
PHYSICAL REVIEW D VOLUME 1, NUMBER 4 l 5 FEBRUAR Y 1970

Structure of Hadrons Implied by Duality*
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The harmonic-oscillator model of hadrons is generalized to include higher harmonics so that the degrees
of freedom of the internal state of a hadron are equivalent to those of a violin string or organ pipe. Scattering
amplitudes for the scattering of particles by the oscillator are constructed and shown to be equivalent to
the dual-symmetric Veneziano model. Our method provides a direct construction of the amplitude in a
manifestly factorized form.

m'=P n„+c. (2)

The four raising operators a„and lowering operators
b„ form four-vectors under the homogeneous Lorentz
group. The a„do not create particles from the vacuum
but rather they act on the single-particle space to excite
the ground-state particle called

l
0). In Ref. 1 the vertex

T(k) coupling two internal states of the oscillator and
a quantum of momentum k was computed to be

(n„n„n„n. l T(k) l m„m„m„m. )

' l'N a previous paper' an 04-symmetric oscillator model
~ ~ of hadrons was shown to lead to a Veneziano-like
amplitude' for the scattering of elementary particles by
the 04 oscillator. The scattering amplitude, although
similar to Veneziano s, did not have duality. In this
paper we consider the oscillator model to be an approxi-
mation to a dynamics of hadrons in which all but the
fundamental mode of a harmonic series' are ignored.
Thus the oscillator model is to the real hadron what the
tuning fork is to the violin string.

We summarize the results of Ref. 1 for a four-dimen-
sional oscillator described by the 04-symmetric equation

[ 1+ 2+ (&1 &p) jf(&1)+2) 0 (1)

coupled to the quanta of a scalar held. The states of the
oscillator are characterized by a total momentum and
an internal state p„(xr—xp) which is parametrized by
four excitation numbers, n„(p=1, 2, 3, 4). The mass
squared is quantized according to

This is equivalent to

(n„l T(k) lm„) = (n„l e xe Palm. ). (4)

The coherent-state representation is defined by ln„)
= e ~ ~

l 0) so that

In the coherent-state picture, e& e& x+ 'e is (nl T(k) l p)
or (nle'xe b xi/)'

The (n+ 2)-point function shown in Fig. 1 for ground-
state initial and Anal oscillators is given by

T(k k„)= g (OlT(k)l „)
f Sr—Pn„—c

&&(n. lT(kp)lm. ) (m. lT(kp)lr. ) (3)
S2— m„—C

with S;=P .
We illustrate the method for handling expressions

such as Eq. (5) by considering the four-point amplitude
T(kr, kp):

T(k&,kp) =(0 l T(kr) ln„)— (n„l T(kp) l 0) . (6)
S Pn —c—

Replace 1/(S —Pn —c) by using

dx X—S+c—1+En

S—Qn —c p

and use the coherent-state representation to get

with E=%2k.

y ~(n—P) K+nP (3) T(kr, kp) =
np Xnjj,

X—S+c—1~—aK] gP-K2

Bnp BPp np.
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Fio. j.. Kinematics for the
n-point function.

If the mass of the field quantum is u and —(ki+k2)' or, in the continuum limit,
= 42, then Eq. (7) gives

X—8+c—1(e x) t—12+2—tctdX

~x 2-
—x(u) + — du.
Elf BN

(13)

Equation (8) is to be compared with the Veneziano for-
mula jn. whiCh the (e

—X)—ttt+2nt wOuld be (1—X) ttt+2~ .
Let us define 3;; = —(k,+k;+1+. +k;)' for the

(n+2)-point function T(ki, . . . ,k„). The Veneziano
formula and the oscillator formula both are of the form

—ai81). . .X —ai8n —1) g It'. —a(ttt)dn lX (9)—

where the I'„are functions of the X's. In the Veneziano
case

(1—X,X;+1 X,) (1—X; 1 X,qi)
(10)

(1—X; X,+1)(1—X; 1 X;)

In the oscillator case the F;;are expressed by a similar
form with each factor (1—X . .) being replaced by
e x ".Hence,

e—xz" xie—xi-1 "xj+1

xz ' ' ' xj—1e xi+1'

for the oscillator.
Ke now imagine that the oscillator represents only

the fundamental harmonic of a harmonic series of vibra-
tions. For example, we might imagine that instead of
a single spring connecting the two particles (called
quarks in Ref. 1), the force is propagated through an
elastic medium composed of a chain of very many
springs. A nonrelativistic system of this type would
have a Hamiltonian

