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Martin and Newton have proved some sufhcient conditions of solubility and uniqueness for the unitarity
integral equation, Application to experimentally known differential cross sections justified by appropriate
assumptions shows that these conditions are, in general, not satisfied. Similarily, the angular distribution
discussed by Crichton does not meet the solubility condition.

It was shown' 2 that the condition

supQ(a b)(1
ECENTLY Martin' and Newton have discussed

the possibility of constructing the scattering am-

plitude from the exact knowledge of the differential
cross section at a given energy. The problem is posed

by Ref. 1 in the following way: Considering scattering
of two scalar particles below first inelastic threshold,
assume we can measure the differential cross section
with "infinite" accuracy. Then two questions arise:

is sufficient for the existence of a solution for (2),
whereas the condition'

supQ(a b)(0.79 (6)

guarantees uniqueness.
Evidently, the discussions presented in Refs. 1 and 2

were motivated by the efforts to construct amplitudes
which would agree with experimentally given angular
distributions. However, model-independent diff erential
cross sections are always related to processes involving
particles with spins, and in most cases energies are
well above first inelastic thresholds. Yet one is still
tempted to check whether conditions (5) and (6) are
met by the experimentally given angular distributions.
One may argue that, for energies high enough, it is
customary to ignore the spin variables. Moreover, the
experimental data indicate that, for orlop and pp pro-
cesses, the parameter n=o&,&/a. , idoes not vary signifi-

cantly with the energy (for energies high enough).
Accordingly, although in principle one should insert on
the right-hand side of (2) some Jttrtctiort g(t) for super-
threshold energies, one is tempted to approximate in-
elastic unitarity by choosing P to be constant. Indeed,
one should choose &= et (cr&1). All in all, it may be that
we are not going too far from the real situation by con-
sidering the particles as spinless and the relevant
processes as "elastic-like, " in the sense that p may be
approximated by o,.

Table I lists 11 different angular distributions which
were checked, grouped into four groups; the first 10
distributions were normalized in such a way that they
assume the value 1 in the forward direction. Group I
presents low-energy sr+p elastic differential cross sec-
tions. ' Group III presents, in the forward and backward
directions, familiar exponential angular distributions,
typical for most high-energy cases. Groups III 1, III 2,
and III 3, respectively, approximate the p-p differential
cross sections corresponding to invariant squares of
total energies of 18, 20, and 22 GeV'. (We did not care
to approximate the data in the interval between the

(a) With given angular distribution, does there exist
an amplitude which satisfies elastic unitarity?

(b) If (a) has a positive answer, does the angular
distribution determine the amplitude uniquely?

Specifically, let A (s, cos0) be the relevant amplitude.
Define the dimensionless function Ii through the relation

Ii (s, cos0) =kA (s, cos0)
= G(cos0) exp[if(cos0) j, (1)

where k is the momentum of each particle in the c.m.
system. [The variable s was omitted in the second line
of (1).j Elastic unitarity reads

4srG(a b) sing(a b)

dQ(e)G(a e)G(b. e) cos[P(a. e) —P(b e)]. (2)

The variables in (2) refer to particle 1 in the c.m.
system. a and b are three-dimensional unit vectors
parallel to its incoming and outgoing direction, re-

spectively, and e is an arbitrary three-dimensional
unit vector.

Considering (2) as an equation for tt, one naturally
focuses on the kernel:

1 G(a e)G(b e)
H(a, b; e)=-

G(a b)
(3)

Define

Q(a b) = d&(e)&(a,b; e).
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TABLE I. Characteristics related to the unitarity conditions and some elastic differential cross section. Column 2 indicates the correspond-
ing reference number, as cited in Ref. 3. The values of T (column 3}ai'e given in GeV, and those of of,,t, (column 5) are given in mb.

