
HARMON I C —OSCILLATOR MODEL FOR HAD RONS

Fro. 2. Single closed-loop self-energy graphs, (a) nonplanar and (b) planar.

1Vote added in manuscnPt K. K.ikkawa, S. A. Klein
B. Sakita, and M. A. Virasoro, in a University of
Wisconsin report (unpublished), have given a partial
characterization of nonplanar graphs. I.Susskind and I
have found a change of variables which puts the four-
point nonplanar closed loops into the form suggested by
the above authors and gives a particular prescription for
their unknown function V(X&,Xs,Xs,X4) with some im-

portant differences. The differences are that V has addi-
tional momentum dependences and that it is nonzero on

only a certain symmetrical portion of the four-dimen-
sional hypercube 0&X;&1.

CONCLUSIONS

The spectrum of states and the double factorization
of the Chan n-point functions and crossing symmetry
are fully accounted for in the harmonic-oscillator model
of hadrons' for any ground-state mass p, '. The new
feature of the model is an additional harmonic degree of
freedom associated with each of the two quarks at I=0
and x. It is conjectured that the intrinsic quark degrees
of freedom can be exploited to adapt the model to de-
scribe particle multiplets with realistic quantum
numbel s.
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We analyze in detail the spontaneous breakings of chiral SU(3) SSU(3) and SU(2) SSU(2). We deter-
mine the directions along which the two groups may brcak spontaneously. We discuss also the physical
implications of these group-theoretical results, as the appearance of Goldstone particles, the particle mixings,
and the consequences of the residual invariance.

I. INTRODUCTION

~ 'HE importance of spontaneously broken sym-
metries in elementary particle physics has

~ Supported by Istituto Nazionale di Fisica Nucleare, Sezione
di Pisa, and Scuola Normale Superiore, Pisa, Italy.

become more and more apparent. ' The symmetries
to which more attention has been paid recently are the

' S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968); M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
j.'lS, 2195 (1968); M. Levy, Nuovo Cimento 52, 23 (1967).
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chiral SU(3) SU(3) and SU(2) SU(2). They are
suggested as the natural framework for the classification
of hadron interactions (strong, electromagnetic, and
weak) and for a clearer insight of their mutual relations.
It is getting clear that the breaking of SU(3)SSU(3) '
or SU(2)IISU(2) ' can be better understood if one
introduces a spontaneous breaking mechanism.
P'In the present paper, we investigate the possible
occurrence of spontaneous breaking in chiral SU(3)
SSU(3)- or SU(2) SSU(2)-invariant theories. We
determine the "directions" along which the breaking
can occur: In the quantum-held-theory formulation,
these are the directions along which the vacuum
expectation values of the fields may have a nonvanish-
ing value. The residual invariance of the theory and of
the vacuum are given by the isotropy group of these
directions. Even though we will put more emphasis
on this point of view, our determination of the breaking
may work also in the bootstrap approach. In this case,
one does not face the difficulties concerning the GoM-
stone particles. 4

The above results will be obtained in a model-
independent way. As a matter of fact, we study the
stability points of a generic invariant function f of the
fields. In particular this function may be viewed as the
5 matrix, ' or the mass matrix, ' or the Lagrangian
function, ~ or the vacuum-vacuum amplitude. ' The
determination of the stability points of f gives rise to
equations which are of the same kind of the self-
consistent or bootstrap equations which appear as a
common feature of the above approaches. Our results
are thus independent of the interpretation of f. They
are, in fact, based on group-theoretical principles and
depend only on structural properties of the group
under consideration. ' The analysis of the stability
points of a generic invariant function is equivalent7 '
to the determination of the directions along which the
group may break spontaneously; this provides a way

' G. Cicogna, F. Strocchi, and R. Vergara Caf'farelli, Phys. Rev.
Letters 22, 497 (1969); L. Bessler, T. Muta, H. Umezawa, and
D. Welling, University of Wisconsin Report, 1969 (unpublished);
Y.-M. P. Lam and Y. Y. Lee, Phys. Rev. Letters 23, 734 (1969);
Y. Y. Lee, Nuovo Cimento 64A, 474 (1969); N. Cabibbo and L.
Maiani, ISS Report, Rome, 1969 (unpublished).

e W. A. Bardeen and B. W. Lee, Phys. Rev. 1/7, 2389 (1969),
and references therein.' A. Pais, Phys. Rev. 1'73, 1587 (1968), and references therein.