The normal modes would be expressions like

X(u) cosnudu

and would form vectors in space.
In the 04 case we postulate, for each harmonic labeled

i, normal-mode creation and annihilation operators. For
each harmonic there are four normal modes forming a
four-vector and operators to raise and lower the excita-
tion of each mode. These operators are a„' and b„',
where p = 1, 2, 3, 4 and the superscript i goes from 1 to
~. A state of the oscillator is labeled by an infinite
number of occupation numbers n„' and the mass
squared of such a state is given by

tn2=+ in„'+c.

In analogy with the previous case, we define a vertex

(n 'l T(k) lni ') by (n 'l e"nxne 8nxnlni ')

where A and 8 are linear combinations of the a„' and
b„', respectively. '

~.=Z g'~. ', ~.=Z c'b'

The four-point amplitude is then

Z(ol &(ki) ln ')— (n-'I T(k2) lo). (17)
5—Q;„in„' c—

a=+ —x,"—x,+lx;—x; il',
~' df df

(12)
A coherent-state representation is de6ned by

l
~ t) —eza„a„

l 0)
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Equation (18) is then evaluated by a series of steps This is clearly not symmetric between the two ground-
analogous to Eqs. (6)—(8): state lines in the vertex. If the vertex is symmetrized,

the sum over intermediate states would then give the
T(kg, k2) s, t and s,u parts of the full crossing-symmetrized

amplitude.
Of some concern in this model is the possible presence

of ghosts due to the timelike excitations. Under the 04
group, the transformation of a multiplet such as

X—8+~1&—Xy X2Z, (gsmXs)
a 'a' i0)

X s+c—1[~—z( g—imx')] —42+2'

Hence, if —Pg,2X'= in(1 —X), Eq. (18) becomes the
Veneziano formula. Therefore g;= 1/g j.

In order to apply this formula to a simple model of
mesons, we suppose that the ground-state masses are p',
that only one type of ground-state meson exists (a
neutral scalar model for the ground state), and that the
n-point amplitudes we shall derive apply when all ex-
ternal lines are unexcited.

Equation (18) is crossing-symmetric under s tinter--
change if c—1=2@,'. But c is just the mass squared of
the oscillator ground state and is therefore p,

' according
to the above assumptions. Hence the ground-state
squared mass is —1, which is obviously a disaster. We
regard this disaster as an unphysical consequence of our
simplifying assumptions and hope it can be avoided in
a model with more realistic quantum numbers. We do
see, however, that the choice of model for the spectrum
of internal hadron states determines the trajectory
height. We shall come back to this point.

The (n+2)-point function can be calculated from
a product of vertices and propagators according to the
formula

with n creation operators, forms a degenerate multiplet
which transforms as a tensor T„„.. The transforma-
tion matrices are real orthogonal matrices and are
therefore unitary. The continuation to the Lorentz
group ruins the unitarity. The trouble manifests itself
in ghosts. If we work in the rest, frame of a hadron, then
any state which contains an odd number of timelike
factors of a's will be ghostlike. To see this, consider the
vertex (0~ T(k)

~

n„'). It will be proportional to

(p )Ng(p ) N2(p )Ns(p )N4

where X„=P, n„' In the .continuation to the I.orentz
metric, k4 becomes i&4, so that if S4 is odd the vertex is
imaginary.

However, we must symmetrize the vertex with respect
to the two incoming particles described by (0~ and k.
In the rest frame the space components of momentum
of (0

~

are (—k~ —k2 —k3) and the time component is k4.
Hence the symmetrized vertex is proportional to

(p )Ng(p )N2(g )iv3(p )N4'D+( 1)ivy+ivy+A's]

which vanishes if 1V&+X&+%3 is odd. Hence, the only
possibilities for ghosts are E&+E2+1V3 being even and
$4 odd.

An amusing feature of the model is that Veneziano's
condition for the vanishing of odd daughters is satis6ed.
In the case of mw~ —+ co, the condition was

with (n„'~ T(k)
~

m„') given by

(e„;!m„, !)"' (20)

n(s)+n(t)+e(u) =2,

o.(s) =s+1—m'.

