
P IYS I CAI. R E VIEW 0 VOLUME 1, NUMBER 4 15 FEBRUARY 1970

Structure of Hadrons. II. Nonplanar Diagrams*

JUAN C. GALLARDOt EDUARDO J. GALLI, AND LEONARD SUSSKIND

Belfer Gradctate School of Science, Yeshiva University, Xe/o York, Peto Fork 10033
(Received 13 August 1969)

Using the harmonic-oscillator model for hadrons, in which any hadron is described by two quarks em-
bedded in a one-dimensional harmonic continuum, and allowing quanta to couple to either quark, we were
able to construct the full crossing-symmetric Veneziano type of amplitude in the tree-graph approximation.
This generalization also gives us a set of rules to compute the nonplanar single-loop diagrams.

' 'N two previous papers" a harmonic-oscillator model
~ ~ of hadrons with an infinite number of normal modes
was shown to give dual-symmetric Veneziano ampli-
tudes for tree graphs and planar loop graphs. In this
paper we consider a class of graphs in which the quanta
can be emitted from either of the two quarks.

The model of Ref. 1 was equivalent to assuming that
a hadron is a one-dimensional harmonic continuum with
cyclic boundary conditions embedded in four dimen-
sions. The "rubber band" has two quarks embedded in
it at n= 0 and I=x. Here I is an angular coordinate of
intrinsic position in the cyclic rubber band. The dyna-
mical variables describing such a system are x„(N), the
four-dimensional position of the /jcth point. x„(1)can be
expanded in a harmonic series

point Veneziano amplitudes if the tree-graph approxi-
mation is made. This corresponds to the graph in Fig.
1. Closed-loop graphs were also computed by tying to-
gether the external oscillator lines of Fig. 1 and sum-
ming over states.

In order to compute nonplanar loops, we must first
compute graphs in which quanta are emitted and ab-
sorbed from both x(0) and x(vr). This is shown in Fig. 2.
Tying the external oscillator lines together with a trace
will then yield nonplanar loops.

The vertex for the emission from x(sr) is the transla-
tion operator for the momentum conjugate to x(sr):

T (/t)
—.e/e(e) e.

where u+(l) and a, (1) are raising and lowering operators
for the normal modes. The total mass squared of a state
is given by

3P =Q lrt„(l) —1.
In the coherent-state representation used in Refs. 1

(2) and 2, this is

The vertex operator for emission of a quantum from
the quark at x(0) is the translation operator in the mo-
mentum space conjugate to x(0):

T (Q)
—ere(0) s (3)

Actually, Eq. (3) was modified to the normal-ordered
form

1/2

Tv(k) =exp P — k„a„+(l)
t, ik

(2 1/s

xexp —g I

— k„a„—(/',), (4)

the difference being a factor which is a function of k'.
It was shown that amplitudes in which any number of

quanta are emitted from the quark at x(0) are (n+2)-
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FzG. 2. (X+HE+2)-point tree graph with both type
To, T of vertices.

Fro. 1. (1V+2)-point tree graph with Te(k;) type of vertices.
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Pro. 3. Examples of allowed and unallowed graphs for a single permutation.

We now consider a process in which n quanta are
emitted from x(0) and 2/2 from 2:(2r). We consider all

graphs in which n momenta ky, . . . ,k„enter the graphs
in the order 1, 2, . . . , n and the m quanta q&, . . . ,q
enter in the order 1, 2, . . . , m. We shall sum over those
orderings in which the order of the k(q) quanta are pre-
served but all possible relative orders in which the k and

q can enter. For example, in Figs. 3(a) and 3(b) we see
allowed graphs and in 3(c) we see an unallowed graph.
Our conjecture is that the sum is the (22+222+2)-point
Veneziano amplitude for the given cycle of external
lines. We prove this for the four- and five-point func-
tions explicitly. We then consider the structure of non-
planar single-loop graphs. By nonplanar we refer to the
quark content of the graph. '

FOUR- AND FIVE-POINT FUNCTIONS

X(—X~+2) ~ ~ *X;), where the T (k„) vertex is at the
pth position.

Let us consider the case n= 1, m= 1; in other words,
two quanta emitted from different quarks. For Fig. 4(a),
using the notation of Ref. 1, we get

dX X—su —2 g &x~8 Bp

which can be put in the form

dX X—S —2 g S-(2/l) [2 2 (—1) &X&]

0 E

/fX X—sn-2(1+X) 222 &2

We have shown that when a quantum is attached to After summing over ) we get
x(2r) we have to modify the vertex function as is indi-
cated in Eq. (6). The only change produced in the gen- 1

eral %+2 Veneziano amplitude is to replace any de-
pendent variable (1—X," ~ X;) by (1—X; (—X„) 0

' H. Harari, Phys. Rev. Letters 22, 562 (1969); J. L. Rosner,
ibid. 22, 689 (1969);K. Kikkawa, B. Sakita, and M. A. Virasoro,
Phys. Rev. 184, 1701 (1969); G. Frye and L. Susskind, Yeshiva
University report, 1969 (unpublished); see also Note added in
manuscript.

