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Production of Single W Mesons in Electron-Positron Colliding Beams
and in Electron or Muon Scattering Experiments*
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Total cross sections for the production of single 5' mesons in electron-positron colliding beams and in
the electron scattering experiments have been calculated. If the erst type of cross sections are estimated
by calculating the simplest lowest-order dominant Feynman graph, one finds that they are remarkably
large (~10 30 cm ). Indeed, a calculation in the literature which includes all lowest-order contributions
apparently confirms this result. These estimates are in striking disagreemept with calculations for the
related process of neutrino-induced production of single S' mesons. These suggest a cross section of 10 "
cm2, a result which is to be expected from a naive power-counting argument. We have calculated the cross
sections and have found that they are in fact quite small and of the same order of magnitude as the neutrino-
induced cross sections. We present a general gauge-invariance argument which illustrates how almost any
trivial error in the calculation can easily lead to errors in the result oi at least L(mass oi the proton)/(mass of
thepositron)g' 10'. Basically, gauge invariance demands a critical cancellation in the differential cross sec-
tion when the mass oi the exchanged photon (E') becomes very small. If such a cancellation does not take
place {because of some small error), the region around E'= 0 is enormously enhanced by the smallness of the
mass of the positron, and large errors are induced in the final result. An examination of the calculations that
lead to a large total cross section does indeed show that each violates the constraint of gauge invariance.

I. INTRODUCTION
" 'N 1958 Feynman and Gell-Mann' put forward the
~ - so-called "intermediate-vector-boson hypothesis"
as a possible explanation for the structure of the weak-
interaction Lagrangian. Since that time a great deal
of effort, both experimental and theoretical, has been
devoted to attempts to "see" this hypothetical particle
(nowadays referred to as the W boson). ' As each new
accelerator is built and physicists are able to probe
deeper into the structure of the "elementary" particles,
new searches for the elusive W begin. In this paper we
examine the feasibility of producing single 8"s at
energies that will soon become available (or, in some
cases, are already available) at various new machines.
Some of the experiments we have in mind are

(i) e +e+~ e++W +v„
(ii) e +p ~ p+W +v„
(iii) p

—+p —+ p+W +v„.

The first process could be performed at the electron-
positron colliding beam facility presently under con-
struction at the Cambridge Electron Accelerator. The
maximum total center-of-mass energy here would be

6—7 GeV, so, if the cross section for (i) were suK-
ciently large, such an experiment could signi6. cantly
increase the lower limit for the mass of the W (Ms ).
It should be noted that the threshold for (i) is half as
large as that for the 8' pair-production process,

e++e —& W++W
~ Supported in part by the U. S. Atomic Energy Commission,

under Contract No. AT(30-1)-20/6.' R. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
See, e.g., G. Bernardini, in

Symmetries

it E/ementary Particle
Physics, edited by A. Zichichi (Academic Press Inc. , New York,
1965).
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and so is particularly interesting. The second reaction
could, if sufFiciently large, be explored at the Stanford
Linear Accelerator Center; a beam energy of 20 GeV
would again lead to the possibility of extending the
upper limit for M~ to 6—7 GeV. Finally, the third type
of reaction is a possibility either at the new 80-GeV
machine in Serpukhov, USSR, or at the proposed
200-GeV machine at Batavia, Ill. Here, one would be
able to set a lower limit for Mq at roughly 18 GeV.

