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The harmonic-oscillator model of hadrons is extended so that it is dual- and crossing-symmetric for any
value of the ground-state mass. The new feature of the model system is an extra nonspatial harmonic mode

associated with each quark.

A MODEL physical system has been identified'
which possesses enough states to factorize the

dual-symmetric Veneziano amplitude' and the Chan n-

point functions' for one unphysical value of the ground-

state mass p2= —1. Vertex functions To and T have
been found that render the model automatically cross-

ing-symmetric, 4 and closed loops have been evaluated'

for the same p,
2= —1. Independently, the states have

been identified by direct factorization' and the planar
closed loop evaluated7 for arbitrary p2.

In this paper, we make a slight generalization of the
model system so that it is automatically dual- and
crossing-symmetric for any p'. The new technical result
is that nonplanar closed loops can be evaluated for any

p 2

MODEL

The basic model' is a "rubber band' with intrinsic
coordinate tt that undergoes 04 displacements x„(N)
subject to periodic boundary conditions x„(tc+ 2')
=x„(tt). The harmonic decomposition of the displace-

ment is

so(N) = —iV2 g I
e'"'l "'Got(l) e'"'l —"'ct„(l)]y (1)

where a„t(l) is the raising operator for the its mode,
l=1, 2, . . .. To these we add two extra independent,
nonspatial harmonic modes with raising operators u

and aot. The coherent states are then

I .(l) o -&
= expl n„(i)a„(l)+np«'yn. a.']

I 0&,

where
I 0) is the ground-state particle of mass ts'. The
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states in the number representation are

In„(l), rt, pti) = (rt p!I !) 't'(0 p) "'(8,)"
XH l,(l).]-' '(d.. )" "'I,(l), o, .); (3)

where np, n,n„(l) =0,1,2, . . . , and where 8
p

is an abbre-
viation for c!/c!np, etc. The states LEq. (3)] are eigen-
states of the mass-squared operator M2 with eigenvalues

M'=rip+it +Q lrt„(l)+tt'.

It is assumed that the multioscillator can absorb
ground-state quanta at just two points u=0, m- on the
band and that the vertex operator for the absorption of
a quantum of momentum k is given by

(k) G ecx(v, ) ~ s (5)

for u=0, ~. The operator G„depends only on a„t and
a . The structure of Eq. (5) means that themodeap (a )
is excited only if the quanta is absorbed at it=0 (sr). In
the coherent-state picture, we have

(-.(l),-.,-.l
~.(k) l~.(l)A,~.&

= G(n„,P„) exp(e""I n„(l) —P„(l)](2/l)'t'k
+ (1)P (l)+ —& —} (6)

where
G(n, P) = (Ol e-"G„ee "'I0).

Since ao~ and a t are nonspatial modes, we have no
a pnori guide for the choice of G„, but we have found
that the generating function

LI'(c+1+m) I'(c+1+rt)]'t'
G( A)= 2 nmPv, (8)

m, n=O trt!rt!I'(c+1)

yields the dual- and crossing-symmetric amplitudes for
the parameter value c=p2. The essential properties of
the operators G„are

G~X"~G~=(1—X) ' 'Gu

TrG X""=(1—X)

(9)

(»)
(11)

where X is a number 0~&X~& 1 and n„ is the number
operator of the a t mode. The operator G„= IP„&Q„I
is a projector onto the unnormalized state Iil„& which
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has the "time" development

in the number representation. The physical meaning of
the extra modes is that the oscillator at N=O or x is
driven abruptly into the state IP„) when it absorbs
a quantum and undergoes a certain time development
thereafter.

UNCROSSED TREE GRAPHS

To show how the extra modes work into amplitudes,
let us evaluate the matrix element for the absorption of
two quanta of momenta k& and k2 by the quark at I=0
on the band,

(n„(l),np, n
I Tp(ki)(s —M') 'Tp(kp) lb„(l),bp, b ). (13)

Equation (13) is called an uncrossed graph because both
quanta are absorbed by the same quark. For the propa-
gator, we use the representation

1

(s i!f') '= —dX X ' '+&'X"'+".g(X'')".('
0 pL

and express the operator X~' in the form

X~'=X ' Q g IP„(l),Po,P.&Le, !e !&i„(l)!$-'
np, n~, nip(l)

FIG. 1. A crossed contribution to the five-point function.