For our model the Veneziano condition becomes

(21)

(22)

The result is the Veneziano e-point function as given by
Chan, by Goebel and Sakita, and by Bardakci and
Ruegg. ' The representation in Eq. (20), although of no
computational use, is valuable because it is a manifestly
factorized amplitude.

Let us examine the three-particle vertex when the
initial oscillator is in the ground state. Schematically,

n

(0 [ T(k)
~
e) = —

(
—e""'x~.

(n!)"'(Ba

(s+1—m')+(1+1—m')+(I+1 —m') =2 (23)

or 4m'+3 —3m'= 2, giving m'= —1.
In order to better understand this structure and its

relation to the quark model, we have found a model sys-
tem which gives rise to this formalism.

We are interested in a generalization of the oscillator
system of Ref. i. The system we discuss is the corre-
sponding 04-symmetric analog of a quark and antiquark
connected by the continuum limit of a chain of springs.
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Nonrelativistically the system has a Hamiltonian

—x, +ix;—x; ii',
i=o

(24)

One further modification will be that the first and last
spring are connected to one another and that the quarks
are located at I=0 and I x. Thus the system is equiv-
alent to a 6eid x(u) defined on the interval L0,2ir] sub-
ject to periodic boundary conditions.

In the 04 case, we assuine four coordinates x„(u).The
energy of the nonrelativistic system is replaced by the
mass squared, and a variable conjugate to the mass
squared, called z, is introduced. 4 Thus the equation of
motion satisfied by x„(u) is

The variable x(u) can be expanded in a harmonic
series

a„+(l)
x„(u) =iV2 g e""—a„(l)

e
—flu

)
+(s)

(26)

where a+(l) and a (l) are raising and lowering operators
for the normal modes of the system. The function co&

is proportional to 1 and will be taken to be l.
The total mass squared of a state is given by

as in Eq. (15).
We now suppose that one of the quarks interacts with

a "radiation Geld" so that the hadron can absorb and
emit quanta. The vertex for such an interaction involves
the displacement of the momentum of the quark by
amount k, where k is the momentum of the quantum.
Hence we take the vertex to be the operator which
translates the momentum conjugate to x(0) by amount
k. This operator is

a+(l) a (l)e"*ioi=exp P &2k.
Ql Ql

Hence the vertex T,r(k) is

a+(l) a—(l)-
g(i~exp &2k — ——

~ f),
p, l Ql Ql

(27)

4 For the meaning of the variable v- conjugate to m' see L. Suss-
kind, in Lectures in Theoretical Physics (University of Colorado,
Boulder, Colo. , 1968).

which, in the continuum limit, is given by a Hamiltonian

2~ d 2 gX 2—x(u) + —du.
dt Bu

in exact agreement with the vertex used in Eq. (17) if we
use the normal-ordered form.

As we have shown, this model leads to Veneziano
amplitudes. This implies that the model satisfies duality,
which means that although it is expressed as a sum of
s-channel exchange diagrams, it contains a crossed set
of t-channel poles. This is surprising because one thinks
of the t-channel processes as being transmitted between
the hadron and quantum by the propagation of a /-

channel particle which travels the distance between the
two. In general, that distance can be large and it is
dificult to see how emissions and absorptions at the
hadron can be responsible for the same effect.

Even more striking is the high-energy limit of the
scattering,

A(s l) —+ s'= e"o*. (28)

This is the shrinking diffraction peak, which says that
as the energy increases, the scattering becomes more and
more forward, implying a larger and larger interaction
radius. Hence the duality and diffraction peak suggest
that the quark can somehow reach out to far distances
to receive and emit the field quantum.

The reason for this odd effect is quite simple. The
position of the quark, x(0), is the equivalent of a field
operator and as such will undergo infinite zero-point
fluctuations. Hence, what we ordinarily consider as the
emission of a t-channel particle or Regge pole which
transmits the interaction between the target and quan-
tum can equally well be thought of as a large Ructuation
in the position of the quark relative to the center of
mass of the hadron. This mechanism of infinite Quctua-
tions in the size of a hadron we believe to be the origin
of duality. Therefore we conjecture that any duality-
satisfying theory will involve an infinite number of in-
ternal degrees of freedom. We return to the vertex T(k).
We originally took it to be

a+(l) a (l)g exp K2— k —K2— k
gl Ql

(29)

~T. T. Chou and C. ¹ Yang, Phys. Rev. Letters 20, 1213
(1968).

which we modified to the normal-ordered form. The
difference is a universal form factor exp) —P(2/l)k'j.
Since P(1/l) diverges, the vertex in Eq. (31) contains an
infinitely rapidly decreasing factor. Again this form
factor is a symptom of the infinite fluctuations in the
hadron size.

