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Existence of Fixed Poles and Their Role in Conspiracy
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It is shown that unitarity allows fixed poles at certain nonsense points of either right or wrong signature.
The conditions for the existence of these poles are found. These conditions are then used to locate the poles
allowed in hadronic reactions. Possible mechanisms for the poles are considered. It is then argued that
fixed poles provide the most natural explanation of the conspiracy phenomenon.

I. INTRODUCTION

HE existence of conspiracies' and the apparent
need for Regge cuts' are two of the more vexing

aspects of the Regge-pole theory of high-energy scatter-
ing. Conspiracy is now firmly established as the only
way to explain the sharp forward peaks in charged-pion
photoproduction and rt-p charge-exchange scattering. '
The explanation requires the existence of terms with
the same energy dependence at t=0 in amplitudes of
opposite parity. There is no apparent dyeamical reason,
however, for the coincidence of opposite-parity
channel trajectories at t=0. One proposed resolution of
this difhculty involves the use of Regge cuts. 4 Moving
cuts appear to be necessary to prevent the development
of essential singularities, via the Gribov-Pomeranchuk
phenomenon, ' in relativistic scattering amplitudes of
definite signature. Such cuts as are used in high-energy
phenomenology have properties similar to what one
Ands from calculating the simultaneous exchange of
two or more Regge trajectories. Thus the cuts are not
necessarily associated with a definite parity and their
contributions can presumably conspire. The arguments
of Mandelstam' indicate, however, that the cuts needed
to prevent the essential singularities from developing
arise from the third double spectral function (p,„ for
cuts in the continued t-channel partial-wave ampli-
tudes). Here, it is difficult to see why contributions
from the third double-spectral function, or the man-
ifestly nonperipheral diagrams associated with it (see
Fig. 1), should dominate some processes at high energies
near 3=0.

From a practical point of view also, conspiracies and
cuts pose problems. For example, one must determine
if trajectories associated with physical particles actually
conspire and, if so, into which conspiracy class these
trajectories fall. Most of the known particles appear to
be ordinary but some, including the pion, are thought to

' D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz.
44, 1068 (1963) /English transl. : Soviet Phys. —JETP 17, 720
(1963)].' S. Mandelstam, Nuovo Cimento 30, 1148 (1963); S. Mandel-
stam and L. L. Wang, Phys. Rev. 160, 1490 (1967).' L. Bertocchi, in Proceedings of the International Conference on
I"lementary Particles, Heidelberg, 1967, edited by H. Filthuth
(North-Holland Publishing Co., Amsterdam, 1968).

4 J. Frgyland and D. Gordon, Phys. Rev. 1'7'7, 2500 (1969).
5 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 232

(196').' M. Toiler, Nuovo Cimento 3$, 631 (1965);53A, 671 (1967).
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be extraordinary. If cuts are important at high energy,
in the context of conspiracy or otherwise, then the
ultimate goal of performing dynamical calculations of
the Regge parameters would be much more difficult
to attain. This is due to the continuum of parameters
associated with the cuts. Of more imminent concern,
of course, is that cuts complicate the phenomenological
determination of the Regge parameters.

Clearly, cuts and conspiring trajectories make the
Regge theory somewhat unwieldy. The theory would be
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FIG. 1. Simplest Feynman diagrams associated with the (a)
first, (b) second, and (c) third double-spectral function, and
(d) the simplest diagram of the set which leads to Mandelstam
cuts in the J plane of the t channel.
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made more tractable if a simpler mechanism were
allowed which could explain the conspiracy phenomena
and/or account for those problems which appear to
necessitate cuts. In this paper we revive the old idea~

that fixed J-plane poles, not associated with the third
double-spectral function, exist in certain amplitudes and
contribute to the asymptotic behavior of the scattering
amplitude. It is a corrimon belief that such fixed poles
violate unitarity and this remains true under certain
conditions. In Sec. II we demonstrate the breakdown
of the no-fixed-pole requirement and deduce the
conditions under v hich fixed poles are allowed. In Sec.
III we locate the fixed poles allowed in hadronic ampli-
tudes and in photoproduction. An argument against
conspiring trajectories and for conspiring fixed poles is
presented in Secs. IV and V, and our conclusions are
summarized in the final section.