On substituting Eqs. (14) and (15), Eq. (13) becomes

dXX ' '+&'e& I'+e &x'I'+ I'e e xp( XB 8 )
0

Xe'» '~'x'~+»'~G(np, pp) exp(XBe 87 )G(pp, 8p)

Xe .e. exp(XBe.B,.)e&' . (16)

In Eq. (16) we have used the abbreviations

E„=(2/l) '"k„

and suppressed the harmonic index l.
The u=O, ~ modes enter Eq. (16) as factors under

the integration and can be handled separately. If n„(l)
and 8„(l) are zero, Eq. (16) reduces to

1

dX X—I—i+p~(1 —X)»~ I p—i—~G(np gp)e~~p~. (17)

X(X'&p, i && „i &)"" ' (X&,8,)"'

Xexp(X'Be„B,„+XBp,87,+Xone, 8~.)

The second form of Eq. (15) is obtained from the first
by the inultinomial theorem. The extra modes (I= 0, m.)
enter as a factor in Eq. (15) and can be dealt with in
the number representation.

The crossed-channel invariant enters as 2k~ k2= —/~2

+2p' so that the extra factor (1—X) ' ' with c=&ti' is
just what is needed to shift the mass in the t~2 channel
to p'. Equation (17) is just the Veneziano formula' if
the extra oscillators are in the ground state, o.o= o. = 8p

=8 =0.
CROSSED TREE GRAPHS

The complete crossing-symmetric amplitude for the
(n+2)-point function is obtained by adding amplitudes
in which quanta k&, k2, .. . , k„are attached to each
quark (positions N=O, s) in all orders. ' Let us illustrate
this by computing the amplitude shown in Fig. 1. If the
initial and Goal oscillators are in 04 ground states, the
matrix element is

&O,np, n~l Tp(kp)(Sp —3f ) T (ki)(Sp —3P) Tp(k4) l0 Bp 8 )

dXdp'X —ss—1+l42p —sp 1+$42(1+X)phd ps(1+@')ppi k4(1 Xp')»p ~ p4

&nplGpnlp&X" p&mpIlmlp&I~ p&mlpG lp& p& 2 &n III+ )X" &~ IG Im &Y &m III~ & (1g)
np, mp

If the extra oscillators are in ground states, no=a. =50 while the N=m factor is unity. To see that this is the
= 8 = 0, the I=0 factors in Eq. (18) give (1—XF) ' ', required factor, we express the dot products in terms of
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invariants related to the cycle 12345,

2ki. ko ——So+So—So—p',
2ki k4= Si+So—So—p',
2ko. k4= —S4+2p'.

Kith the change of variables

Uo ——X(1+F)(1+X) ', U:=F(1+X)(1+F) ',
(2P

U4=1 —XF, Ui=(1+F) ', Uo=(1+X) ',
Eq. (18) becomes

Tr{GoX"'GoFm'} Tr{IX"IF"}'
= (1—X)—'-~(1 —F)-'-~(1—XF)-' (24)

for planar. graphs, and

Tr{GoX"'IF~o}Tr{IX"G F~ }=(1—XF') ' ' (25)

for nonplanar graphs. The 04 trace in Eq. (23) is evalu-
ated in the usual way, yielding

II (1-X'F')-'
i=1

5

U -~+»d U,d U, II U;—"-'+&' (21)
&&exp{2ki' P l '())X'+))F'—2X'P)(1—X'F') '}

l=0

(26)

where E. is a symmetrical portion of the square 0& U3,
U5~& 1 bounded by 0~& X, I"~&1.The extraneous factors
in Eq. (21) are uniformly removed if we set e= y'. The
remaining portions of the square 0~& U3, V5&&1 required
to make Eq. (21) crossing-symmetric are obtained from
the matrix elements

(Pl 2.(k,)(S, Mo)-iT'o(k, )(S,—Mo)-'T'o(k, ) l P)

Equation (26) can be simplified, so that the final form
of Eq. (22) is

2 i..&'(k') = d'l dX d F X-'i-'+~'F-'~'+~'
0 0

&&II (1—X'F') ' II [(1—X'F' ')(1—X' 'F')/
i=1 j=l

(pl &o(k )(S —M') '&o(k )(S —M') '2'-(k ) I p)

as before. '
(1—X~F&)']-'"[(1—X)(1—F)]-'-"(1—XF)—' (27)

for the planar graph, and

dXdI'X '& '+& Y '& '+~'

XII (1—X'F')-'II [(1+XF - )(1yx'- F')
i=1 j'=l

SDTGLE CLOSED LOOPS
NP k2 d4)The effect of the extra oscillator modes on planar and

nonplanar closed loops7' is illustrated by evaluating the
single-loop contributions to the self-energy graphs
shorn in Fig. 2. In either case, the amplitude is

