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A set of invariant amplitudes for the reaction con. —+coz is constructed within the framework of the
Veneziano model by expansions of the form g (polynomials) )& (beta function). The dominant asymptotic
behavior corresponds to the f trajectory in the t channel and the p and B trajectories in the s and u channels.
Separate treatments are given for the p and B contributions. In every case the leading trajectory poles have
correct spin-parity as a consequence of enforcing proper asymptotic behavior on the invariant amplitudes.
These relations are nontrivial and differ for the p and B contributions. The detailed construction of the
amplitudes for co~ scattering differs from most previous applications because of the absence of an exotic
channel. cow. scattering is notable in the number of terms required to represent the amplitude; a 72-parameter
amplitude built using B», B», and B» cannot satisfy simple physical requirements for the p trajectory.
One must add further terms lacking the p pole (such as Bsr) in order to avoid decoupling the p trajectory. The
B contribution is easily treated in direct analogy to the p trajectory in Ax scattering. The implication of the
hypothesis of partially conserved axial-vector current (PCAC) that the invariant amplitude T& (coeKcient
of e' e) should vanish at the Adler point is somewhat delicate because of the near degeneracy of the co

and jo mesons. The signature and amplitude conspiracy relations ensure the suppression of the apparent pole.

I. INTRODUCTION
' 'N a previous work, ' a systematic method for the
~ ~ construction of a Veneziano amplitude' for the pro-
cess Am- —+Am was given. It was found possible to
obtain an amplitude satisfactory with respect to the
properties of the leading (p f) tra-jectory (i.e., correct
asymptotic behavior, pole structure, signature, spin-
parity content, factorization, and PCAC constraints).
However, the presence of spin and isospin required
many invariant functions having quite distinct asymp-
totic behavior in the independent variables. In order to
accommodate the differing asymptotic behavior and
other conditions, it was necessary to introduce several
independent terms in the Veneziano representation of
each invariant function. Although the aforementioned
physical requirements impose many strong constraints
on the amplitude, it was not found possible to find a
unique solution. At present, there seems to be no
criterion for selecting the physically relevant solution
among the class obtained, though one may hope that
the imposition of unitarity will effectively select among
these solutions. Even if the uniqueness problem should
not be resolved in the present context, the model is very
interesting in the detailed analysis it allows for physi-
cally interesting reactions. It provides a tractable
amplitude capable of interpolating between low and
high energies while exhibiting crossing, duality, and a
rich pole structure.

The reaction ~~ —+~x provides an instructive con-
trast to Am. —+Ax. In the first place, although both
reactions involve the p ftrajectory in the-s, u, and t

channels, the absence of an exotic channel in co~ scatter-
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ing requires a different construction of the amplitude.
More importantly, the effect of changing the parity of
the external vector meson may be analyzed. The effect
of changing the parity is considerable, as shown below.
The coz reaction also contains s, I poles due to the
(1+) 8 meson. These contributions have very similar
structure to the p terms in Ax —+Am, and the appro-
priate amplitude is easily constructed using the results
of Ref. 1. Therefore we defer the 8 contribution to
Sec. V.

An interesting feature of A~ ~ Ax scattering is the
"amplitude conspiracy" that must exist among the
invariant amplitudes for large t (fixed s) in order that
the particles on the leading trajectory have the correct
spin and parity. The corresponding relations for corn.

scattering are rather diRerent for the p trajectory,
though, as expected, they serve the same purpose. In
corn scattering, many terms are required to satisfy the
minimal conditions; for the normal-parity trajectory in
particular, one has to include terms like 822 having p
poles in neither variable, even though an amplitude
constructed from By~, 8~2, and B~~ has 72 constants. An
arbitrary number of terms 8» or 8,& do not repair this
difficulty, so that one needs 8 „having the p pole in
neither variable.

The "amplitude conspiracy" mentioned above is a
feature of general occurrence, whose significance seems
not to have been appreciated in previous work. . The
"conspiracy" in question has nothing to do with con-
spiracies between Regge trajectories in the usual nomen-
clature, but rather is a relation among the invariant
amplitudes which guarantees a certain spin-parity
structure for the leading Regge trajectory. To ap-
preciate this situation, one has to note that the detailed
form of the "conspiracy" relations depends on the choice
of invariant amplitudes. To be definite, we refer to our
treatment of Ax scattering, for which the invariant
amplitudes T; were chosen appropriate to the t channel
(i.e., they were independent as s —+~). The s-channel
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reaction may be described in terms of the same functions
T; if we choose the s-channel basis to be the appropriate
continuation of the t-channel basis; in this case, the T;
cross into themselves. This simple crossing property is
attained at the expense of dependency relations among
the T; as t —+~, s fixed. If we had used another set of
amplitudes M;, independent in the $ channel, then the
crossing relations (from M to T) would exhibit a com-
plexity comparable to the above conspiracy. Conversely,
if we were to use the 3f; to describe the t-channel ampli-
tude, we would have to enforce conspiracy relationships
as s —+~, t fixed. Although a given channel may
naturally lead to a given set of amplitudes (for a given
type of trajectory), the crossed channel generally prefers
a distinct set (or a particular dependency relation).
Hence, in practice it seems useful when constructing a
set of amplitudes to use a set of amplitudes independent
in one channel and to enforce appropriate dependency
relations in the crossed channels.