II. BREAKDOWN OF NO-FIXED-
POLES RULE

In this section it vill be shown that unitarity does
not always prohibit fixed poles at nonsense points of
right or wrong signature. The discussion is purposely
limited to nonsense points because for these points it is

unnecessary to invoke a priori a dynamical mechanism

for the poles; the necessary singularities are explicitly
contained in the definition of the continued partial-wave
amplitudes. A dynamical mechanism must be found,
of course, for a pole actually to exist, but the mechanism
can be sought a posteriori.

Another limitation to be made is that transitions
between states of odd baryon number will not be
considered. In this way the complications of the
generalized MacDowell symmetry will be avoided. '
Recall that it is this symmetry which leads automati-
cally to conspiracy between opposite-parity fermion

trajectories. This probably unnecessary limitation also

permits the use of the appropriate Mandelstam variable
instead of the total energy.

A brief outline of the following material is in order.
First, the relevant properties of helicity amplitudes and
the continued amplitudes are reviewed. Then it is
shov n, by means of a simple example, why fixed poles
are sometimes forbidden and sometimes allowed. The
particular example used displays all of the ingredients
needed for the general demonstration. For this reason,
the general results are then stated without proof. An

'The idea that right-signature fixed poles are possible has
occurred to several authors but, for some reason, the idea was
never followed up. Indeed, the same authors go on to ignore or
reject the existence of these poles. See, for example, a reference
to D. Amati by W. Drechsler, Nuovo Cimento 53A, 115 (1968);
also the comments by P. D. B. Collins and E. J. Squires, in
Springer Tractsin Modern Physics, edited by G. Hohler (Springer-
Verlag, Berlin, 1968), Vol. 45, pp. 132—133; and R. G. Newton,
The Comp/ex j-P/ane (W. A. Benjamin, Inc. , New York, 1964),
Footnote 8, Chap. 16.

8 S. MacDowell, Phys. Rev. 116, 774 (1959); Y. Hara, ~bid.

135, 507 (1964).

outline of the essential points is given, however,
wherever it is needed.

A. Kinematic Preliminaries

At high energies (s —3 ~) and near the forward
direction (t=0), the s-channel reaction 1+3—+ 2+4
is governed by the rightmost J-plane singularities of
the amplitudes for the t-channel reaction 1+2 3 3+4.
The helicity amplitudes for the last reaction have the
partial-wave expansion'

where the helicity X; for particle i with spin 0-; can take
on values in integral steps from —0; to +a;, and where
X = X g

—X2, /4 = ll3 —X4, M =max ( ~

P ~, ~
/4

~ ), and s= cose "
The unitarity condition" for the partial-wave helicity

amplitudes lt ~/„q4 /„/, 2
is given by

$3/4, /11/2(t) lt 31/2, $3/14(t)

4 /„/4, ),./„(t)g~), ,g2, z„,g3(t)*3 (2)
(5+6)

where X~ and P 6 are the helicities of the two, possibly
"composite, " particles in the t-channel state 5+6. The
sum extends over all such states with the allowed
quantum numbers and with threshold t56(t.

At this point it is convenient to make the simplifying
but, for our purposes, inessential assumptions of parity
and time-reversal invariance; these assumptions imply,
respectively, that amplitudes with opposite sets of
helicity labels are proportional and that amplitudes
with initial and final states reversed are equal. We
are then free to work with the set of independent ampli-
tudes with ~/4~ &X=3I.

The helicity amplitudes lt/, 3&,4 &„/,2 have kinematic
singularities in the variables t and s. If the "half-angle
factors"

g& (s) = (1—s)13—41/2(1+s) I&+441/2

are extracted, however, then the amplitudes

A3/14 /ll/12(t&S) 4 $3/4 31/12(tlS)/($44(S) 1

and their parity-. conserving counterparts

4k/4 2 (A3/4, /l/2+1~14 133 /14, klX2) 1——

where I-'=~i are free of kinematic singularities in s.
If it is now assumed that ltl~z, ~/, 4 z,&„ is bounded by a
polynomial of order E in s, then 4tz„~ satisfies the
E—X times subtracted version of the fixed-t dispersion

9 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) '7, 404 (1959).
"Properties of the rotation functions of the first kind, dq„,

and second kind, eq„, may be found in W. Drechsler, Nuovo
Cimento 53A, 115 (1968).

"The unitarity condition also serves to fix our normalization of
4'(t)
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relation

where pi„'(t,s) and gi„(t,s) are the absorptive parts of

P&,„~(f,s) in the s and u channels, respectively. The
integration is understood to extend as far down toward
zero as is necessary to include all dynamical singularities
of Q),q lil s.

