constant, then the
ratio of real to imaginary parts is less than 20% above
y=5 GeV, much as in pion-nucleon scattering (even
keeping the real constant, the ratio is less than 30%).
If we assume the validity of the vector-dominance
model, then the forward amplitude for y+p ~ p+p
should have a similar ratio of real to imaginary parts.

"See V. Barger, Ref. 15. Our ratio of Ref~/Itnfi also appears
to be in rough agreement with that found in a dispersion relation
calculation done at DESY with somewhat different initial input:
see J. Weber, DESY Internal Report No. DESY F1-69/3, 1969
(unpublished).

The recently suggested" ratio of —0.45 at 6 GeV is then
much too large compared to our calculation or to other
strong-interaction processes.

So, although the prospects still do not look very good
for an early experimental test of the forward dispersion
relations, we have seen a number of interesting con-
sequences of our study of forward Compton scattering.
In particular, we hope that we have provided sufficient
encouragement to experimentalists to make further
measurements of the total photoabsorption cross
sections, to measure the magnitude of (da/dt), =s for
Compton scattering, and to try to measure Reft(v) by
interference of the Bethe-Heitler amplitude with the
Compton amplitude for pair production.
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Conversely, if it is shown experimentally that the ratio of real to
imaginary parts of the forward amplitude for y+p ~ p+p is—0.45, then the calculated ratio of real to imaginary parts for the
forward Compton amplitude, which is much smaller in magnitude,
would mean the vector-dominance-model connection between the
two processes breaks down.