In Sec. II the kinematic and asymptotic relations are
derived. In Sec. III we construct an amplitude which
satisfies physical requirements (except unitarity) for the
leading normal trajectory. We take the p trajectory
($ channel) and f trajectory (i channel) to be degen-
erate. The resulting amplitude is discussed in Sec. IV,
where we relate the ~pm coupling constant to the
Veneziano parameters. The spin-parity structure of the
amplitude is examined further and contrasted with the
A~ amplitude (which contains the same p ftrajectory-
in the $ and i channels). The implications of PCAC
(Adler condition and threshold amplitude) are dis-
cussed. The near degeneracy of the ~ and p mesons leads
to a rather delicate cancellation which is brought about
automatically by the signature and amplitude con-
spiracy relations. Following the analysis of the 8
trajectory in Sec. V, we discuss our results and con-
trast them with other treatments' ' of vector-scalar
scattering.

pion Cartesian charge indices i, j.'
~(pi) )+~'(ps) ~~(ps) ')+~2(p4) (2.1)

The I and t channels are defined as in Ref. 1. The s-n
crossing relation

T~($)i)s) = e~T~(Q, $~$) (2.4)

(p;=+1, i=1, 2, 4; pp
———1) is identical with the

t-channel Bose symmetry condition. The t-channel
amplitudes are simply the s-channel amplitudes con-
tinued to appropriate values.

It is useful to' express the parity-conserving helicity
amplitudes 3fq q+ in terms of the invariant amplitudes.
In the $ channel we have amplitudes M&, i" Ldominated
asymptotically by states of normality i =P(—)Jj
defined by

Happ =2Mpp,

Mpi ——2M pi/sin8,

3fgg

3fig+�-
=1+�co 1—cos8

Equations (2.5) then reduce to

(2.5)

A. and X' denote the initial and 6nal helicity states. The
variables $, t, and I are defined by $=(pi+ps)',
t=(pi —p,)', m= (pi —p,)'. Denoting the spin-1 helicity
wave function by e„(p,X), the invariant amplitude
3fq q has the form

M), i, e„*(p——p,) ') T&"(p,p4, pips)e„(pi, X)8;;. (2.2)

We expand TI"" in terms of invariant amplitudes T;:

T"=g"Ti+I'.I' Ts+(I'.Q.+Q.I' )Tp+Q.Q T4

I'.= s(ps+ p4). , (2.3)

II. KINEMATICS FOR REACTIONS
u~ —& ~~ AND mao —+~~

The reaction under consideration is kinematically
very similar to the process Ax —+ Am considered in an
earlier work. ' For coz scattering there is no exotic
channel (I,= 1 and I&= 0 only), so that the construction
of a Veneziano amplitude is of comparable complexity,
and of different nature, than in Am- scattering. We
describe the $ channel by momenta p; (i= 1, 2, 3, 4) and

Mpp ——(2p'/m„')(Ti+ pp(cv+E) Ts+E(p~+E) Tpf

+ (2 cos8/m„') ( —E'Ti+ P'EL(o(Ts —Ts)

+E(Ts T4)jj—(P'E'/2m„')—
&& (1+cos8)'(2Ts—Ts —T,),

=(2/m-„)(ETi+ ',p'-
XL~(Ts —Ts)+E(T4—Tp)j)

+ (p'E/2m„) (1+cos8) (2T,—T,—T4),

Mii = Ti 4p' cos8(2Tp —Ts ——T4)—,

Mii+ = ',p'(2T p Ts T4) .-——

(2.6)
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Except for an over-all change of normality, and the
replacement m~ —+ m, Eqs. (2.6) are identical in
structure to those for A~ scattering. p is the c.m.
momentum, and B and co are the cv and m- energies,
respectively. The partial-wave expansions are very
similar to those given previously.
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In the t channel the analysis is exactly the same as for
AA ~ mw. The amplitudes are

Mq ~+=2M' ~'/sin'8, ,

~a~+= 2~i~',
Mao+= 2Mio'/sinH&,

3fpp+ ——2' pp'.

Calculation gives the relations

Mg g+= —(p)'To,
M~~+= —2T~+(p')' sin'8& To,
Mgo+ ——(K2/Nt„)[E(p')' cosH, To—pp'EToj,

m 'Moo+= ( '+p')Tz —(Ep' cosH)'To
—p'E'T4+2E'pp' cosHiTo.

(2.7)

(2 g)

Next we consider the expected Regge behavior of the
helicity amplitudes and invariant amplitudes, assuming
dominance of the positive-normality p ftraje-ctory in
the t channel. [For most of the paper we take the p and

f trajectories to be degenerate, described by a single
trajectory function n(t).) The 8 and p fcont-ributions
in the s channel are given separately.

In the t channel the amplitudes Mq q" are expected
to behave as

Mg j+ s
+~Sa

Mgp+ s

3fpp+ s,
(2.9)

~Sa
~Sa 2

T ~sa—1
)

T4 s

(2.10)

Examination of the s-channel amplitudes in the limit
t —+~ gives for the normal p fcontributions-

Moo
— 0; (t

—')

M go 0; (t~')
M»—-t -'

+~ta—1

(2 11)

In (2.11) the zero for Moo and Moq means that a single
positive-normality trajectory will not contribute to
these amplitudes. However, when we construct a
Veneziano form, we generally obtain daughters of both
normalities; the indicated asymptotic behavior follow-
ing the semicolon is one unit down from what an odd-
normality trajectory would contribute. If we construct
amplitudes having this asymptotic behavior (and
correct signature), the poles on the teaChng trajectory
will have the correct spin-parity and will only occur in
Mqq+. This is easily seen by noting that (2.11) must also

exactly as in Avr scattering. Comparison with (2.8)
shows that the invariant amplitudes behave as follows:

hold for the residues at n= X. Hence the maximum I'g
content follows from (2.11) and inspection of the
partial-wave formulas veri6es the preceding remark.

The 8 trajectory ("abnormal" ) exhibits the same
asymptotic behavior in coo scattering as p does in Am

scattering (with an over-all change of normality):

Mpp t &,

Mpg ta& '

3f»—-t ~-'

~xz+

(2.12)

Next consider how the invariant amplitudes T;
behave in the limit t ~~. As in Ref. 1, the behavior
must be correlated if the particle content of the leading
trajectory is to agree with that assumed at the outset.
First we note that the amplitude conspiracy for the 8
contribution is exactly as in Ref. 1:

T ~ta~—1
)

T ~tag —1

T3—T4

2T3—T&—T4-t ~-',

(2.13)

where the individual T~, T3, T4 t &.