Notice that the factor (—1)' produces the change X into
—X in the dependent variable (1—X).

If we write 2k2 k3 as a function of the Mandelstam
variables associated with the permutation (1243), then
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FIG. 4. Allowed graphs in
2V =&=1 case.

(7) is given by

gX X—$18-2(1+X)$18+s&8+2.

tained by a reflection along the quark lines) are in
fact identical to those in Fig. 5, as it is easy to check
explicitly.

Let us go now to the n=2, m= i case shown in Fig.
6. For Fig. 6(a) we have

and making the change of variable F'=X/(1+X), we
obtain

1'2 st gX X —sl'1—2X —s45—2(1 X )2k2 k8

d Ir F—sou-2(1 P')—%8—2 (9) X(1+X )2k8 k4(1+X X )258.k4 (11)

Let us consider now Fig. 4(b), where we just changed expressing 2k8 k4 and 2k2 k4 as a function of the

the order of Te(ks), T (k8). Here we obtain Mandelstam variables corresponding to permutation
(12354), that is,

1/2

d F F'—s12-2(1 F)—$18—2 (10) 2k8 k4=&85+&45—&12+1, 2k2'k4=&12+&14 —&85+11

Obviously the sum of (9) and (10) is the Veneziano
amplitude corresponding to the permutation (1243).

Ke would like to point out that the full crossing-
symmetric four-point amplitude A(s, i,g) is obtainable
in this model by summing over all possible combina-
tions and all orders of occurrence of the vertices. Graphs
shown in Fig. 5 are suifKient to give us the total A(s, t,u)
amplitude; the other possible graphs (which are ob-

a)

and making the change of variables

X1(1+X2) X2
U1= U4=

1+X1X2 1+X2

t The Jacobian of the transformation is (1+X2)
X (1+X1X2).$ We get

d U1d U4
1U —S].~2 U —S23—2 U —S35—2

2 3

Q1 U5
XP —S45—2U' —$14 2 (12)

We have chosen U1 and U4 as independent. The vari-

(55) /

l

I

Xi gg
I

8 8

Xl ~ Xz,

FIG. 5. The full crossing-symmetric four-point function. (a),
(b), and (c) are the Veneziano formulas for (S12, S23}, (S12, S24),
and (S28, S84l channels, respectively. FIG. 6. Allowed graphs in 37=2, M =1 case.
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again the U; as functions of X~ and X~ are different
from the two previous cases.

It is obvious that the sum of all three graphs gives us
the Ave-point Veneziano amplitude for the permutation
(12354) since the full region of integration in Fig. 7 is
the unit square.

Once again, the full crossing-symmetric 6ve-point
amplitude is given by all possible combinations and
orderings of the two types of vertices.

Pro. 7. Domains of integration for the graphs in I'ig. 6. The
boundary line between regions 02 and 03 is given by U'1. U4 ——~
when X& is axed equal to 1 and X2 goes from 0 to 1.

NONPLANAR SINGLE-LOOP GRAPHS

From the expression for the tree diagrams derived
above, we can construct the amplitude for nonplanar
single-loop diagrams in the usual manner, that is, tying
together the external oscillator lines, including the
corresponding propagator, and summing over all pos-
sible intermediate states.

It was shown in Ref. 2 that any diagram with a single
loop reduces to an expression of the form

bles U; are given in this case by

1+XtXk

3 ),.p —— 84/ VX'
0

dX X a'' X

&&Tr(Tk,Xt~ Tk X.~}, (15)
U5=

1+X, 1+XtXz

which satisfy the duality equations

1—U = U=)U.+g

The region of integration Q~ is shown in Fig. 7.
For the graph in Fig. 6(b), we get

dX dX X -"k-'X —"k—'(1+X )""4
g(1+X )2ka k4(1 X X )2k' k3 (13)

By similar steps as before and making the change of
variables

Xt(1+Xk)
and U4 ——

1+Xz

we obtain an expression identical to (12) but with a
domain of integration Qz (Fig. 7).