»..."(ki') = d'& Q (e„(&),mo, m.
l To(ki)

no, n, ~ (&)

y[(l+ki)'+M'] 'T.(ko)(P+M') —'

&& le„(l),ii„ii ), (22)

where v=0 for the planar graph and e=z for the non-
planar graph. Momentum conservation requires that
k~ ———kl. The sum and operator product are evaluated
as indicated in Eqs. (14) and (15).The result is

l l

A&...—— d'l dXd V I- ~-'+"I'- ~'+~'
0 0

)(e~~& ei')x'&+~1'ei' exp(X'8 8 )

ye(Y„or )Ir»oyv„o& ex—p(Fly o) )

~Tr{G X~o+~ G Fmo+~ } (23)

where si ———(f+ki)', so ———l' and ))= 1 for planar and
p= (—1)' for nonplanar graphs. The trace factorizes for
the two modes 1=0, x and has the value

8 K.. Kikkawa, S. Sakita, and M. A. Virasoro, Phys. Rev. 184,
1701 (1969);G. Frye and I . Susskind, Yeshiva University Report,
1969 (unpublished).

X (1 XJFi)—2]—ok~(1 XF)—2—op& (28)

for the nonplanar graph. Equation (27) agrees with
Ref. 7 except for the factor (1—XF) ' which is related
to states that are not probed by external ground-state
particles. Equation (28) is a new result.

The important observation about Eqs. (27) and (28)
and their direct generalizations to single closed loops
with n external particles in that they are the loop graphs
for a simple system and were calculated in a manifestly
factorizable form. The reason for considering the model
system is that it reproduces the results of direct fac-
torization' of the Veneziano-Chan n-point functions
and furthermore provides a unique prescription for the
so-called "nonplanar" graphs' like Eq. (28) for which
there is yet no other convincing characterization.

Equation (28) is surprising at first because the factor
in the square brackets is greater than unity and super-
ficially looks like it will give an exponentially increasing
high-energy behavior. But the situation is exactly
analogous to that encountered in Eq. (18). There is a
delicate cancellation among those graphs which are
obtained by summing over all orderings in which the
external quanta are absorbed at the quarks. The details
will be reported in a subsequent paper.
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Fro. 2. Single closed-loop self-energy graphs, (a) nonplanar and (b) planar.

1Vote added in manuscnPt K. K.ikkawa, S. A. Klein
B. Sakita, and M. A. Virasoro, in a University of
Wisconsin report (unpublished), have given a partial
characterization of nonplanar graphs. I.Susskind and I
have found a change of variables which puts the four-
point nonplanar closed loops into the form suggested by
the above authors and gives a particular prescription for
their unknown function V(X&,Xs,Xs,X4) with some im-

portant differences. The differences are that V has addi-
tional momentum dependences and that it is nonzero on

only a certain symmetrical portion of the four-dimen-
sional hypercube 0&X;&1.

CONCLUSIONS

The spectrum of states and the double factorization
of the Chan n-point functions and crossing symmetry
are fully accounted for in the harmonic-oscillator model
of hadrons' for any ground-state mass p, '. The new
feature of the model is an additional harmonic degree of
freedom associated with each of the two quarks at I=0
and x. It is conjectured that the intrinsic quark degrees
of freedom can be exploited to adapt the model to de-
scribe particle multiplets with realistic quantum
numbel s.

P H Y S I CAL R EVI EW VOLUME 1, NUMBER 4 15 FEBRUARY 1970

Spontaneous Breakings of Chiral Symmetries*

G. CIcoGNA

Istituto di F~sica dell Universitd, Eisa, Italy

F. STROCCHI

Istituto Nazionale di Fisica Nucleare, Sezione di Eisa, Eisa, Italy
and

Scuola Normale Superiore, Eisa, Italy

R. VERGARA CAVVARELLI

Scuola Normale Superiore, Eisa, Italy
(Received 9 October 1969)

We analyze in detail the spontaneous breakings of chiral SU(3) SSU(3) and SU(2) SSU(2). We deter-
mine the directions along which the two groups may brcak spontaneously. We discuss also the physical
implications of these group-theoretical results, as the appearance of Goldstone particles, the particle mixings,
and the consequences of the residual invariance.

I. INTRODUCTION

~ 'HE importance of spontaneously broken sym-
metries in elementary particle physics has
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become more and more apparent. ' The symmetries
to which more attention has been paid recently are the
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