The reactions (i)—(iii) are all "semiweak, " that is to
say, they each proceed via electromagnetic as well as
weak interactions (the specific Feynman diagrams are
illustrated in Fig. 1). One therefore expects a typical
cross section to be of the order of 10 "cm', which in

general is too small to be detectable. This, for instance,
is roughly the sort of number obtained in calculations
of the "inverse" process, namely, neutrino-induced
production of H/"s. 3 However, there exists in the liter-
ature' a calculation of (i) which claims that a typical
cross section for this process is 10 '0 cm', in which case
copious numbers of W's would be produced (provided,
of course, they exist). This is a very surprising and, if
true, important result. In fact, our original motivation
for undertaking the rather laborious calculations re-
ported in this paper was to try to understand why (ancl
if) these cross sections are so large. We have found,
contrary to the claim of Choban, 4 that these cioss
sections are mot anomalously large. Furthermore, we
can show from a general gauge-invariance argument that
almost any error in the calculation can lead to extremely
large errors in the numerical result (several orders of
magnitude, in fact). Indeed, our calculation of the

~ T. D. Lee, P. Markstein, and C. N. Yang, Phys. Rev. Letters
7, 429 {1961);J. S. Bell and M. Veltman, Phys. Letters 5, 94
{1963);5, 151 {1963).

'E. A. Choban, Yadern. Fiz. 7, 375 (1968) LEnglish transl. :
Soviet J. Nucl. Phys. 7, 245 (1968)g.
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square of the invariant amplitude summed over the
various spins diRers from that reported by Choban, and
it is most probable that the large discrepancy is to be
found here, particularly since his expression violates
gauge invariance. We shall elaborate upon this aspect
of the problem below. We conclude therefore that, at
least at the present time, the experiments (i)—(iii) are
not feasible. It is possible, however, that the use of
large-Z targets could sufficiently enhance the cross
section and make realistic experiments a possibility. '
For instance, if the process were coherent, one gains
a factor of Z', which could bring the cross sections for
processes (ii) and (iii) up to 10 '4 cm'. Recently some
attention has been paid to such a possibility for reaction
(iii) at the 200-GeV machine. '

The plan of the paper is as follows: In Sec. II we
derive the various cross-section formulas. In Sec. III
we present numerical results for total cross sections as
functions of both 3f~ and the relevant beam energy.
Finally, in Sec. IV we discuss the calculations and their
implications.

II. CALCULATION

To lowest order in both t, and 6, the relevant Feyn-
man diagrams are those shown in Fig. 1. For process
(i) there are two further graphs (shown in I ig. 2) that
can contribute. Because these diagrams are dominated
by the direct-channel photon pole, they will be weighted
with a factor 1/P. ' (where P is the incoming total center-
of-mass energy) and are thereby considerably dampened
with respect to the graphs of Fig. 1.We therefore ignore
their contribution to the cross section. The calculation
is further simplified by neglecting the magnetic and
quadrupole moments of the 8". These likewise only
serve to complicate the calculation without affecting
the results qualitatively. We have also assumed that
the t/t/' does not participate in any strong interactions
so that its electromagnetic coupling can be considered
pointlike. On the other. hand, when considering processes

(ii) and (iii), we shall introduce form factors at the
nucleon electromagnetic vertex. To begin with, however,
we shall concentrate on process (i) and take pointlike
couplings for the electron. We should point out at this
stage that, in contradistinction to Choban, we do not

neglect the electron mass anywhere in this calculation.
We shall discuss this point further in Sec. IV.

We assume that the lVve interaction can be described

by the Lagrangian6

GzrW 4 (,lv„(lyons)4 („)+H.c. , (1)

'L. M. Lederman, in 1968 Summer Study, National Acceler-
ator Laboratory, Batavia, Ill. , Vol. 2, p. 55 (unpublished).

6 We use a metric in which goo ——1 and g;J= -b;;; thus the scalar
product of two four-vectors A and B is A.B=AI'B„=apbo—a.b.
A four-vector will be represented by a capital letter (e.g., A =—A &}.
The corresponding three-vector and its magnitude will be denoted
by the lower-case letter (e.g., o—=

~
a (). The magnitude of the time-

like component will be written as a'. We use the following repre-

p(K, )
e(P,}

e(Kl

(a)

e (P, )
e (Ki) (b)

e'(Pi)

Fzo. 1. Lowest-order contributions to processes (i)-(iii).