The proper description of the p trajectory re-
quires quite different behavior. To begin, note that
2T3—T2—T4 t ' follows from the asymptotic be-
havior of Myy+. In order that M» go as t ', we see
[Eq. (2.6)] that T& must go as 8 and that the t, t
terms cancel. Thus far we have (z —+~)

2T3—T2—T4

Tg+-4p'z(2To —To—T,)—t —'.
(2.14a)

(2.14b)

T;-t.(h= 1, 2, 3, 4),
T ~ta—1

T3—T4 t

iT+-p4' (2zT—o To —T4) t

(~+ o E) (To —To)+ oE(T4—To)-t
T~+sT; t ' (h=2, 3, 4).

(2.17)

In order that Moq go as t ' [cf. Eq. (2.11)$,we need,
in addition, the condition

(co+ z E)(To To)+ ',E(T4 —To) t -'. (—2.15)

This equation [and (2.14a)j also implies that To—To
and T4—T3 go as t '. Finally, consider Mpp . When
z —+~, the z and (1+z)' terms go as t~ ' by virtue of
(2.14) and (2.15). In order that the 6rst bracket go as
t ', we need T2 and T3 to cancel the t part of T~,
which necessitates

Tg+sT; t ' x=2, 3, 4. (2.16)

In summary, we have the following behavior of the
invariant amplitudes giving a leading trajectory having
the correct spin-parity structure:
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This intricate set of conditions is satisfied by the
s-channel p-pole terms arising from the effective
Lagrangian density

aCtap~= gtpvaP~~GO ~ g

from which we find

(2.18)

Ti ——-', g'[s'+2st —2s(m„'+m ')
+(m ' —m~')sj/(s —m ')

Ti——g'sp's/(s —m, '),
T,=g'(m„' —', t)/(s —mp'),

Ts——gs(m '—s—-,'t)/(s —mps),

T4= g'(2s m„—'+2m ' st)—/(s m„—') .

(2.19)

oCii&g~= ggpp' Bs&p +gDpp' l9sBpB"pps.

The s-channel poles are then given by

Ti =g.'/(s —mes),

(2.20)

In the second line we have simplified T& by introducing
the primp c.m. momentum p. It is instructive to check in
detail how Eqs. (2.17) are satisfied by the Born terms.

The 8-meson poles satisfy (2.13). To normalize the
amplitude to a conventional coupling-constant descrip-
tion, we define effective Bcm couplings g, and g~ in
direct analogy to the Ape couplings used in Ref. 1:

has the form

I'(m —n(s) )I"(n —n(t) )
8„„(s,t) =

I'(m+n —n(s) —n(t))
(3.2)

[If desired, n(s) and n(t) could be replaced by non-
degenerate trajectory functions n, (s) and nt(t). g In
writing (3.1) we allow poles down to n=1 in either
variable (Bose symmetry prevents a pole at 7=1 in
the t channel), while the polynomial is linear in order
to agree with the Born term (2.14).

The first term, containing B~y, is not independent of
the others because of the identity Bii——8»+8».
Hence, we may set 8 0= b'p= c 0=0, conveniently
separating the p pole in s from the p pole in t. The
symbol 6; represents terms containing beta functions
having m+n) 3. For As ~As, we were able to con-
struct a consistent amplitude having 6=0. However,
the more complicated conditions (2.17) required for a
proper description of the p trajectory cannot be satisfied
for 6=0 unless we completely decouple the p trajectory,
an unacceptable solution. An acceptable solution is
obtained if we set

P (s,t) = (a 'p+ b ps+'c pt)B'ii(s, t)

+(ail+ bi is+ ci lt) 812(S)t)

+ (a;s+b, ps+ c, ts)Bsi(s, t)+d;, (3.1)

where 8 „(s,t) is defined by

g
2

gsgD
(s+m '—m. ')

mg

ming

S mo1 —m~
+gi)' m„s——',t-

4mgg'

+go'[m. s —-', t —(s+m '—m ')'/4m''1

gs gsgD
Tp —— — + [2mii' —s—m„'+m s]

mg mg
(2.21)

6;= (a;s+b;ps+ c;st+ a; sst+ e;sss+ f,st')Bss(s, t) . (3.3)

The amplitude T, has poles in s and I at o.= 1, 3,
5, . . ., due to the p trajectory and poles in t at n=2,
4, . . . , due to the f trajectory. The crossing (or Bose
symmetry) requirement (2.4) is satisfied by writing T;
as a superposition of terms of the form (3.1):

T'( t )=P'(p() f(t))+~'(f(t) ( ))
+~'"(p(N),p(s))+s'[~''(f(t) p(s))

+~'(p(n), f(t))+~'"(p(s), p(~))1 (3 4)

gs gsga
T4= — + [4m'' —m„'+m ' —sj

mg mQ

+gi) [m ' —sr t —(s+m '—m ') '/4m&' j
These amplitudes have the same structure as the p
poles in A pr scattering (or the A poles in pir scattering).

III. CONSTRUCTION OF AMPLITUDE)
p CONTRIBUTION

In a previous paper we have discussed how one may
conveniently construct a representation for invariant
amplitudes having the form P(polynomials)X(beta
functions). A prototype contribution to our problem

[introducing the labels p and f to distinguish the tra-
jectories appearing in Eq. (3.1)j, where P and Ii;" are
independent of Ii; but have the same form, with ex-
pansion coeKcients denoted by 8'j

p
8 j etc. In the

following, we assume p-f degeneracy, denoting p(s) =f(s)
by n(s) =a+bs. Strictly speaking, " in order to obtain
the usual asymptotic behavior of the beta functions,
Imn(s) must diverge nearly as s [e.g. , as s/(1ns)'+',
s)0), but Imn can still be suKciently smaller than
Rex that no observable ancestors appear. With this
proviso, 8 „(t,l) vanishes faster than any power as
t ~~, s fixed.