'R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1354
(1963}.

N. Cabibbo, in ProceeCings of the International School of
Physics Ettore Majorana, Erice, Italy, 19'67, edited by A. Zichichi
(Academic Press Inc. , New York, 1968).' P. de Mottoni and E. Fabri, Nuovo Cimento 54A, 42 (1968);
R. Dashen, Phys. Rev. 183, 1245 (1969).

8 J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).' A general discussion of this point as well as a group-theoretical
characterization of spontaneously broken symmetries is presently
under investigation by two of us (FS, RVC). A "geometrical"
approach to broken symmetries has been discussed by L. Michel
and L. A. Radicati, in Proceedings of the Fifth Coral Gabtes Con
erence on Syrnnzetry Principles at High Energies, Universe'ty of
Miami, 1968', edited by B. Kuryunoglu, A. Perlmutter, and C.
Angus Hurst (W. A. Benjamin, Inc. , New York, 1968).

of determining the c-number system which describes
the nonvanishing expectation values of the fields'"
or the tadpole interaction. "

Without any loss of generality or any reference to a
specific model, the function f may be written in terms
of "basic" fields, or "coordinates. " They may be
regarded as mathematical objects spanning the rep-
resentation spaces of the symmetry group, without
necessarily implying for them a simple physical
interpretation.

As a further step in the analysis of spontaneous
breakings, one may investigate the consequences of
identifying the basic fields with fields which describe
physical particles. In this way, one obtains the Gold-
stone particles of the theory, and other information on
the residual invariance, like the removal of mass
degeneracy and particle mixing.

Finally, one may identify the invariant function f
with the Lagrangian function 2, or the Hamiltonian.
In this case, the expansion of 2 around the stability
point up to second order provides an effective Lagran-
gian which explicitly exhibits the symmetry breaking,
and the representations to which the breaking term
belongs. "

The relevance of the above considerations to the
physically interesting cases of SU(3) SU(3) and
SU(2)8SU(2) are discussed in Secs. II and III,
respectively.

In the case of SU(3) 3SU(3), we find that sponta-
neous breakings can occur along the directions of
U3 Np —V2NS and Np, in the usual Gell Mann nota-
tions, corresponding to a residual chiral SU(2) SSU(2)
and SU(3) invariance, respectively. " The first case
gives rise to an effective Hamiltonian which corre-
sponds to that proposed by Gell-Mann, Oakes, and
Renner. ' In the second case one has the appearance of
eight pseudoscalar particles with zero mass (Goldstone
bosons).

The physical motivations for a spontaneous break-
down are even stronger in the case of chiral SU(2)
@SU(2) symmetry. The results of the algebra of
currents, the soft-pion techniques, and the low-energy
theorems indicate that the matrix elements of strongly
interacting particles are rather insensitive of the limit
m ~0. In fact, hadron physics seems to fit into a
scheme in which the strong-interaction Hamiltonian is
SU(2) SU(2) invariant, the isotopic axial charges

' S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
{1968).

J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (1957); S. Coleman
and S. L. Glashow, Phys, Rev. 134, B671 (1964);M. Levy, Nuovo
Cimento 52, 23 (1967).

"G. Cicogna, F. Strocchi, and R. Vergara CaGarelli, Phys.
Rev. Letters 22, 497 {1969).

'3 See Ref. 12. This result has been conhrmed in a geometrical
approach by L. Michel and L. A. Radicati, in Proceedings of the
Convegno Mendeleviano, Rome, 1969 (unpublished).

'4 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'75,
2195 (1968).
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are conserved, and the pion mass is zero. This sym-
metry, however, gives rise to difficulties when extended
to particle states, a situation which indicates a vacuum
noninvariance or a spontaneous breadown of the
symmetry.

In Sec. III we discuss the spontaneous breakings of
SU(2)SSU(2). In particular, we focus our attention
on the breaking which preserves isotopic SU(2) in-
variance and hypercharge. The appearance of Gold-
stone particles and particle mixings are derived. In
particular, we discuss the case in which the breaking of
SU(2)SU(2) leaves SU(3) as a good approximate
symmetry.