The Feynman amplitude corresponding to diagram
1(a) is

(—e'G ) „(E)—g.t(Q)
K2

X rc(Ks)(1+ps)y y„e(Ez)
Ez+E—m

and, similarly, for 1(b),

X (K )f(2Q —E),g' —Qeg„—(Q —K) g„'j

X
(Q —K)' —M p'

(Q —K)e(Q —K)

X(1+ps)y.l(Kz) . (5)

In these equations p represents the polarization vector
of the 8" and e& the polarization vector of the virtual
photon generated by the positron:

e„(K)=8(Pz)y„e(Ps) .

In Eq. (5) we have taken the electromagnetic vertex

sentation for the Dirac matrices:

~0 1}' ~* ~— 0~, and yq ~1 0~ '

We set A =c= 1 throughout; the 6ne-structure constant
n (= 1/13/) is therefore e'/4s. .

where W„ is the vector field of the W, it (,&
is the electron

field, and f(„& is the neutrino field; the coupling
constant G~ is related to the standard Fermi coupling
constant G (~10 'M~ s, where M~ is the proton mass)
by the equation Gs '= (G/%2)Mn'. The kinematics are
described in an obvious way by the equation

e+(Pz)+e—(Ei)=e+(Ps)+W (Q)+z (Ks). (2)

We introduce the quantity E to denote the momentum
transferred by the positron:

K=Pi Ps Q+—Ks ——Kz. —
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TABLE I. Cross sections in units of 10 ' cm' for e +e+ —+ @++IV +v, .

energy
GeV)

(«v)X
1.5
2
2.5
3

5
6

3.61
0.740
8.55X10 '

3.5

6.95
1.92
0.453
5.56X10 '

11.3
3.76
1.17
0.303

16.4
6.25
2.30
0.785
2.75X10-2

22.3
9.35
3.87
1.54
0.160

5.5

28.6
13.0
5.87
2.60
0.417
1.56X10-2

35.4
17.0
8.27
3.97
0.817
9.56X10 '

6.5

42.5
21.5
11.0
5.64
1.38
0.255
9.75X10 '

49.8
26.3
14.1
7.60
2.11
0.501
6.22X10 2

IMr'I'= (~'G~/&')'4. ~-s~-s...
where t„„ is derived from the sums over initial and final
positron spins:

t„„=Pe„(E)e„(E)
= (1/2M') (g„„E' E„E„+L„L„),—(9a)

with L=P,+P2 and M is the positron mass. Note that
for reactions (ii) and (iii), t,„c otni antshe electric and
magnetic form factors G~ and G~'.

1
&„„=P&e„(Z')e„(Z')= G~'(g„,K' E„Z,)—

2M~'

+(G~'—
4M„'

(G~' G@') L„L„—. (9b)
4M „2—E'

The fourth-rank tensor J p„„contains all the trace
calculations resulting from the sum on the electron-
neutrino spins and is derived from the quantities in
square brackets in Eq. (4) and curly brackets in Eq. (5).
In the Appendix we give the explicit form for T„„

W(Q)

e'(P, )

e(p, )

v(K&)
w(Q)

of the tV to be purely point-charge-like. An important
property of these amplitudes is that taken together they
are gauge-invariant; taken separately, they are not.
Recalling that the sum over. the 8' polarization is

~.~-=Z,.'(e)~~(e) =-g. +Q.e /M-, (n

we see that the spin-averaged squared matrix element
will be of the form

=6 pJ p„„.Note that, because t„„ is a conserved sym
metric tensor, we can express T„„in the form

Tl =&(Quit&+E&IQ) ~II +&Qve+~E&u&~' (1O)

The differential cross section can now be written in
the form

M' 1 ' d'kg d'q d'p2

4pgm 2~ k20 q' p20

X84 (Q+K2 —Kg+P2 —Pg) . (11)

where
I Mr; I

~oT+cv, +u2/T+co3/T')

T= (Q —Z)' —Ms '—.