The U; as functions of X~ and X~ are different from
the erst case but they still satisfy the duality equations.
For Fig. 6(c) we get

0 0

dX,dX,X -'i4-'X —3k-'(1+X )"k "4

~(1 X )2k' ~ ka(1+X X )2kB ~ k4 (14)

which again can be transformed to an expression similar
to (12) with a region of integration Qz. The correspond-
ing change of variables is

1+XtXk
U4=

1+Xk 1+XyXz

where 1 is the internal momentum. It is clear that for
the nonplanar case we shall get a similar expression,
where now the vertex functions could be To(k) or T (k).
As before, if all rnornenta k; are zero, Tr{XP X„~}
is nothing more than the partition function4

00 1
f(Xt X„)=g

1—Xi' . .X '

Let us consider as an illustrative example the non-
planar self-energy graph of Fig. 8; an explicit computa-
tion shows that the amplitude is related to the planar
graph'' of Ref. 2 by a replacement of terms like

K. Bardakci, M. B. Halpern, and J. A. Shapiro, Phys. Rev.
185, 1910 (1969); G. Veneziano and M. A. Virasoro, note in
S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).' In Ref. 2 it was proved that the planar-loop amplitude is given
by

1 j. 1 4

a...,= dt dx,dX,X;s-2X;s-2 &
0 i=i 1—X1'X2'

2k2
Xexp .

1 X,X, p(Xg~+Xk') —2Xg'Xj]f,

which can be rewritten, making a power-series expansion of the
factor (1—X1'X2') ' in the exponential and summing, in the
form

d'l
1 1 4

dXldX2X1-St—2X -S2—2 Q
1—X1'X2'0 0

xU (1 XlsX2s—1) (1—Xls—1X2z} —2k

i=1 (1—Xg'X2') 2

which is essentially identical to the expression derived by Bardakci
et al. (Ref. 4).' K. Bardakci and H. Ruegg, Phys. Letters 288, 342 (1968);
M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969);Chan Hong-Mo,
Phys. Letters 283, 425 (1969); Chan Hong-Mo and Tsou Sheung
Tsun, ibid. 28B, 485 (1969); C. J. Goebel and B. Sakita, Phys.
Rev. Letters 22, 257 (1969).
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(1—X&'+ X2') by (1+X&'+'X2'). This generalizes the
prescription found in the discussion of tree graphs.

Then, the nonplanar self-energy amplitude is given by

3 l.,pNP = d4/

&&Xg s' 'X —s
'=& k1 —Xg'X2'

-(1+XjX2' ') (1+X'' 'X2')
X

(1—X&&X2&)'
(16)

We would like to point out that in order to compare
(16) with a possible expression derived from a dual
diagram approach, it may be necessary to transform
terms like (1+X&'X2' ') as we did in the tree graphs by
using relations between the invariants composed of the
momenta and making suitable changes of variables.

Fro. 8. Nonplanar self-energy graph.

A paper describing the model in greater detail is in
preparation and will be published elsewhere.

1Vote added ie manuscript As .one of us (L.S.) has
shown (Ref. 1), the model for a hadron we are using
here suffers the pathology that crossing symmetry is
only achieved for an unphysical value of the mass of the
external quanta and ground state of the oscillator
p'= —1. Frye has slightly Inodihed the model to allow
any mass for the external particles. )See G. Frye, fol-
lowing paper, Phys. Rev. D 1, 1194 (1970).g

This produces small changes in our results; for in-
stance, for planar self-energy diagrams, he obtained

A I..pp —— d4l dX,dX2 X&-e&-'+~'X,—'2-'+~' g (1—X,'X,*')-4

Xg $(1—X&~X2' ')(1—Xs' 'X2')(1 —Xi'X~') 'j '"'L(1—Xi)(1—X~)j ' "'(1—XiXa) ',
j=1

and for the nonplanar self-energy graph,

A )..pNP = d4l

0 0

dX dX X —' -'+"X-' -'+"
g (1—X 'X ')-'
i=1

&& g L(1+X tX~'—')(1+X &—'X J)(1—X &X &')—'j—'"'(1—X X )
—'—' '.

j=l

We call "planar graph" any diagram without crossed
quark lines. An essentially nonplanar graph in this
sense is expected to have a cut in the angular momentum
plane )see P. G. Freund and R. Rivers, Phys. Letters
29B, 510 (1969); K. Kikkawa, Phys. Rev. 187, 2249
(1969).3

The concept of nonplanarity used here should not be
confused with nonplanarity in the usual Feynman-
diagram language; in particular, there is no essentially

nonplanar graphs among single-loop Feynman dia-
grams. G. Frye and one of us (L.S.) have shown that
the prescription for nonplanar graphs used here is a gen-
eralization of the rules of K. Kikkawa, B. Sakita, and
M. A. Virasoro. '
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