II. SPONTANEOUS BREAKDOWN
OF CHIRAL SU(3)SSU(3)

Let us denote by f a function which describes the
system of strongly interacting particles and assume
that f is fully invariant under SU(3)SU(3). The
occurrence of a spontaneous breaking is equivalent to
the existence of stationary points of f other than the
origin. As stressed in the Introduction, the determina-
tion of the stability points of f is a method for finding
the directions along which a group can break sponta-
neously, and depends essentially on the general proper-
ties of the group. In order to find the stability points of

f, we have to express f as a function of the "basic"
fields or "coordinates" u, , v; (i=0, . . ., 8), which trans-
form according to the representation (3,3)g(3,3) of
SU(3)SU(3).

It is convenient to introduce the notation

W+p = Up &iVp (n, P=1, 2, 3) y

where

8 1
U,-= —P ();u;)p. , Vp = —E 0'")p, (2)

iM v2 '0

and all other notation is as in Ref. 14. If A+p = z p p

~(g')p~j denote the traceless generators of the chiral
SU(3), one then has

independent invariants. We choose the following ones:

Ig ——W'+p W—P= TrU'+TrV',
I.=++,-W-,%+, n -„~

=TrU4+TrV4+4 TrU2V2 —2 TrUVUV)

I,+=-,'c p, e"I'"(W+i, W+„PW+„&+W i W „PW P)
=e p, e"&"(Ui, U„PU,~ 3V), —V„PU,~),

I, = 2i,
—
e~p,-p I'"(W+ W+ W+ &—W W W &)

=e p, p'I'"(Vi, V„PV,& 3U—i, U„PVP).

We have now to see whether there are stability points
W for f, other than the trivial one (W=O), which does
not break the symmetry. Therefore, we will look for a
solution of the equations

t/r' a 0
In this case, we have

(Bf/BI3 )w =o, -
(6)

because, by parity conservation, f must be an even
function of I3 .

Hence the first of Eqs. (5) takes the following form:

2(Bf/BI2) Up +4(Bf/BI, ) U~ Ug&Up~

+3 (Bf/BI3+) &p e~""U U '= 0 (8)

the second one being identically satisfied.
In order to discuss the solutions of Eq. (8) we

consider the case in which Up is a diagonal matrix.
Any other case can be reduced to this by an SU(3)
Q)SU(3) rotation, because all the V are zero LEq. (6)j.

Apart from the "pathological" case Bf/BI,=Bf/BI,=Bf/BI3+ =0, in which the solution is completely
undetermined, the possible independent solutions of
Eq. (8) are the following ones" (for details, see the
Appendix):

(a) Ui'= U22=0, Ug' ——g~0,

Bf/BU P=O, Bf/BV P=O

In order to have a stability point (which plays the
role of the vacuum) invariant under parity, and
consequently a parity-invariant theory, we look for
solutions of (5) such that

Lg+ a W+, qj — gpvW+, ~,

L~-,.-',W+, 'j=B, "W+p',
LA+p, W P'1=&p W P,

Lg-p, -',W-,'1=—Bp"W-,".
(3)

corresponding to a breaking in the direction uo —&2us,

(b) Ui'= Up = U3'NO,

corresponding to a breaking in the direction of uo,.

(c) Ui'= U22=gi~O, U3'=g2,
As is clear from the above commutators, t/I/'+p trans-
form according to the representation (3,3), and W p~

according to (3,3).
The most general fwhich depends on these fields and

is invariant under SU(3)SU(3) will be a function of
the invariants which can be formed by means of
8'+p . It is not difficult to see that there are only four

with breaking in the direction

(2+v),/q, )uo+v2 (1—q,/v) i)u, .
Clearly, together with the solutions (a)—(c), all the
points which can be obtained from these by SU(3)
SU(3) transformations D.e., the points of the "orbit"
of (a)—(c)j are equivalent solutions. The original
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function, being invariant under SU(3)S U(3), cannot
fix the coordinates in SU(3)SU(3) space. We thus

'choose them is such a way that the stability point may
be given in one of the forms (a)—(c).

In Secs. II A and II 8 we discuss solutions (a) and

(b) in detail, since they give rise to residual invariance

groups of particular interest for hadron physics. Solution

(c) will be discussed in the Appendix. As we will see in
Sec. II C, dynamical arguments will restrict the accept-
able solutions to cases (a) and (b).

A. Breaking in the Direction of U3 Qo 4288

The residual invariance group corresponding to this
solution is chiral SU(2)SU(2), or, more exactly,
SU(2) SSU(2)8 Ui(Fs), Ui(F8) being generated by
the hypercharge Iis. This group seems to play an
important role in the hadron physics as suggested by
the Hamiltonian of Gell-Mann, Oakes, and Renner. '4

This invariance implies, in particular, that the isotopic
axial charges are conserved, in agreement with the
results of soft-pion and low-energy theorems.