(12)

We are now left with the integrals over p2. The azi-
muthal integration is trivial and simply contributes a
factor 2x. Working in the frame where k~ ——0, we can
now write the doubly differentiated cross section in the
form

In this equation we have evaluated the standard invari-
ant Aux quantity in the reference system where k~ ——0.
The volume elements written in the square brackets in
Eq. (11) are, in fact, Lorentz-invariant quantities and
can be evaluated in any frame. We choose to work in
the c.m. system of the outgoing vS' pair for the erst
two volume elements. We eliminate the 6 functions by
performing an integration over k2 followed by an inte-
gration over q. We next perform an integration over the
azimuthal angle of q, p~, for example; see Fig. 3. This
is an easy task if we define the s axis along k and take
the xs plane to be defined by the momenta p& and p&.

The 0~ integration can likewise be performed analyt-
ically by simply expressing

I Mr, I' in the form

e(K,) e'(Pi) e(Kl) e(R)

FIG. 2. These graphs also contribute to process (i). However, they
are damped relative to Fig. 1 because of the photon pole.

—1Gs'u' S—Ms" p2
X(S,E') (14)—

2S pgdp20d cos8 4n- mE'

S= (Q+E'2)'.

where the invariant quantity X(S,K2) is given explicitly
in the Appendix. The invariant 5 is the square of the
total energy of the outgoing vt/t/" pair in their c.rn.
system:
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Tmx, x II. Cross section in units of 10 4' cm' for e +p ~ p+W +~,.

nergy

1.5
2
2.5
3

5

29.1
5.98
1.05
0.115

41.8
9.82
2.14
0.358
3.66X10-4

55.8
14.5
3.62
0.774
7.03 X10-3

71.0
19.8
5.50
1.38
3.23X10 '

20

87.3
25.9

7.75
2.17
8.85X10~
7.63X10 '

III. NUMERICAL RESULTSSince the natural systems of processes (i)—(iii) are
quite different, it is convenient to express (14) totally
in terms of invariants:

p20= (E' 3P S+—E')—/2m

= (0 ' M'+p—1'p2')/p1p2,

p10 = (E'—M' —m')/2m
where

and
p1—(p 02 M2)1/2 p (p 00 M2)1/2

E is the total c.m. energy of the system. We obtain

Gs n)'S —Ms" 1 X(S,E')
(19)

P1m/' S 32m E4

In the following we shall be mostly interested in the
total cross section. This can be written in the form

&~—~)' dS—(S—Ms')
5

Gg.a

p1m 327f ~0

K'(+& dE'
X X(S,E'), (20)

K (-)
where

Z&y& =8& (B C)—
(E'+M' m') (E'+M' S)— —

8= —2M', IV. DISCUSSION'

The total cross sections for processes (i)—(iii) have
been computed for laboratory energies relevant for the
accelerators mentioned above. Various values for the
mass of the W meson above 1.5 GeV have been taken.

The results for the colliding-beam cross sections are
given in Table I. It is clear that the results are much
smaller than those of Ref. 4. It is unlikely that cross
sections this small can be measured in colliding-beam
experiments in the near future.

The cross sections for reaction (ii) are given in Table
II. These cross sections are smaller than one would
expect for the neutrino-induced reaction, i.e., 1 1+P ~P
+W++1 . In fact, when computed at the same values
of energy and mass of the W as Ref. 3, the muon-
induced 8' production cross sections turn out to be an
order of magnitude smaller than the v„-induced ones.
However, it should be pointed out that there is no
a priori reason why they should be equal. In fact, in
the neutrino-induced reaction no diagram occurs of the
type in Fig. 1(a), in which the propagator does not
have an angular dependence.