Now in reality diffraction peaks do not shrink inde-
finitely and form factors do not decrease infinitely
rapidly. It is tempting to assume that whatever mecha-
nism damps the very high modes to produce a 6nite-
sized hadron is responsible for both the shape of diffrac-
tion peaks and electromagnetic form factors. In this
respect we note that Chou and Yang' have found an
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intimate connection between the two. Harari' has also
noted a possible correlation between the shape of form
factors and Pomeranchuk eBects in electroproduction.

A final problem which is also related to the divergent
eff'ects of an infinite number of modes is that closed-
loop graphs in duality theory7 have a new kind of diver-

' H. Harari, Phys. Rev. Letters 22, 20 (1969);22, 1078 (1969).
'The general n-point function in our model agrees with the

n-point function obtained by several authors. For example, see
K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968); M. A.
Virasoro, Phys. Rev. Letters 22, 37 (1969); H. M. Chan, Phys.
Letters 28B, 425 (1969); C. Goebel and B. Sakita, Phys. Rev.

gence associated with the rapidly increasing number of
states which can circulate around the loop. We therefore
feel that a single damping mechanism analogous to
radiation reaction will be found in higher-order correc-
tions which will relate significantly to these three
problems.

Letters 22, 257 (1969); S. Fubini and G. Veneziano, MIT report
(unpublished). Discussions of closed-loop graphs are given in
K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184, 1701
(1969);L. Susskind and G. Frye, Yeshiva University report (un-
published); J. Gallardo and L. Susskind, Yeshiva University
report (unpublished); K. Bardakci, M. Halpern, and J. Shapiro,
Phys. Rev. 185, 1910 (1969).
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Using the generalized harmonic-oscillator model of hadrons, we construct the amplitude for dual-sym-
metric Feynman-like diagrams with a single loop. Our result is essentially identical to the expression derived
by Veneziano and Virasoro.

In the coherent-state representation, we get

T(IC,ot,P) = (a
~
T(K)

~ P) =g e" 'x "~ 'x +

' ' N Ref. 1 it was shown how to construct the dual-
~- symmetric Veneziano amplitudes for tree graphs
using the harmonic-oscillator model of hadrons. The
model provides a set of rules which make the construc-
tion of these graphs very simple and which, furthermore,
give the amplitudes in a manifestly factorized form.

We want to show in this paper how to apply those
rules to obtain the amplitude for any diagram with one
loop. '

I.et us suDUnarize first the results of Ref. 1: The
vertex function T(K) of two oscillators in arbitrary
states and a quantum of momentum k is given by

The oscillator propagator reads

oo 4

1/(5 —Q Q in„' c), —
i=1 p=l

dX X s+c 1(Xc)n&& (2)— —
i=1 p=l 0

T(K) g g eo'u„Kpe g b„'K„'—'

i=1 p=l

To simplify the notation, we use 0,, E, I, and m in-
stead of 0,„', g'E„, I', and nz„', respectively, and we
shall keep i and p, fixed through the calculation; at the

(1) end we shall take the product over all tt= 1, 2, 3, 4 and
alii=1, 2, . . ., ~.

where K=&2k and

ct„'(n„')= (not+1)'"
( n„'+1),

f'o'In. ') = (n.')'" I n.'—1) .
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LOOP AMPLITUDE

From our knowledge of the (n+2)-point tree-diagram
amplitudes, we can construct the amplitude for a loop
with n external legs by just tying together the oscillator
legs and summing over all possible states (Fig. 1).

The loop amplitude reads
1 1 1

A i„~= de dX1 dX2 dX„X1—~&+ —' ~ ~

0 0 0

X —8"+'—' P (nt~ T(K~)X~n T(K )X ~nt), (3)
m=p