The Goldstone bosons, which appear as a consequence
of the spontaneous breaking, can be obtained in the
following way": One takes the commutators between
the generators of the original symmetry group and the
components of the "fields" 8'p in the direction of the
breaking. The nonvanishing commutators, coming
from the "broken" generators, give the fields of zero
mass.

In our case, the Goldstone bosons are those corre-

sponding to n4 Qp RQ Q7 v4 V5 pp vv and pp —V2ps.

If one further identifies the fields u;, p; (i=0, . . . , 8)
with the scalar and pseudoscalar mesons, the Gold-

stone bosons would correspond to the four IC mesons,

the four E-scalar mesons, and to a suitable combination

of the pseudoscalar go and g8. This seems an unpleasant

feature of this solution, because it is not in agreement

with the hypothesis of partial conservation of axial-

vector current (PCAC). According to this, the pions

and not the kaons should have zero mass in the case of
chiral SU(2) SU(2) invariance.

This diKculty will not arise if Eqs. (8) are interpreted
as bootstrap equations.

B. Breaking in the Direction of uo

This solution has SU(3) as the residual invariance
group. It implies the occurrence of eight Goldstone
particles, which correspond to the eight pseudoscalar
mesons (m. , E, qs), if I; and p; are identiled with the
spin-0 mesons.

The noninvariance of the vacuum in this case is along
the direction of eo, this seems in rather good agreement
with the determination of the vacuum expectation
values of the fields'4:

(0)m, i 0)»(0) u, )0)=0.
The invariance of the vacuum under SU(3) explains
why SU(3) is a good sy~met~y. This solution has been
used in a determination of the Cabibbo angle. "

C. Lagrangian Ayyroach

In order to get further information about the break-
ing, one must face the general problem of describing
a spontaneously broken symmetry by means of an
effective Lagrangian which explicitly exhibits the
symmetry breaking. A simple and plausible prescription
is to write

&en =&p+g&',

where 2' breaks SU(3)SU(3) but still preserves the
residual invariance. However, this does not seem to us
to be a complete answer, because it still leaves undeter-
mined the representation to which Z' belongs. There-
fore, we will adopt the following prescription: Ke
identify the function f with the Lagrangian Z and
expand it in the neighborhood of the stability point
(vacuum) up to second order. This will provide us
with an effective Lagrangian with known transforma-
tion properties. Sy introducing

M=V —U, V=V —V,
we get

Z= g(U, V)+(aZ/al, ) (~&.~.&+~a.~.')+3(&&/»3+) ""ps~.U. '( tt-''tt. ' —'U-''U. ')

+2ygyl, )LU, U, -(~.~~~&+g.&g,&)+U,~U,.(tt.s'tt, .+V.sV,.)+U,.UP(&.s&,' —Z.sZ, ~)$

where the derivatives are calculated at the stability
points and A and 8 are indices labeling the four
invariants. The new Lagrangian Z, gg consists of various

terms which belong to different representations of

of SU(3) @SU(3). In particular, there is an invariant

'5 See P. de Mottoni and E. Fabri (Ref. 7). A rigorous proof has
been given by L. E. Picasso (private communication).

term, a term. p &'ppq, U '( tt s%L~' 'U P'UY') wh—ich
transforms according to the (3,3)g (3,3) representation,
and other terms containing the (8,1)(B(1,8) and the
(6+3, 6+3) (6+3, 6+3) representation. Their rela-
tive weights depend on the value of the derivatives of
the Lagrangian at the stationary points. Clearly, the

'6 See N. Cabibbo and L. Maiani (Ref. 2).