Ii
I2
I3
I4
I5

Ref. T Angular distribution

18 0.120 0.460—0.389 cos8+0.929 cos'8
25 0.150 0.352—0.108 cos8+0.756 cos'9
25 0.170 0.315—0.042 cosg+0. 727 cos'0
31 0.189 0.202+0.086 cos9+0.712 cos'8
34 0.220 0.227+0.152 cosa+0.621 cos'0

(k'/4x)
0'/pe crfpg .Q (1) supQ n

120 0.75 0.58 1.11 1
165 1.31 0.55 0.97 1
195 1.81 0.54 0.94 1
200 2.11 0.48 0.90 1
141 1.78 0.52 0.87 1

0.75 0.435
1.31 0.70
1.81 0.97
2.07 1.00
1.78 0.93

0.84
1.28
1.70
1.90
1.54

nX
Q(i) supQ

II 1
II 2

82 1.500 (1.01—e ') 'L1.01—exp( —cos'0)]
82 1.500 (1.02 —e ') 'L1.02 —exp (—cos'S) ]

35 4.3 0.15 0.57 2.33 2.83 1.00
35 4.3 0.165 0.54 2.33 2.59 1.00

3.76
3.30

III 1
III 2

III 3

IV

7.71
8.78
9.84

exp) —20K(1+0.437 1'—0.069Y')], where
1'= (1—cos'8}X0.875
I'= 1—cos'8
Y= (1—cos'8) )& 1.125

2.1606+0.2732Pi (cose) +2.68/9Ps (cosg)
—1.8924Ps (coss) +1.5040P4 (coso)

40 30.8 0.028 1.42 4
40 33.6 0.025 2.41 4
40 39.2 0.022 4.36 4

0.77 3.15

8.83 1.00 50.07
10.12 1.00 97.65
11.41 1.00 199.22

"forward" and "backward" regions. ) Group II presents
an "intermediate"-energy kind of angular distribution.

t It may approximat= very qualitatively —the m+p

angular distributions around T=1.5 GeV, up to 0,
=90'. See Ref. 3, Fig. 12(d). Forward-backward sym-
metry was enforced, since we want to examine the
situation for identical particles. j The two angular dis-
tributions di8er from each other only slightly: The
minimum of the angular distribution was varied to
check the effect on Q.

Finally, group IU consists of the distribution ex-
amined by Crichton. 4

The normalization G(1)= 1, mentioned above, is non-
realistic. The optical theorem requires that

G(1)=
1 k' k'—o;.,=) (s) & —o,.„

sing (1) 4rr 4s.
(7a)

4 J. H. Crichton, Nuovo Cimento 45A, 256 (1966).

where f(1) is the phase of the amplitude in the
forward direction. It follows that the G of groups I, II,
and III (appearing in Table I) have to be "renormal-
ized" by X(s) Las defined in (7a)j. Note that G —+ XG

implies, according to (3) and (4), the transformation
Q~ XQ.

At the same time, it follows from the reality of P(1)
that

1 k' 1 k'
Q(1) = —o,~& —o~,t ——sinlf (1)&1, (7b)

G(1) 4' G(1) 47r

which again restricts the value of X(s).
The inequalities (7a) and Q(1)& 1 imply each other in

the elastic region; they become independent in the non-
elastic ones. The values of X chosen in Table I are the
maximal ones compatible with both (7a) arid (7b).

The functions Q(a h) were calculated numerically,
using a CDC-3400 computer. Inspection of Table I
reveals that no case meets condition (6). This is not
surprising, since the existence of ambiguities in the
values of the phase shifts is well known. It is significant,
however, that only Case (I1) is compatible with condi-
tion (5), whereas the distributions (I2) to (I5), which
still fulfill elastic unitarity, are not. The same holds true
for IV, and the situation is even worse in the inelastic
cases (groups II and III).One feels that the mathemati-
cal analysis of (2) has to be further developed. It may be
that the norm used by Refs. 1 and 2 is too strong, such
that condition (5) becomes too restrictive.

The author is indebted to Professor O. W. Greenberg
and Dr. S. Nussinov for helpful and stimulating
discussions.