Using the asymptotic expansions of the beta functions
given in Appendix A of Ref. 1, we can easily obtain the
behavior of the various F; for large s and large t. Having
obtained this information, we can see what constraints

'P R. Z. Roskies, Phys. Rev. Letters 21, 1851 (1968);22, 265(E)
(~969'.
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the coe6cients must obey to satisfy the requirements
of asymptotic behavior, conspiracy, signature, and
factorization.

For t~~, s fixed, we find fn=n(s)j

F;(s,t) ~ (Q A,;nj)(—bt) I'(1—n)
j=o

+(2 B'Inj)( —bt) 'I'(1 —n)

(To do so is possible but tedious, since one must then
impose signature on the combination 2T3—T2 —T4
order by order down to factors of order t '.) Similarly,
inspection of P»~, F00, and Fgo shows that proper
signature on the leading trajectory is guaranteed by
requiring 3f»+ to have signature to order t '. This will
be the case if 2T3—T2—T4 has odd signature to that
order.

First consider the s-channel constraints

+(Z g,j ')(—bt).-'r(2 —)+. .
T;(s,t,24)

e fixetI j'=0

j=o

(3.5)
+(E';"+ E' ")j+(bt) 'I'(1 —) 2

j'=0

j=o

+(E G'jnj)(bt) 'I'(2 —n)+
j'=O

The functions F;(t,s) and F,(24,s) have similar asymp-
totic forms, with coefficients denoted by A;j, 8,;, C;;,
E;;, I';;, and 6;;. These coeKcients are recorded in
Appendix A. Similarly, if we consider F;(s,t) as s —+Ill,
t fixed, we obtain the same form as F;(s,t) but with
A,;—+ A;;, etc. In this limit, F,(t,s) has the same form
as F,(s,t) above with t ~ s, F,(24, t) has the same form as
F,(24,s) (s~t), and F,(t,l) has the same form as
F,(s,24) (t 4 + s). -

Using Eqs. (3.5), we may investigate the behavior of
the full amplitude in the limits s~~ (t fixed) and
t ~~ (s fixed). With our choice of 3„, the amplitude
contains 144 constants. Many constraints result from
requiring the correct asymptotic behavior $Eqs. (2.10)
and (2.12)) and signature. However, there seems to be
no way of obtaining a unique amplitude in the absence
of unitarity.

First consider s-channel signature; in order to elimi-
nate even J poles on the leading trajectory, the ampli-
tude must contain the factor 1—e ' &'~. Ke must first
decide to what order in the asymptotic expansion one
must impose signature. In the preceding paper' we
ensured that the parity-conserving helicity amplitudes
have correct signature to leading order. This in turn
guaranteed that the pole residues at o,=J have the
right structure. )The amplitude conspiracy relations
(2.12) lead to the sequence 1, 2+, 3, . . . , for the
leading trajectory; in the present problem we have I,= 1
and must invoke signature to eliminate the even-spin
states. $ Inspection of the partial-wave amplitudes Fir~+
shows that M~~, whose residue at o.=E must be a
polynomial of degree Z~ ' by (2.12), does not contribute
to the J=E component of the pole. Thus we do not
have to ensure signature of iV» to leading order to
maintain correct structure along the leading trajectory.

+(bt) —'I'(2 —n) Q njLe-' (C;I+4;C;j )
0

+(O'I"+0'«j")]+ (3.6)

Imposing T2—T3, T3—T4 t ' yields

Asj+Asj =A4j+A4j'=Asj —Asj',

E2j ++2j E4j +E4j Esj Esj

j=0, 1
(3.7)

2T~ —T2—T4 has odd signature to order t ' provided

8;=F, , j=0, 1, 2, 3

B;=2(B;—B —) (B;+B,')—(B,;+8,'), —
2(P II P II) (P II+P ll) (P II+ P II)

(3 8)

A21+A21'= 0,
E21 ++21

A 11+A11'= —(Aso+Aso')/b,

E11 ++11 (E20 ++20 )/b

A 10+»0'= (4s/b) (A so+A so'),

El0 +Elo (41/b) (E20 +E20 ) ~

The fourth of Eqs. (2.17) is

(3.9)

Ti+-,'ps(2Ts —T2 —T4)+-,'t(2Ts —Ts —T,)-t"—'.
Vanishing of the t terms is guaranteed by (3.7)
together with

Aio+Aio'= (1/Sb)Bo,

A 11+A 11'——(1/Sb) Bi,
82= B3=0,

Eio"+Eio"———(1/Sb)P0,

Eii"+811"———(1/Sb)F1, (3.10)

F&——IT3——0.

It is now easy to see why an amplitude of the form (3.1)
with 6,=0 cannot yield a satisfactory solution. First

C; and G; are defined by letting 8 —+ C, Ii —+ G. In view
of (3.7), we can summarize Ti+sT; t ' (2= 2, 3, or 4)
by a single set of equations:
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note that

M 11+ — -', p'L(bt) -'I'(1 —n)
s fix B8

The t-channel conspiracy conditions are much
simpler. Ke have T3 s ' and T2 s ' provided

i I

As; As)—' As;——+Ay,' Es——Es,—Es——+Eg; 0,——
j=0, 1 (3.12)

XP n'( e '—B—;+F;)+ ].
j=p B,+Bs =Fs,'+&s,=O, j=0, 1, 2, 3.

