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intimate connection between the two. Harari® has also
noted a possible correlation between the shape of form
factors and Pomeranchuk effects in electroproduction.

A final problem which is also related to the divergent

effects of an infinite number of modes is that closed-
loop graphs in duality theory” have a new kind of diver-

S H. Harari, Phys. Rev. Letters 22, 20 (1969) ; 22, 1078 (1969).
" The general n-point function in our model agrees with the
n-point function obtained by several authors. For example, see
K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968); M. A.
Virasoro, Phys. Rev. Letters 22, 37 (1969); H. M. Chan, Phys.
Letters 28B, 425 (1969); C. Goebel and B. Sakita, Phys. Rev.
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gence associated with the rapidly increasing number of
states which can circulate around the loop. We therefore
feel that a single damping mechanism analogous to
radiation reaction will be found in higher-order correc-
tions which will relate significantly to these three
problems.

Letters 22, 257 (1969); S. Fubini and G. Veneziano, MIT report
(unpublished). Discussions of closed-loop graphs are given in
K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184, 1701
(1969) ; L. Susskind and G. Frye, Yeshiva University report (un-
published); J. Gallardo and L. Susskind, Yeshiva University

report (unpublished); K. Bardakci, M. Halpern, and J. Shapiro,
Phys. Rev. 185, 1910 (1969).
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Using the generalized harmonic-oscillator model of hadrons, we construct the amplitude for dual-sym-
metric Feynman-like diagrams with a single loop. Our result is essentially identical to the expression derived

by Veneziano and Virasoro.

N Ref. 1 it was shown how to construct the dual-
symmetric Veneziano amplitudes for tree graphs
using the harmonic-oscillator model of hadrons. The
model provides a set of rules which make the construc-
tion of these graphs very simple and which, furthermore,
give the amplitudes in a manifestly factorized form.
We want to show in this paper how to apply those
rules to obtain the amplitude for any diagram with one
loop.?
Let us summarize first the results of Ref. 1: The
vertex function 7'(K) of two oscillators in arbitrary
states and a quantum of momentum % is given by

4
T(R) =TT 1T evorre=onics,
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where K=V2k and
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In the coherent-state representation, we get
T(K ) = (| T(K) |8y =TT ev'esSsmotuisistanivs,
iu

The oscillator propagator reads
w 4
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To simplify the notation, we use o, K, X, and  in-
stead of ot g°K,, X, and m,’, respectively, and we
shall keep 7 and p fixed through the calculation; at the
end we shall take the product over all y=1, 2, 3, 4 and
all i=1,2, ..., .
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LOOP AMPLITUDE

From our knowledge of the (#+2)-point tree-diagram
amplitudes, we can construct the amplitude for a loop
with 7 external legs by just tying together the oscillator
legs and summing over all possible states (Fig. 1).

The loop amplitude reads
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0 0 0
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which can be rewritten as

1 1
Aloop=/d4l/ dXi-- / dX X Srke=1. .. X —Snte-1
0 0
X Tr{eKig-bK1X V. . . gaKng=bKnX N} | (4)
Therefore any diagram with a single loop reduces to a
calculation of a trace. To illustrate how to handle such
expressions, let us consider in detail the simplest cases.

(a) Al the quantum momenta are zero. In this case we
have

Tr{X1N- . 'XnN} =H Z (Xli, . .Xni)nm-

T, npt=0

o 1 4
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which is the partition function

f(X)=1:il (1—Xiy4,

(0) Loop with only one external leg. We have

© Xn on anr
Tr{e*Ke bEXN} =3 — — — gla—BK+ap,
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Making a change of variables @&=a—XK and using
g'=1/4/7 and

(o= § LT
n=0 mln!
we get
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then,
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It is needless to say that because of energy-momentum
conservation, K=v2k=0.
(c) Loop with two external legs. We have

Tr{eaKle—bKleNeaKze— bK2X2N}
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F16. 1. Kinematics for a closed-loop diagram.

By steps similar to those above, we get (where we use
energy-momentum conservation —Kij=K,=K=vV2k
and, as before, k2=1K?)

o 1 4
1 ()
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which can be rewritten, using

w X°
eXP(Z —_—2k2> =exp[ —2k?In(1—X)]=(1—X)"%*,

i=1 1
as follows:
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Therefore, we obtain for the self-energy amplitude the
expression
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which is essentially identical to the amplitude derived
by Veneziano and Virasoro.??

We see from Eq. (5) that the partition function is
given by a generalization of the thermodynamic parti-
tion function of a system which satisfies Bose-Einstein
statistics and where the density operator is pn= X"
=e¢ ¥ therefore, any loop amplitude is given by a
kind of average value of the vertex operator T'(K,,)
= goKmg—bKm 4 The new “particle counting” divergence
which occurs when all the X,,’s go to 1 corresponds to
having very ‘“high termperatures” and it is a manifesta-
tion of the infinite number of modes in our model.

The degeneracy of each energy eigenvalue,

Bi=(S)42=(X in)',
i=1

in each of the u=1, 2, ..., 4 directions can be seen as
follows: The partition function is defined by®

© 1 4 0
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nui=0 p=1i=11—X?% pu=1
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5 G. H. Hardy and S. Ramanujan, Proc. London Math. Soc.
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where p(k) is the number of partitions of £ without any
restriction. If we identify %k with the energy eigenvalues

© .
2 ',
=1

p(k) gives the number of ways we can make % with
1Xn,* particles in the mode 1, 2X#,?% in the mode 2,
etc. From Ref. 5 we know that

p(k) ~ ek

k-0

this wild degeneracy is again a manifestation of the in-
finite number of modes.?

Note added in manuscript. The model we are using here
applies only for the case of negative-mass-squared ex-
ternal scalar particles. This pathology was pointed out
by one of us (L.S.) in the second paper of Ref. 1. Re-
cently, Frye has shown how to modify the model for
arbitrary external particle mass. [See G. Frye, second
following paper, Phys. Rev. D 1, 1194 (1970).] This
generalization amounts to very small changes in our
results.



