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intimate connection between the two. Harari' has also
noted a possible correlation between the shape of form
factors and Pomeranchuk eBects in electroproduction.

A final problem which is also related to the divergent
eff'ects of an infinite number of modes is that closed-
loop graphs in duality theory7 have a new kind of diver-

' H. Harari, Phys. Rev. Letters 22, 20 (1969);22, 1078 (1969).
'The general n-point function in our model agrees with the

n-point function obtained by several authors. For example, see
K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968); M. A.
Virasoro, Phys. Rev. Letters 22, 37 (1969); H. M. Chan, Phys.
Letters 28B, 425 (1969); C. Goebel and B. Sakita, Phys. Rev.

gence associated with the rapidly increasing number of
states which can circulate around the loop. We therefore
feel that a single damping mechanism analogous to
radiation reaction will be found in higher-order correc-
tions which will relate significantly to these three
problems.

Letters 22, 257 (1969); S. Fubini and G. Veneziano, MIT report
(unpublished). Discussions of closed-loop graphs are given in
K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184, 1701
(1969);L. Susskind and G. Frye, Yeshiva University report (un-
published); J. Gallardo and L. Susskind, Yeshiva University
report (unpublished); K. Bardakci, M. Halpern, and J. Shapiro,
Phys. Rev. 185, 1910 (1969).
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Using the generalized harmonic-oscillator model of hadrons, we construct the amplitude for dual-sym-
metric Feynman-like diagrams with a single loop. Our result is essentially identical to the expression derived
by Veneziano and Virasoro.

In the coherent-state representation, we get

T(IC,ot,P) = (a
~
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~ P) =g e" 'x "~ 'x +

' ' N Ref. 1 it was shown how to construct the dual-
~- symmetric Veneziano amplitudes for tree graphs
using the harmonic-oscillator model of hadrons. The
model provides a set of rules which make the construc-
tion of these graphs very simple and which, furthermore,
give the amplitudes in a manifestly factorized form.

We want to show in this paper how to apply those
rules to obtain the amplitude for any diagram with one
loop. '

I.et us suDUnarize first the results of Ref. 1: The
vertex function T(K) of two oscillators in arbitrary
states and a quantum of momentum k is given by

The oscillator propagator reads
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To simplify the notation, we use 0,, E, I, and m in-
stead of 0,„',g'E„,I', and nz„', respectively, and we
shall keep i and p, fixed through the calculation; at the

(1) end we shall take the product over all tt= 1, 2, 3, 4 and
alii=1, 2, . . ., ~.

where K=&2k and

ct„'(n„')= (not+1)'"
( n„'+1),

f'o'In. ') = (n.')'" I n.'—1) .
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LOOP AMPLITUDE

From our knowledge of the (n+2)-point tree-diagram
amplitudes, we can construct the amplitude for a loop
with n external legs by just tying together the oscillator
legs and summing over all possible states (Fig. 1).

The loop amplitude reads
1 1 1
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which can be rewntten as
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which is the partition function
a closed-loop diagram.Frc. . iKinematics for a c ose-

one external leg. Ke have(b) Loop with only one

ove, we get (where we use
=E2=X=&2h-
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then,
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as follows:
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which is essentially identical to the amplitude derived
by Veneziano and Virasoro. ' 3

We see from Eq. (5) that the partition function is
given by a generalization of the thermodynamic parti-
tion function of a system which satisfies Bose-Einstein
statistics and where the density operator is p =X ~
=e-" ~; therefore, any loop amplitude is given by a
kind of average value of the vertex operator T(E )
= e ™t,''~ .4 The new "particle counting" divergence
which occurs when all the X 's go to 1 corresponds to
having very "high termperatures" and it is a manifesta-
tion of the innnite number of modes in our model.

The degeneracy of each energy eigenvalue,

where p(k) is the number of partitions of k without any
restriction. If we identify k with the energy eigenvalues

p(k) gives the number of ways we can make k with

1)&n„'particles in the mode 1, 2&n~' in the mode 2,
etc. From Ref. 5 we know that

—(g )1/2 —(g ini)i/2

in each of the p, = 1, 2, . . ., 4 directions can be seen as
follows: The partition function is defined by'

3 S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).
4A. Messiah, in QNgntgns 3lechgnics (North-Holland Publish-

ing Co., Amsterdam, 1962), Vol. I, p. 450.
~ G. H. Hardy and S. Ramanujan, Proc. London Math. Soc.

1'7, H(191/). '

this wild degeneracy is again a manifestation of the in-
finite number of modes. '

1I/ ote addedin manuscript The m.odel we are using here

applies only for the case of negative-mass-squared ex-
ternal scalar particles. This pathology was pointed out
by one of us (L.S.) in the second paper of Ref. 1. Re-
cently, Frye has shown how to modify the model for
arbitrary external particle mass. LSee 6. Frye, second
following paper, Phys. Rev. D 1, 1194 (1970).1 This
generalization amounts to very small changes in our
results.