It is easy to verify (cf. Appendix A) that 5;=0 implies
Ail Ai\E, il Eil 0 (i = 1, 2, 3, 4) in the expansion of
(3.5). Equations (3.9) and (3.10) then yeld B;=F,=O,
j=0, 1, 2, 3, which means that 3f»+ 3 '. Thus, if
6;=0, M»+ does not have the maximal asymp-
totic behavior allowed by (2.11). As a consequence,
ResM11+

~
«i,» is a polynomial of degree E 2 in —s and

the residues of Fli~+ at n(s) =E all vanish for the
leading trajectory —i.e., for J=S.More generally, any
set of amplitudes T; satisfying our conspiracy and
signature conditions, but constructed solely out of
"generalized" beta functions p""p not satisfying
p=ns)n)1, will have the asymptotic form of (3.5)
with A;~=0, and will therefore have the unpleasant
property that the p trajectory is completely decoupled.
Our choice of 3; follows from noting that Bss(s,t) is the
beta function with the lowest-spin pole behavior con-
sistent with A;~NO.

It remains to ensure that the t ' terms of

Ti+4p's(2Ts Ts T4) and —io(T—s —Ts)+sE(T4 Ts)

vanish. The necessary equations are

3 a —1 4

0=Q n'(B;, +Bip')+ 4p' Q ~Bn,+-——Q C;,
j=p j=p 8b j=p

(3 11)
0 =E n'(~a(B» Bsf) (Bsl+—BsÃ)j-

j=p

+ ', EL(B;+B -) —(B;+B )3)

and two similar equations with

T~ and T4 will have even signature to order s provided

Ay,+A/g=Eg,+Eg/, j =0, 1

A4;+A4,'=E4;+E4, j=0, 1. (3.13)

~»+co =Gs;+Go,', j =0, 1, 2, 3, 4.

IV. DISCUSSION OF SOLUTION
FOR S TRAJECTORY

First consider the Veneziano amplitude near the pole
at s= nsps. The P-Pole terms (2.14) give

Res3fpp =ResM0~ =ResM» =0,
Res%'ll+ = —g'p'm p',

(4.1)

exactly as expected for a 1 particle. The pole at s= m, '
in the Veneziano amplitude may have, in addition, a
0 component (0+ being excluded by parity) which can
contribute a constant term to 3fpp, as the pion pole in
psr scattering (the 0 particle in question would have
even G parity, 5=1). Since our amplitude satisfies
(2.11), Res%» s ' —+ 0 at n= 1, as verified by
explicit calculation. In calculating the p-pole residues,
it is helpful to note that

3

Q Bii isil+bilnsp

These last relations are automatically satisfied by our
amplitude (cf. Appendix A). Signature for Ts to order
s 'is

Bs; Bs =—Fs,' Fs;, —j=0, 1, 2, 3 (3.14)

and for T2 s 2 it is

8~—It ", 8' —&—Il", and C; —+ G;.

Writing id, E, and p' in terms of n(s) and equating
powers of n gives 28 equations Lafter employing (3.7)—
(3.10)j, which we do not, record here. One of the more
useful ones is Bp= —uB~.

As s~~, f 6xed,

T,'(t, s,u) = T;(s,t,u) —+ (bs) I'(1—n)

j'=0

3

Q F;;=a;1+b;inl, s+e;1(Z nS '). —
j'=0

I 3

ResT;~,= „=—-LP (B;,+Fg"+4;Bip'+4;F/~")
~

0

(4.2)

1

&&+ n&fe 'p (Aii+e;A s')+(Ei-p'+e;E;;) j
j'=0

+(bs) 'I'(1 —n) 2 n'I e'-(B's+e'B'/)—
j=p

+(F; +;F;,)j+(bs).-'I (2 —)

XP n Pe-*'.(C;;+o,C; )+(G; +C;;)j.
j'=0

bt Q (A;, E/g" +4;A—; o;E,;")—j. (4.3)—
j'=0

Employing the amplitude conspiracy and signature
relations gives

bResT1~, „—;=——,'p's(Bo+Bl),
bRes(2Ts ——Ts —T4) ~,=, =2(Bo+Bi),

Resell
~

4p (All+All +A 10+A io )
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so that the cope coupling is given by the following com-
bination of parameters:

g (4/m )(All+A11 +A10+Alo )
= (—4/bm, 2) (c11+b12') . (4.4)

Note that the condition Res&~~ ——0 is necessary
to exclude spin-parity 1+. Calculation shows that
Reship~ =0, while ResMpp is constant and, in general,
not zero (though our amplitude is flexible enough to
make it zero). For the Born terms (2.19) we have

ReST1 ~,=~,s —+ g2P2m«2S,

ResT, ~,=„;~—g'p's, x=2, 3, 4
(4 5)

as s ~~, while for the Veneziano amplitudes

1

ResT;~.=~, —+ 2p s P (A;;+0;A;j' E;,"—0;Es;"—).
(4.6)

The consistency of the Veneziano and Born residues is
guaranteed by the signature and conspiracy relations
wlllcll sllow tllat (111 tllls 11n11t)

ResT21.=-, =ResT21 =-, =ResT4I =-,
= 2p2s(A20+A20 —E20 —E20 ')

= —p's(-', B1), (4.7)

ResT1 ~, , = (P2s/2b) (Bo+B1)= 'P2sB (1 a—)/b-
= p'm«2Z(-21B1) .

Similar remarks apply to the pole structure at
n=lV (1V odd). Since Rest%»

~
1o is bounded by s~ '

and Res3E11+~ «=sr by s ', F11 + has a p»e at J=E
but F11s does not. (Both F11s+ will, in general, have
poles for J(1V—1.) In addition, the maximal asymp-
totic behavior allowed for Mpp and iV p~ guarantees
the absence of odd-normality J=E poles contributing
to Fpp and Pp&~ . Hence the signature and amplitude
conspiracy relations ensure the correct spin-parity
structure for the leading trajectory. Poles lying on
daughter trajectories will, in general, be parity-doubled.