In Table III the results for reaction (iii) are tabulated.
Although, in principle, very high M~ masses can be
produced at the considered energies, the decrease of the
cross section with increasing M~ is such that probably
only masses up to 5 GeV can be detected at the highest
energies. The energy dependence of these cross sections
is plotted in Fig. 4 for three M~ values.

and
C=M'(S M')'/E'. —

where
Gs= (1—E'/M1') ',

v'=0 7

(21)

It is clear from this formula that it is impossible to
proceed further analytically and recourse to a computer
is necessary. The results of such an investigation are
presented in the following section. In cases (ii) and (iii),
proton structure is introduced by use of Eq. (9b). We
use the "scaling law" G~= G44//4„and insert the dipole
form factor for G~, i.e.,

As noted in the Introduction, our results are in clear
disagreement with those of Choban. 4 He found star-
tlingly high total cross sections and it is the purpose of
this section to speculate as to how this might come

P&G. 3. This shows the co-
ordinate system chosen to per-
form the integrations over q.
Note that the x and y axes are
so chosen that pI and y2 (and
therefore 1) lie in the xs plane.
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a
(10 cm )

6

2-

50 100 150 200

MUON LABORATORY ENERGY XN GeV

I'yo. 4. This shows the total cross section for p +p ~p+S' +v„as a function of the muon laboratory energy for JI~=2, 3, and 4 GeV.

about. We first note that his expression for T„„)Eq.(21)
of Ref. 4) divers from ours LKq. (10)j in that it does
not contain any terms proportional to g„„. It is not
dificult to show that this implies that his expression
is not gauge-invariant. Although this already casts

some suspicion upon his results, it would nevertheless
seem, at erst sight, rather unlikely that this could
induce such a large discrepancy. We now proceed to
indicate that such an error could, in fact, lead to a very
large overestimation in the final result. The crux of the
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TABLE III. Cross sections in units of 10 0 cm' for p, +p —+ p+8' +v„.

127

+Muon lab energy
(GeV)

50 100 150 175 200

1.5
2
2.5
3

5
6
7
8
9

10
12
15

3.80X10'
1.63 X10'
7.37 X10'
3.44X10'
7.56
1.50
2.24X10 '
1.79X10 '
2.87X10 4

6.33X10'
3.O2X 102
1.53 X10'
8.04X10'
2.32 X1Q'
6.72
1.83
4.17X10-i
6.66X10 '
6.30X10 '
1.57X10 4

8.75X102
4 46X10'
2.41X102
1 35X10'
4 51X10'
1 56X10'
5.31
1.69
4.76X10 '
1.04X10 '
1.53X10 '
2.12X10 '

1.11X10'
5.88X10'
3.32 X10'
1.95 X10'
7.15X10'
2.74X10'
i.o6xio'
3.99
1.42
4.51X10 '
1.17xiQ I
2.81X10 '

1,32 X10'
7.27X102
4.24X10'
2.57 X10'
1.O1XiO2
4.16X10'
1.74X10'
7.30
2.95
1.12
3.86X10 '
2.49X10 2

7.11x].0 6

1.53X103
8.63 X10'
5.16xio~
3.20X10'
1.32X102
5.76X10'
2.57 X10'
1.15X101
5.10
2.17
8.66X10 '
9.79X10-2
4.96X10 4

1.73X10'
9.94X10'
6.06X10'
3.84X10'
1.65X10'
7.51X10'
3.51Xioi
1.66X10'
7.79
3.60
1.59
2.47 X10-~
3.86X10 '

argument rests on the observation that gauge invariance,
1.e.)

E„t„„=t„„K„=K„T„,=K„T„„=0, (22)

and the explicit form for t„„,Eqs. (9), imply that when
E'~0,

(23)X(S,E') —+ AM'+BE',

where A and 8 are independent of E'. For simplicity,
take E&)m')M') then

E( )'~M'S'/(E' —S)E',

and we obtain from the lower limit of the K' integration
a contribution

A (E'—S)E' M'S'
+B ln

S' (E'—S)E'

This shows two important characteristics: (a) Terms in
the integration proportional to 3f' that do not vanish
near the lower limit can contribute sizably to O-t, &.