SPONTANEOUS 8 REAK I NGS OF C H I RAL SYMMETRIES 1201

group-theoretical approach cannot yield any informa-
tion on this point and one has to rely on the dynamics,
i.e., on the structure, of the Lagrangian function.
Unfortunately, we do not know very much about the
strong-interaction Lagrangian. However, the presently
available experimental data seem to suggest that the
(6,6)g (6,6) is strongly suppressed with respect to the
(3,3)Q (3,3) representation. " Hence, the following
relation must hold'~:

82 BZ
3 e & ep), U, ' » 2 Ug Up&
(g g+ BI4

and a similar inequality involving the second derivatives
of 2 with respect to the invariants. Under these condi-
tions the only allowed solutions of the stability equation
are UpP and up. (For a detailed discussion, see the
Appendix. ) For these solutions the (8,1)$(1,8) rep-
resentation appears with the same weight as the
(6,6)Q(6,6). Therefore, the suppression of the (6,6)
6 (6,6) implies, in this approach, that the (8,1)Q (1,8)
is also suppressed with respect to the (3,3)e(3,3).
The same is true for the (6,3)8 (6,3) and (3,6)6 (3,6)
representations.

In the case of the solution U3', the expansion of 2 up
to second order gives an eRective Lagrangian with a
breaking which transforms as the up —V2up component
of the (3,3)(3, 3) representation, exactly as in the
Gell-Mann et a/. '4 Hamiltonian.

III. SPONTANEOUS BREAKING OF
CHIRAL SU(2) SU(2)

As outlined in the Introduction, there are strong
motivations for an analysis of SU(2)SU(2) sponta-
neous breaking. Even more than SU(3)SU(3),
SU(2)SSU(2) has the characteristic features of a
spontaneously broken symmetry, and its breaking
seems to lead to physical results which are in better
agreement with the experimental situation than those
deriving from the solutions U33 and No discussed before.

A. Breaking of SU(2) Q S U(2)

In the same way as in the case of SU(3)3SU(3),
we find the spontaneous breaking of SU(2) SU(2) by
looking at the stability points of a generic invariant
function f. We express f as a function of "basic"
fields or "coordinates, " Wp~ transforming as the (2,2)
Q(2, 2) representation. (Of course, the representations
2 and 2 are unitarily equivalent. )

We use the notation

W+p Zp &iIIp—— (n,P= 1,2),
"Clearly, when for particular values of the indices the left-hand

side is zero, the dominance of the (3,3)O+(3,3) representation re-
quires that the right-hand side must be smaller than the non-
vanishing terms of (3,3)Q+ (3,3).

where
3

Zp ———Q (r;s,)p,
v2 '=p

1 3

Iip = —Z (~~p*)p,
V2 '=0

(12)

and r; (i=0, . . . , 3) denote the Pauli matrices. In the
case of SU(2) SU(2), there are only three independent
invariants. We choose the following ones:

Ip ——W+p~W P =TrZ'+TrIIP,

I+——,' p P pi„(W+—."W+p~+W ."W p~)--
= p P pi, (Z "Zp~ —II 'lI ~)

I = (1/2i) p.P pi„(W+.iW+; W ."W—;-)-
= 2 e~~ e),„Z~"IIp&.

(13)

Again we look for solutions 5' of the stability equations

(a)

giving a breaking in the direction of so and leaving
isotopic SU(2) as residual invariance;

Bf Bf
g~1 g2~P

l3I2 BI+

giving rise to a breaking along the direction of s3.
The first solution seems the more attractive with

respect to the physical situation; it does not break
isospin and it gives interesting results when the "fields"
Z and II are identified with physical fields.

The representation (2,2)(2, 2) is a reducible rep-
resentation of SU(2) SSU(2), consisting of two 4-plets
of fields (p, , i=1, 2, 3, andsp) and (s;, i=1, 2, 3, and pp).
Each of these sets contain an isospin triplet and an
isospin singlet. A natural identification is to regard p;,
s; as the fields of the pions and of the corresponding
scalar particles. pp and sp are isospin singlets, whose
identification in terms of physical particles (g, g, and
their scalar partners) cannot be done by using SU(2)
SU(2) alone. If SU(2) SU(2) is imbedded in
SU(3)SU(3), sp and pp correspond to the components
V2Np+Qp slid &2'vp+5p of the (3,3)Q (3,3) representation.

The Goldstone particles appearing in this case are
those corresponding to the pions. The situation is
fairly close to the physical world, as suggested by the
soft-pion technique and low-energy theorerns. An
effective Hamiltonian exhibiting an explicit breaking in

Bf/BZ P=O, Bf/BII P=O

which do not break parity $U=O, (Bf/BI )pr=07
Apart from the pathological case 8f/BI2= 8f/BI~=0,
breaking solutions exist only if 8f/BI2 =K8f/BI~.
Explicitly, we have
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the direction of sp would lead to the conservation of the
vector and axial-vector isotopic charges, in agreement
with PCAC, zero-mass pions, etc.