Now we consider brieAy the implications of PCAC
for our amplitude, supposing the latter to be a suitable
vehicle for continuation to the Adler point. As shown in
Ref. 1, the amplitude Tj must vanish at s=l=m„',
t= m. 2. Neglecting terms of order m '/m, ',

-', T1(m.',m. ',m„') = I'(1—n(m. 2)),
Lail+ bllm«+a12 +012 mar +all +a12

4.8
+(bll +b12 +C11 +C12 )m ] I (1—CX(m ))

XLQ (B1+Blj+F1j +F1 )j~'
j=p

Since m '—m, ', I'(1 n(m„2)) — 2m, '/—(m—„' m, ') is-
large. However, using (3.11) with n= 1, we have

3

Q (B1,+B1,'+F1;"+F1;")= ——',p'(Bo+B1),

which vanishes to order m '/m„' ai: the point in question
since

p'= (m 4 —4m 2m ')/4m '=0(m ') =0

When m„=m, and m =0, the Adler point coincides
with physical threshold, and the vanishing of T& follows
from general considerations (parity and angular mo-
mentum). The kinematical factor p' appearing above
automatically accounts for this. It will be noted that
the cancellation of terms in (4.8) was a consequence of
the signature and amplitude conspiracy relations which
enforce the correct spin and parity. When we set m

equal to zero, the double zero in p' at s=m„2 permits
the limit m„—+ m, to be taken without the pole violating
Tg= 0.

Another soft-pion result concerns the threshold +co

amplitude computed according to current algebra,
neglecting quadratic terms in the pion momenta. Since
the isovector current is zero in the co state, neglecting
the 0- term gives

T1
~
thresh (4 9)

where s=s,=(m.+m.)', t=0, N=2j, =(m„—m.)' at
threshold. Neglecting the difference between sp and Np,

Eq. (4.9) is the same condition discussed above with

m~ ~ sp.2

The ~x and Am scattering amplitudes involve the
same trajectory functions in s and t channels. However,
the parity difference of ~ and A has the consequence
that the p pole only occurs in one helicity amplitude
(&11 ) in 001r ~ cu1r (M oo, &01,&11 vanishing), while
for Am. ~A~ the p pole occurs in Mpp+, Mp~+, and M~~+

(M11 vanishes). In consequence, the factorization
condition is interesting for Am- but not for m+.

V. CONTRIBUTION OF 8 TRAJECTORY
IN ae SCATTERING

Ke satisfy crossing for the 8-meson contribution to
con scattering by writing the invariant amplitudes T; as

T'(s t,oj) =F'(B(s) f(t))+F''(f(t), B(2j))
+F'"(B(~),B(s))+o'LF''(f(t), B(s))

+F'(B( ) f(t))+F'"(B( ) B(2j))j
where F; is as given in (3.1). As suggested by the
Ax —+A~ case, we can obtain a satisfactory solution
with A;=0. Here, B(s)=—na(s)=ajj+bs is the B tra-
jectory, assumed to be parallel to the degenerate pf-
trajectory, but having a different intercept. The absence
of terms of the form F;"'( B( )2j,p( )s), having a B in the
I channel and a p in the s channel, is discussed later.

The treatment of the 8-meson contribution to
or~ —+ cox is very similar to that of the p in A~ —+ Ax, so
we present only a brief outline. The expected asymp-
totic behavior of the invariant amplitudes given in
(2.12) is the same as for the p in A2r scattering except
for an over-all change of normality. This change of
normality leads to a slight relaxation of the signature
requirements. As inspection of the partial-wave parity-
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T2 and T3 to order t &,

co(To To) j—E(To—To) to order t~& ',
Tl+oP's(2To —To—T4) to order t ls '.

(5.2)

In practice, however, it is more convenient to impose a
more stringent set of signature conditions:

T2 and T3 to order t &,

Tl, To To, and T—o
—To to order t"& ', (53)

2T3—T2—T4 to order t~& 2.

conserving helicity amplitudes shows, proper (odd)
signature is guaranteed for the 8 trajectory provided
Mpp Mgp, and M» are properly signatured to orders
t &, t & ', and t & ', respectively. Thus we need only
require signature for

In this limit F;(n(t),nil(s)) and F;(nil(u), n(t)) are given
by similar expressions with D;p, . . ., M,'j' ~ D'p, . . . ,
llII;;. These expansion coeKcients are tabulated in
Appendix B.

There is little point in cataloging the results of the
analysis of the signature and conspiracy relations, since
they are not very interesting, and, in any case, quite
similar to ones for A~. The 8-pole residues of the T s
may finally be expressed as

ResT;(s, t,u) I, „~s

i 2

=—LP (B;,+H;,"+.;B;s'+.;II;,")
j=0

bt(A o
—G;o"+—oA;o' o,G;o")—],

Because of the occurrence of both the (nondegenerate)
o =1, 2, 3, 4. (5.6)B and f trajectories in the same function F,(s,t), the

asymptotic expansions of these functions are slightly
Employing the signature and asymptotic-behavior rela-
'to s, wefi

F (a (s),n(t)) ~A;,(—bt) r(1—cx )
2 2

Resell I, o =0, Res3IIll————
I p (Bl,+B,,')],

$ j=p

+(Q B;,nil&)( —bt) &—'r(1 —nil)
j'=0

+(Z C't~s')( —bt)" 'r(2 —~~)+"
Res&0~ =

2E 2

LZ (Bl+&lj')]
j=p

(5.7)

j'=0

F,(all(s), all(u)) ~ G;p(bt) "~r(1—nil)
(5.4) p mal

L(B»—B»') —(B»+B»')]}
j=p

+(Q II;,nil')(bt)"' —'r(1 —all)
j=p

+(Z I'~~')(bt) ~ 'r(2 ~~)+

In this limit, F,(n(t), nil(s)) and F,(nil(u), n~(s)) have
similar asymptotic forms with coeKcients denoted by
A 'p B