The same holds for terms A'nt2 in Eq. (23), which occur
when T„„ is calculated neglecting the mass of the
electron rn (rn=M in the case under discussion).
Although such terms were ignored by Choban, they
would not be expected to induce errors larger than a
factor of 2 or 3. (b) If the positron is replaced by a
proton Lfor example, if we look at process (ii) instead
of (i)], o„& is not expected to change drastically. The
change can be characterized by the factor ln(M'/M~').
Indeed, this seems to be supported by our results. In
particular, it should be noted that our cross sections
are not significantly different from those calculated
for neutrino-induced production of Ws from protons. '

Now we come to the crucial point. Suppose the ex-
plicit expression used for T„„ is not gauge-invariant;
then one would expect that in the limit E2 —+ 0, (23)

2'(E' —S)E' M 'S' ) C'(E' —S)E'
+B' ln

k(E' —S)E'1 M'S'
(27)

Notice that the last term, which rejects the error in the
calculation, is enhanced by a factor 1/M'. We might.
therefore expect an error (M„/M)' 10' over a calcu-
lation where the smallness of the electron (or positron)
mass does not enter Lsuch as in process (ii)]. Since
Choban's T„, does not contain a g„„ term, it cannot be
gauge-invariant, and so it is not surprising that he
obtains anomalously large cross sections. Finally, it
is worth pointing out a further interesting consequence
of the above argument. In order to make a quick esti-
mate of o-~,~ for these processes, one might calculate
only one of the diagrams of Fig. 1—Fig. 1(a), for ex-
ample: The contribution of this diagram alone to o-t,,~

is particularly simple to evaluate. However, as pointed
out at the beginning of Sec. II, this diagram alone is
not gauge-invariant and one would be making a gross
overestimation for o-&,~. There is clearly an important
lesson to be learned here.
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is replaced by

X(S,h') —+ A'M'+B'E'+C', (26)

where A', 8', and C' are independent of K' and do not
vanish in the limit M' —+ 0. Repeating the above argu-
ment, we see that we now obtain a contribution

As mentioned in the text, we can write
APPENDIX

&"=~(Q.E~.+Q Er.) Pa"+vQ.Q.+~E—r.Er'
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We express the invariants a. 8 in the form

where

C)(2/~+CKp/~ I P Po~+PI Pp/~+PS/~ 1 7 72/~+72/~

,'8 =—82 82/—7+82/T'

1( S 1 m' (
w = —

l

(-'IC' S) m'—4K—'+4—2Iw' — (S—2K') —
l

-', + ( ',K—'+m—'+2Iw')),
a2(M)4 2Mg ' M)) 'k ag

—E'(S—K') m'
—K' —2m'+ (—-,'E'+2M)4 '),

3fg2

1 1 m' 1 1
Po= —+ +

a2 8M)) 2 2M' 2 4M' 2 a23

—K'(IIw' —
S)(

m'
1(

Cy W ~1

SE'

23EIg '

M g
'—m' —2E'

835g'

m' 9 1 1
+ —+ (—2E' —m') ——(—E'+2M)4 ')

2M@2 4 43fg2 Cy

m2 3 E' m' m2

Pp Ep(mp M~2)+ pS Ep y — +
Gy 4 SMg ' 4M' ' 23Eg '

K'+2m'—
S—M)42+(2M '—E')~ 2—

4M)4 '

E4 E'
P '2I '(m' —2=K'+ -—'m' K') 'S(S IC')— — —

4Mg ' 4Mg'
m' Mg 2 —m2

+ (2IIw' IC')l S IIw'+ —— (22Iw' ——K'))
2M)4 ' 4M' '

E'