The breaking solution in the direction of s~ seems to
reproduce the mechanism of an electromagneticlike
tadpole" "and breaks isospin. The residual invariance
group is a hybrid SU(2) whose generators are Fi, F,',
and F3.

With the previous identification between II, Z, and
the physical fieMs, the GoMstone particles would
correspond to the charged scalar mesons and to the
field ps. The physical interpretation is less transparent
than in the previous case.

As noted before, the group SU(2) SU(2) is of no
help in the determination of the g-q' mixing. In order to
classify all the ten particles (8-, r), r)', and their scalar
partners), and possibly get information about the il-8)'

mixing, we will enlarge the group SU(2) 3SU(2) and
use a representation which can accommodate all the ten
particles.

Solutions (a) and (b) correspond to solutions (a) and (b)
of Sec. III A. Solution (c) does not break SU(2) 8SU(2)
SUi(F8), whereas solution (d) leaves only Ui(F8)
Q Ui(F8) as residual invariance.

Sy analogy with Sec. III A, we discuss only solution
(a), which does not break isotopic SU(2) and hyper-
charge. The Goldstone bosons in this case are the three
pions and the field corresponding to the following
commutator:

[Fs',w7=1v[(1—R)&2vs+(1+2R) v87. (18)

Here, S is a suitable normalization constant and

gf r)f ) i/8

R=&
F2 BIp)

[The two signs correspond to equivalent solutions under
SU(2) g SU(2).7

It is interesting to note that Eq. (18) exhibits a
mixing between r)s (=vs) and r)8 (= vs) with a mixing
angle 8 given by

B. Breaking of SU(2)(8)SU(2) Ui(E8)8 Ui(E8 ) tant) =42 (1—R)/(1+2R) . (19)
A possible solution of the problem outlined at

the end of Sec. III A is to consider the spontaneous
breakdown of SU(2) SU(2) 3Ui (Fs)3Ui (Fs'), where

Ui(F8) and Ui(F8') are the one-parameter groups
generated by Ii8 and Fs', respectively.

A representation which can accommodate the ten
particles (v., 8), 8)', and their scalar partners) is the
following:

W+s~=Zp &8IIs (rr, p=1, 2),
H/+, '=23'&iII3',

where Zs and II& are given by Eqs. (12), and

~ '= (V'8)~s —(V'8)«, 1188= (V'8) vs —(V'l)». (16)

In this representation there are four independent
invariants with respect to SU(2) SSU(2)SUi(F8)

Ui(F8'). A possible choice is the following:

Is ——W+p~W „~=TrZ'+Trl18,

I W+ 8W—8 —(g 8)2+ (11 8)8

I =-'Z'[e ~ex„(W+~"W+pl'+W I"W s&)7
—(1/2i) 1188[e sex„(W+."W+s&—W—"W—

&&)7, (17)

I = (1/2i)Z, [ .8e&„s(WeW++ sW ."W s~)—7-
+-,'lI 8[e Se&„(W+."W+S~+W-."W-&~)7.

Proceeding in the standard way, one gets the follow-

ing solutions:

The parameter R, which fixes the mixing, is related to
the equilibrium solution H/' in the following way:

where E' is a normalization constant.
If the equilibrium point or the vacuum is approx-

imately SU(3) invariant, we have to choose a sponta-
neous breaking which still leaves SU(3) as a good
approximate symmetry. This implies that E. must be
very close to 1."In this case the mixing between qp and
p8 is very small, in agreement with the experimental
situation, and the field appearing in Eq. (18) corre-
sponds to the q particle.

For example, a deviation of R from 1 of the order of
10%%uo, would give t) 3'.

Ão definite information is obtained about the mixing
between the scalars qp and g8.

C. Breaking of SU(2)@SU(2)i8) Ui(E8)

An unpleasant feature of Sec. III 8 is the zero mass
of the g particle. This is a feature common to all the
solutions (a)—(d) and it is essentially a consequence of
introducing the symmetry under F88 [which, in fact,
is broken in all the cases (a)—(d)7. On the other hand,
from the experimental point of view, there is no strong
indication that Ui(F8') is a spontaneously broken sym-

(a)

(b)

(c)

(d)

Zg'=52'/0, Z3'/0,
Z,&= —Z,~~O, Z,'~0,
Z,&=a,&=0, Z,3~0,

Z22=g2) 233=0.