&
C's' G 'p FI s' an'd'J;;.As s -+'po, t fixed L'n—=n(t)],

These residues are pure J= 1 (it is easy to check that
their J=0 projections vanish) and can be directly com-
pared with the Born-term residues. On the other hand,
the residue of Mpp contains both J=O and J=i.
However, the 7=1 portion is easily separated (it is
proportional to cos8) and is

2 cosO 2 2 2

— E'-[E (BU+BU)]+p'EmB {2I (B»—B»')
m2 b j=p b j'=0

+(P E;,n&)( —bs) -'r(1 —n)
—(B»+B» )]}+4P'm (Allop+A op') . (5.8)

+(P F;.n')( —bs) 'r(2 —o)+ ~

j'=0

F'(&(t)P~(u)) ~ &'p(bs) r(1 —&)

Calculating the same quantities using the Horn terms

(5 5) LEqs. (2.21)] gives

Resell+Is „o =0, Resell Is (no gs=

j'=0

+(P M,,n') (bs) "—'I'(2 —u)+
j=p

ResMol
I
s=~os= (W2/m„)(Eg. '+P'm~g. grs),

2 cosO
Res~op I = B (Eg +p m&gD)'

85+7
2
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Comparing Born and Veneziano residues yields

2

g'= —-[E (Bv+Bi ')3
~ 0

2
[all+a12 +(fill+ 12 ) B 3

b

g.gB = -(Z—[(Bst—Bs') —(Bst+Bs ')])
b ~=0

(5.10)

= (1/&) [(asi+a22' —asi+ ass')

+(f21+022' —f 21+022')srsBsj,

gn'= —4(~20+&20 ) =4(&21+f22 )/& ~

Factorization of the helicity amplitudes goes just as
in Sec. VI of Ref. 1. Setting +~= 1 in the analog of Eq.
(6.4) of Ref. 1 yields

[(B»+B2 ') —(Bs—Bs ')3'
j'=0

=8b(A, +xi,')[Q (B;+tB; )j,

VI. CONCLUDING REMARKS

Although it has proved possible to construct satis-
factory amplitudes in unaccustomed detail, the non-
uniqueness destroys any predictive power of the model.
Since the key requirement of unitarity has been omitted
(along with the Pomeranchuk trajectory), one might
hope that the effect of unitarity will be very simple,
either in selecting only a few terms or in somehow
ordering the terms in some sequence of decreasing
importance. We have not been able to discern any
principle which leads to a definite "minimal" amplitude;
there are many amplitudes of equal mathematical
simplicity. The hope of "deriving" chiral-symmetry
results from Veneziano amplitudes seems optimistic, to
say the least. Rather than have "the tail wag the dog, "

which is just the condition that Eqs. (5.10) be
consistent.

It will be noted that in treating separately the con-
tributions of the p and 8 trajectories, we have missed
the possibility of cross terms of the form F "(p(s),B(u))
+0;F,'"(p(u),B(s)). We can see no reason why such
terms should not be present, although they destroy
the linear nature of the solution. Moreover, since the

p trajectory is higher than the 8 trajectory, such con-
tributions can easily dominate the pure-8 contributions
of Eq. (5.1).We leave the treatment of this problem to
future research.

we find it more appropriate to impose consistency with
PCAC and current algebra and then analyze the
simplest amplitudes that combine these constraints with
the analyticity aspects of the amplitudes.

Several papers have recently appeared in which
various vector-scalar scattering reactions have been
analyzed. The complexity of the processes and the
diversity of techniques employed preclude a careful

comparison of methods and results. Capella ef al. ,' who
discuss ~x scattering, also note the decisive role played
by the asymptotic behavior and amplitude conspiracy
in the solution of the parity-doubling problem. How-
ever, their procedure of decoupling the asymptotic
behavior in the two channels seems insufficiently
general. Aber s and Teplitz' have investigated pm.

scattering, emphasizing in detail the x trajectory.
Instead of utilizing asymptotic behavior, they give a
detailed analysis of the pole structure in order to sort
out (and banish) contributions of the wrong spin, parity,
and isospin. The present analysis is easily adapted to
describe the co contribution to px scattering. Many
papers have proposed oversimplified amplitudes (gen-
erally with an intent to illustrate some specific point or
speculation) which fail to satisfy important general
criteria such as crossing, signature factorization, parity
doubling, and so forth.

The present paper, and the preceding one on Ax
scattering, attempt to provide a reasonably simple yet
general technique for the construction of amplitudes for
particles with spin. We consider it important to defer
specific assumptions to the end of a calculation rather
than imposing them at the beginning. We have found
that although an amplitude contains many arbitrary
constants, it is nevertheless delicate, and seemingly
slight errors or extra assumptions can have far-reaching
consequences. We plan to discuss these questions
elsewhere.

Having obtained sufficiently general amplitudes for
the coupled reactions xw —+ex, Am ~mx, Am —+Ax,
Nx'~m'x', co@'~ax', and px ~ px', it will be of great
interest to study the consistency of this system. Though
remote from experimental access, these reactions are
interesting theoretically in providing contact with
PCAC, current algebra, and meson dominance in
addition to the underlying 5-matrix framework.