Gy

S 1 m2 1 E2 E2
+ (m2 —Ep) — —— +-

SIg ' 23Eg ' iVg2 2 23fg2 a

72 =4M)4 '+-', m' —-',E'— L (E'—S)'—m'E'j-
2Mg 2

m ( m2
K'+ ',IIw'+ ', m' S), --—

2Mg '

—1
l)g

—— —2M' '+m'+
Cy

m2Sm' 1

Mg ' 4Mg ' agog'

2
l)2 ————m' —K'+

Cy

SE' E' m'
+ —(2M)4 '—E'),

2M'' 2' g 2 agMg '

,(a, =K2] 1—
4M)4')

with u~ ——m' —S. Introducing, furthermore,

w=s'~2, kp= (s+K' —m')/2w, qp= (s+M)4')/2w, g=K' —2kpqo, l =2kq,

v+0
l, = (2p2p&m/Wk) sin0, lp= (p»+pgp)m/W l =(kp/k)lp, P= 1I1 2 =m —S—K,

n

8= —2K —4M2 C =-'E'(m'+2M' '+S Ep) D =m'K 4—(m S+E')2— —
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@re obtain

&=21(2poB+2y2)+n2A+2pyB 2y—o y2—K +482D+48tW /p F—ppnoA+n2C+p2B y2—K (pK M—g )

'yoK-'+252D+282W'/ j+ — [noC+psB+yoK'( —pK'+Ms )+252D+282W'/p'$
212 t2

(kp kp 2Q 2
+2n2W/p

l (2—2)F)—qpF —2noW/, ' F ——
qp

(2k2 2k2 ~2 l.2 ~2 t
2

/', lpqp—2g q'Il — — 2 —yF 3p'qp' ~/, 'q' Il
4k' k

2q2 ~ ko/o2 ) 2g q 2

+po (/, '——',/, ') 2 —2gF+
l

—
qol F—— — I+ (/o'qo'+2/. 'q')-

4k' &2 —l.oj k2 k &2 l-2i — &2—P

PH YSI CAL REVIEW D VOLUME 1, NUMBER 1 JANUARY 1970
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A determination is made of the constraints which are imposed upon the low-energy 'S&-'D& scattering
parameters in order that the S matrix may satisfy the known static deuteron properties. A multichannel
effective-range representation is used to derive a relationship between the phase parameters Bg, B~, and eji

at "low" energies. The relationship is violated by all of the present low-energy phenomenological determina-
tions. This indicates a discrepancy between the existing low-energy np scattering data and the static deuteron
properties, and suggests that low-energy energy-dependent phenomenology should manifestly contain the
deuteron constraints.

INTRODUCTION

A COUPLED —CHANNEL effective-range repre-
sentation, which is constrained to satisfy the

known static deuteron properties, is used to deduce
constraints on the low-energy 'St-'Dt 22P scattering
parameters. If a linear expansion for the effective-range
matrix is assumed, analyticity and unitarity, combined
with the deuteron constraints, produce "allowed"
regions for the phase parameters. It is concluded that

the constraints should be built into low-energy phe-
nomenological representations for np scattering, and
that there appears to be an inconsistency between low-

energy 22P scattering data and the static deuteron
properties.

FORMALISM

Ke use a coupled-channel formalism in which the T
matrix is

ps ' 0 Ass &ps ASD — ' ps' ' 0 1 ps(ADD 2PD) ps pD A—sD-
T=

PD — A sD A DD 2—PD — 0 PD D -— Ps PD —A sD PD(A ss 2PS)—
sphere

L = (Ass &Ps) (ADD 2PD) A8D

and the S and D subscripts indicate the '51 and 'D1
states, respectively. In order to satisfy unitarity and
time-reversal invariance, the 3 parameters are real.

pz = q and pz =q', where q is the c.m. momentum of each
nucleon. The usuaP phase shifts (88,5D) and coupling
parameter (e&) are related to our A parameters by

As+AD
T~=—tan(88+8D) =

78—j
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