It is now possible to define the continued partial-wave
amplitudes of definite signature gi„~(J,t) s, where
S=~1 is the signature, by means of the Froissart-
Gribov projection"

This projection represents the unique J-plane continua-
tion of the partial-wave amplitudes pi„ into the region
ReJ&E, where the defining integral exists. In this
region one can make the identification pi„~(J,t) q

Pi„~~(—t) for integral J with 5(—1)~=1. Hereafter,
we consider the signature to be specified and drop the
label S.

In order to obtain partial-wave amplitudes which are
real-analytic in J and t, it is necessary to extract from

(J,f) its remaining kinematic singularities in
These singularities occur in two pieces: (1) the kine-
matic singularities and zeros of the full amplitude
which depend on the spins and parities of the external
particles (and the parity of the amplitude), and (2) the
J-dependent kinematic zeros at the normal thresholds
and pseudothresholds which reRect the different
threshold behaviors of the various partial waves.

The importance of the kinematic factors, for our
purposes, is that the continued partial-wave amplitude
with these singularities removed is real-analytic in the
cut t and J planes. The prescription for extracting
these singularities is well known. ' In order to avoid
repeating the lengthy formulas here, we simply attribute
to P&,„~(J,t) the real-analyticity property

(5)

keeping in mind that this equation is strictly true for
the kinematic-singularity-free continued amplitude.
What allows us to make this simplification without
changing our results is that the kinematic factors have
the form ci(t)c2(t)~ and are thus analytic everywhere
in the finite part of the J plane.

The J-plane singularities of gi„~(J,t) can arise from
two sources: (1) from the asymptotic behavior of the
absorptive parts of pi,„~(t,s) that generates the usual
moving poles, and (2) from the fixed singularities of
the functions ei„~(s)."We will assume that the moving

"Fixed poles at nonsense points of right or wrong signature do
not contribute to the asymptotic behavior of the absorptive parts
of @&„~(t,s).

poles either are sufficiently far to the left or are isolated
from the fixed singularities so that these poles (or
cuts) can be explicitly separated off in the right-hand
side of Eq. (4)."We can now examine the fixed singular-
ities appearing in eq„. These singularities are of two
types. ' First, if X)

~ p ~, there are square-root singular-
ities (J Jo) "' at the nonsense-sense (n-s) points

—X. Then there are poles (J—Jo) ' at the nonsense-
nonsense (n-n) points p~

—1, ~p~
—2, . . . ,

—
~p~ and

the points —X—1, —X—2, —X—3, . . ..
We now adopt the convention that the cuts are

drawn in a nested fashion from a given n-s point to its
reflection about J= —~, a cut in the interior of the nest
appears on all sheets of the outer cuts. Similarly, a pole
at an interior n-n point appears on all sheets of the outer
cuts. This convention for the cuts is equivalent to any
other we .might choose, but it makes the arguments
presented below somewhat more transparent. The
values of J corresponding to the outermost cut will be
called the SN interval for the amplitude.

Near a singular point Jp we will make the nature of
the singularity explicit by writing

(6)

for n-n, n-s, and s-s points, respectively. The distinction
between Jp+ and Jp occurs if the point is interior to an
SN interval. At an n-s point at the edge of the SN
interval, or at an n-n point not in an SN interval, the
distinction disappears; in this case the real-analyticity
condition Eq. (5) leads to the relation

It is possible, of course, to factor out from the
amplitude the square-root singularities. The existence
or nonexistence of fixed poles, however, depends on
the nonlinear unitarity condition. Consequently, these
singularities will appear in the unitarity condition
whether or not the amplitude is so modified.

The unitarity condition, i.e., the continuation of
Eq. (2) into the 3 and J planes, is given by

Ol

yi,„(J,t+) y),„(J*,t+)*—
=2i Q @i„(J,t+)P„„(J*,t+)*. (7b)

"Essentially the same assumption is made in the argument that
the physical amplitudes @J~(t) agree with the continued amplitude
y (J,t)z at right-signature sense values of J whenever M &J(E.
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The last form follows from the condition of real analytic-
ity, Eq. (5). The sums in these equations are still
understood to extend over diRerent states whenever
necessary.

B. Simple Example

In order to show that fixed poles are possible, we
consider for definiteness the elastic scattering of two
particles of spin 0 and 2. We now make the critical
assumption that is commonly thought to prohibit fixed
poles, namely, that the elastic threshold for these two
particles is the lowest threshold so that elastic unitarity
holds for some range of t.