"If f is invariant under SU(3), then 8f//SI8 =8f/BI8 every-
where (in particular at the equilibrium point). This property,
however, does not exclude the value R= —1 which corresponds to
a solution exhibiting a large violation of SU (3), in the direction of
hypercharge. The experimental situation favors the breaking
which approximately preserves SU(3) invariance.



SPONTANEOUS BREAK I NGS OF CH I RAL SYM METR IES 1203

metry. Therefore, a solution of the above difficulty could
be to consider the breaking of SU(2) 8SU(2) 8 Ui(I"2).

The discussion is similar to that of the previous case.
Now, however, we have five independent invariants,
because of the smaller symmetry. Besides I2, I+, and I,
defined in Eq. (13), one may clearly choose Z22 and 1122

as independent invariants LEq. (16)j. Again, there is
a solution Zi' ——Z22&0 which preserves isotopic SU(2)
and hypercharge. Now only the three pions have zero
mass. On the other hand, the elimination of the sym-
metry under F8' introduces more freedom in the theory
and reduces the group-theoretical implications of the
breaking.

In order to get further information, one must intro-
duce dynamical assumptions and/or rely on a specific
model. For example, information about the masses and
the mixing angles" can be obtained by identifying f
with the Lagrangian function 2 and by considering
the second derivatives of 2 with respect to the fields.
This has an obvious interpretation as the mass matrix
of the fields and gives the masses for g and g' and the
mixing angle in terms of the breaking solution. This
suggests that the breaking mechanism of SU(2) 8SU(2)
8 Ui(Fs), together with more dynamical information, "
may give a consistent scheme for the physical situation.

IV. CONCLUSION

In conclusion, the spontaneous breaking of chiral
symmetries appears as an interesting point of view for
investigating strong-interaction physics. In particular,
the experimental situation suggests a spontaneous
breakdown which still preserves SU(3) as a good
approximate symmetry. In the case of SU(3) 8SU(3),
this seems to favor the solution No with respect to U3'.
As far as SU(2) 8SU(2) is concerned, this gives a good
way of explaining the p-p' mixing.

APPENDIX: BREAKING SOLUTIONS IN
SU(3) 8SU(3) SYMMETRY

We discuss in some detail the solutions of the stability
Eq. (8).When U/2 is a diagonal matrix, Eq. (8) becomes

A Ui'+B (Ui')'+C U22U2' =0,
A U22+B (U22) 2+CUi'U22 =0,
A Us'+B (U22) 2+CUi'U22 =0,

"For some considerations about the occurrence of mixings as
a consequence of spontaneous breaking, see G. Cicogna and
R. Vergara CaGarelli, Nuovo Cimento 65A, 89 (1970)."F. Strocchi (unpublishedl; G. Cicogna, Phys. Rev. (to be
published).

(a)

(b)

c22 —p2 —~2

c22 —p2 +~2

exhaust all the possibilities of satisfying Eq. (A2).
The solutions of case (a) are

corresponding to a breaking in the direction of 00,'

(a")

which may be put in the form (a') by means of the
following SU(3) 8SU(3) transformation:

r ~

z

The solutions of case (b) may be classified in the
following way:

(b')

(b//)

+2+~2 ~

P F2+~2

As in case (a), it is easy to see that the solutions of the
type (b") may be transformed into solutions of type (b')
by an SU(3) 8SU(3) transformation. Therefore, we
will discuss only the case (b'). Then Eq. (A1) has the
following solutions:

(b'i) n=P=O, y&0,

corresponding to a breaking in the direction U3',

C'+AB "' C
(b') -=/=(- QQ

82 8
(ts=p&0 is possible only if B&0.)

If the function f is the Lagrangian function, and
condition (11) is satisfied, solution (b 2) does not exist.
In fact, by substituting the expressions for n, P, and p
into this condition, one gets inconsistent relations.

where A =28f/BI2, B=48f/BI4, and C=68f/BI2+, the
derivatives being calculated at the stability point. In
the following, we denote by n, P, and y the diagonal
elements of Up without specifying which is U&', U2'
or U22; clearly, a permutation of n, p, and p may be
obtained by an SU(3) 8SU(3) transformation.

Let us assume that at least one of the derivatives
A, B, and C is different from zero (A =B=C=O would
give the "pathological" case). This is possible only if

(- -W(~ -~)("--)=0.
The two cases