Note added srs proof In the V. eneziano model, the
terms F,'(f(t),p(u))+0, F (f(t),p(s)) in Eq. (3.4) and
F (f(t),B(u))+0,F,'(f(t),B(s)) in Eq. (5.1) may be
absorbed into the corresponding unprimed terms by a
suitable redefinition of the arbitrary constants a;,.,
a;, . . .. We may account for this simplification by
setting all singly primed constants a,,', b;,', c; equal
to zero throughout the paper.
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REACTION cow —+co~ IN VENEZ IANO MODEL 1213

~'s= f'—sjb'& &&o= f;s/b' c,—s/b &

B's= s f's/b', B&s= (a 4)f—,s/b'+d, s/b'+ ,'c;g/b-&

B;s c,,/——b (a+—1)d;,/b'+ (17/2 —3g)f,,/b'

+b; z/b+ (a ,')c,,—/b+c;s/b,

B;o= c,s/b—+ad; s/b'+ (2a —5)f,,/b'+ a;,
gb; s/—b+ (2 a)c;s/—b c,s/b—,

A;;, . . . , 6;; are given by the above vrith the inter-
changes a;q+-+ a;2, b;j ~ c,2, b;g~ c;q, b;3~ c;3, and
e&s ~f's

APPENDIX A: COEFFICIENTS OF ASYMPTOTIC G;o——a;s a—b;s/b+( 3—a b—Z+5)c;s/b
EXPANSIONS OF FUNCTIONS F, OCCURRING +(3gs SgggbZ)d, .s/bs+ase. s/bs

IN TREATMENT OF y CONTRIBUTION + (Sa' —20a —SbZ+2abZ+19) f,s/b'

+ (2a+ bZ —2)g;s+ g;s+ f—a(2a+ bZ —2)$
Xb; /sb

—ab,s/b+ (—2a'+6a —abZ+2bZ —4)
Xc;&/b+ ( 3a —bZ+—3)c;s/b.

C'4= kf's jb'
C&s sd s/b'+ ('', a 23—/12—)f;s/b'+ sc;s/b &

C,,= -', c,s/b+ (-', a ——,')d,s/b'+ e;s/b'

+ (-,'a' —Sa+83/8) f;s/b'+-', b; /sb

+ ('a 31/-24—)c,s/b+ ,'c;s/b, -
C;s = (a ,')c;s/b—+—b;s/b+( a'+ ,'a—+5)d-, s/b'

2ae, s/b—'+ f 'a'+ (—31-/2) a 283/12—jf,s/b'

+-,'a;s+ (-', a —2)b, /sb+b;s/b

+ (,'a' 3a+-49/—12)c;s/b+ (a ,')c;,/b, ——

C'o = a;s —ab, s/b+ (5—2a)c;,/b+ a(2a —5)d;,/b'

+g'e'sjb'+ (3g' 15g+ 1—9)f s/b + (g 2)gs'
+a,s+ a(2 a)b;s—/b ab&s/—b

+ ( a'+ 4a —4)c;s/b+ —(3 2a)c,s/b, —
& s= f's/b', —
E;p= f;s/b' —; /cbs,

F s= s f;s/b'—,

F;s ——d;s/b'+ (2a+ bZ —3)f;s/b' —-,'c,s/b,

F;s =c,s/b (a+1)d;s/b—'+ ( bZ 4a+1—7/2) f—,s/b'

+b,y/b+ (2a+ bZ ——,')c, /by+ c;s/b,

F;p= c,s/b+ ad; s/b'—+ (2a 5)f;s/b'+ a&s —ab,s/b-
+ (2 —a)c; /b —sc;s/b,

G's= kf'sjb',
G, s ———sod, s/bs+ (—a —sbZ+19/12) f;s/b'+ c;s/b s&

G,s —— sc;s/b+ (sa+ bZ— s)d;s/b'+ e;s/b'—

+L2as —Sa+-', (bZ)' —3bZ+2abZ+15/8j f;sjb'
——,'b;s/b+ (—a ——,'bZ+ 29/24) ; /bc—s—,'c;s/b,

G;x= b;s/b+ (2a+bZ s)c,s/b-
+(—2a' —-'a —bZ —abZ+5)d s/b'
—2ge;s/bs+ L

—6g'+22g —ss(bZ)s

+ (17/ )b2Z —4abZ —103/12jf;sjb' —-', a;s

+ (-,'a+ bZ —2)b;x/b+ b, /b+st —',a—,'bZ+ s's

+-', (2 —2a —bZ) sjc,s/b+ (2a+bZ —s)c;s/b,

APPENDIX 8: CONSTANTS ARISING IN
ASYMPTOTIC EXPANSIONS FOR

B-MESON CONTRIBUTION

A;p ———c; /sb,

B;p= a, s
—(aejb)b;x+ (2 a)c;qj—b c;s/b, —

B&1—b&ljb+ (a )s1c/&b+ 2c/&b
&

B&s= sc&1/b &

C;,= sc,,/b, C;,= sb;,/b+( ', a 31/2—4)c—;,/b+pc;, /b,

C,s
———',a;s+ (a ——s'as& —2)b;s/b+ b;s/b

+ (-,'a' —3a+49/12) c, /bs+ (a——,')c;s/b,

C,p
——(a 2)a,g+ a;s—+ae (2 a) b;s/b a—J&b,s/b-

+( g'+ 4g —4—)c,s/b+ ( 2a+ 3)c;s/—b,

& o= cps/b, I-;p—=a;s—ab s/b+(2 ae)c;s/b c—;s/b, —
I-&s = b&s/b+ (a+ae+ bZ ——,)c;s/b+ /cb&s

I.;,= —',c,,/b,

M p= (a+ae+bZ —2)a;s+a, s a(g+gQ+bZ —2)b; /bs

ab,s/b+ (—aes aae—+4a&—s

+2a aebZ+ 2hZ —4)c,s/b-
+(—a —2as& —bZ+3) c,s/b,

cV;s ————,'a, s+ (sa+ac+ bZ —2)b;s/b+ b;s/b

+L ka sbZ—+s'—s+k(2 g ae —bZ—)s1c's—jb
+ (a+ass+ bZ ')c;s/b, —-

m, ,= —-,'b, ,/b+( ——; —-', a ——,'bZ+29/24). ../b
—2Cg2

I
m's= sc;,/b.

The barred constants A;0, etc., are obtained from the
corresponding unbarred ones through the interchanges
a;~ u, ~, b;~ c;~, and b;2~c;~. D;0, E,;, and Ii;, are
obtained from A;0, 8,;, and C;;, respectively, by letting
a~ a~. G,o, F~;;, and J;; are obtained from E;0, I-;;, and
3E;;, respectively, by letting a —+ a~.