The nine independent helicity amplitudes pi„(J,t)
for each signature are $00, 410 $20 $11 $21 and $22+
Four of these amplitudes have an SN interval: For
&20 and $21+ the interval is L1, —2j, while for &10 it is

LO,
—1$. Furthermore, $20 has an additional cut from

0 to —1.
Now we examine the point J=1, which is an s-s

point for $00 $10, and p»", an n-s point at the edge of
the SN interval for &20 and &21+, and an n-n point for
$22+. For none of these amplitudes is there a distinction
between J0 and J0 inP1„. The unitarity condition for
the amplitude with the n-n point reads'4

(J—1) 'LP22+(1, t) —P22+(1)t)*$=2zL(J—1)

X( IP20(1,t) I + IP2i(1,t) I +(P22~y22+*+P22 *y22*)}

+(J—1)-'IP .-'(1,t) I'j

The coefficient of (J—1) ' must vanish, which implies
that P22+(1,t)=0. The remaining terms are of order
(J—1) '. A similar analysis of the other unitarity
conditions also shows that

P„+(1,t) =P„+(1,t) =P„+(1,t) =0.
Therefore, here we find the usual result, namely, that
there are no fixed poles at J=1.

At the point J=O, however, the situation is different.
J=0 is an s-s point for &00, an ordinary n-n point for
&11+ and $22+, and an n-s point at the edge of the SN
interval for &10. For these amplitudes

Pi,„(O,L) =Pi„(0,t+)*

For the amplitudes $20 and &21+, J=0 is an n-s and n-n

point, respectively, but the point lies within the SX
interval. For these amplitudes there is the distinction
between Jo and Jo . The real-analyticity condition
leads to

P2.'(0+,L) =P2'(o-, t+)*,

and neither quantity is necessarily equal to Pi„+(0+,t+)~
=P»+(O, t ). Now, when we examine the urutarity
condition near J=O for an amplitude with an n-n

"It is to be understood that only amplitudes with the same
parity contribute in the unitarity condition; thus, for one parity
the term involving p20 is absent.

point, for example, we find

J-'Lp-'(o, t) —p "(o,t)*j=2zJ-'I
I p. "(o,t) I'

+P21+(0+,t)P21+(O, t)*j+terms of order J '.
As before, the coefficient of J ' must be zero, but this
no longer requires that P22+(O, t) or P21+(O~,t) individ-
ually vanish"; however, note that if one of these
residues is different from zero, then so is the other.

Thus $21+ and &22+ can each have an n-n fixed pole
at J=O. A similar analysis of the other unitarity
conditions shows that &10 and &20 can each have an n-s
fixed pole at the same point. Clearly, the essential
requirement for a fixed pole at a nonsense point Jo in
one amplitude is that Jo be interior to the SN interval
for some amplitude with the same quantum numbers.

The necessary conditions imposed by unitarity, from
which one can determine if fixed poles are allowed at
an arbitrary nonsense point Jo, are given by

2 P.," (J;,t)P,."'(Jo,t)*=0,

Lpi."(Js., t) —pi."(Js,t)*3
=2 P'-(Jo.,t)P,."(Jo,t)*

2i

+Q Lpi„" (J0~,t)y„„"'(J0,t)*

+»."'(J;,t)P:"'(Jo,t)"], (9)

where (tt,b) can be either (n,n), (n,s), or (s,s). The sum
in Eq. (8) is over nonsense while the first sum in Eq.
(9) is over sense. Because of the presence in Eq. (9)
of the quantities y,„"b, which do not appear in the
Sommerfield-Watson transformed scattering amplitude,
this equation provides no eRective restriction on the
t-channel discontinuities. Indeed, the same arguments
which allow Eq. (8) to be satisfied nontrivially also
allow the right-hand side of Eq. (9) to vanish. Thus,
the surviving residues need not have cuts in t nor need
they depend on t at all. This possibility is also not in
confhct with Eq. (8).That the residues can be analytic
in, or independent of, t has important consequences
which will be considered further in Sec. IV.

C. Conditions for Fixed Poles

The above results can easily be generalized to the
case of several communicating channels. The main
points will be stated without proof but the proofs
follow directly from Eq. (8), where it is to be understood
that one must consider the residues Pi„ for all of the
amplitudes in question and where the sum extends over
all of the states which can contribute to the generalized
unitarity condition at a given value of t. The results are

'5This point may be seen more clearly if we make explicit
the singularities of @21+ on the SN interval. We have &21 (J,t)
=P2q (jt)[(j—1)(j+2)j "'[j(j+1)]2 where Pi' is real-
analytic in J and t with no cut in J. As J approaches zero, we
have @21 (J ~0~, t) ~ W(i/&2)J 'p21 (O,t). We can make the
identification p2] (Oy t) = w(i/v2)p21 (0 t) so that the coefficient
oi j ' is now given by ~p22P(O, t) ~2 —pp2&~(0, t) (2.
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as follows:

Condition I. Let t» denote the threshold for a two-
body state 1+2. Then the continued partial-wave
helicity amplitudes for the t-channel reaction 1+2~ 3
+4 can have fixed poles at the nonsense point Jo if
there is a communicating state 5+6 such that t~6&ti2
&t34 and Jo is interior to the largest SX interval for
the amplitudes of the reaction 5+6 ~ 5+6.

The allowed poles have the following properties:

(Ia) The "poles" may occur in the amplitudes for
which Jo is an n-s point or in those for which Jo is an
n-n point, or simultaneously in both sets of amplitudes.

(Ib) The poles of each type, n-s or n-n, must occur in
at least two amplitudes if they are to occur at all; the
point Jo is interior to the SN interval of one amplitude
and exterior to the SN interval of the other amplitude.

(Ic) The residues of the allowed fixed poles need not,
but may, have dynamical branch points at t», t34, or t56.

Condition I is sufficient to ensure at least the existence
of the two amplitudes of property (Ib) for each case,
n-s or n-n. State 5+6 may coincide with 1+2 or with
both 1+2 and 3+4. Property (Ic) follows from the
discussion following Eq. (9). If the spins of the two
particles in the state 5+6 are ot; and o.6, then the
"largest SN interval" referred to is L(o.:+o.6—1),

05 06
One often encounters states with more than two

particles in the unitarity sum. In the partial-wave
decomposition of a three-body state, for example, one
first couples the angular momentum of two of the
particles, say, 2 and 3. The effective spin o-» of the pair
(2,3) can take on arbitrarily high values because of the
relative orbital angular momentum in the c.m. system
of the two particles. For given "spin" 0.23, the largest
SN interval for the amplitudes in the reaction 1+ (23) —+

1+ (23) is L(o.i+a.2q
—1), —(o i+o.2i)], and the threshold

for each such amplitude is just the three-body threshold.
The partial-wave projection of the amplitudes for any
reaction leading to a three-particle state is, in effect, an
infinite sum of states with increasing total spin. It
follows that the "largest SN interval" referred to in
condition I is the entire real J axis whenever the
reaction involves a state of three or more particles.

Condition I derives solely from the restrictions, or
lack of them, in Eq. (8). In the case of coupled channels
there is a source of fixed poles of a somewhat different
nature. In this case Eq. (9) plays the important role.
The new condition, which is complementary to I, is
given by the following:

Conditio+ II. The continued amplitudes for 1+2~
3+4 can have fixed poles of the n-s type at Jo if there
are states 5+6 and 7+8 such that f;~& ti2(/7, . (t„and
Jo is interior to the largest SN interval for 7+8 —& 7+8,
but exterior to that for 5+6 —+ 5+6. State 5+6 (7+8)
may coincide with 1+2 (3+4).

In this case, n-n poles generally are prohibited at Jo
in the amplitudes for 1+2~3+4 by Eq. (8); an
exception to this is discussed below in conjunction with
condition III. In light of condition I, however, the
presence of state 7+8 permits n-n fixed poles at Jo in
the amplitudes 3+4 —+ 3+4. It is the unitarity condi-
tion for the discontinuity in these amplitudes which
determines whether poles are allowed in 1+2~ 3+4.
In the present case the n-s poles are allowed via a
relationship between the discontinuity on the left-
hand side and the first term on the right-hand side of
Eq. (9). One 6nds that the poles have the following
property:

(IIa) The residue of a fixed pole in 1+2~3+4
allowed by II and some portion of the residue of the
corresponding n-n pole in 3+4~ 3+4 must have a
right-hand cut in t commencing at t».

It should be emphasized that it is not the entire
residue of the n-n pole in 3+4~ 3+4 that must have a
cut in t. There may be several contributions, each of a
different dynamical origin, to the n-n pole allowed by
condition I. One of these contri&utions may have the
same dynamical origin as the n-s pole allowed in II;
presumably it is this contribution that has the cut.

The above conclusions require modification at n-s
or n-n points of wrong signature. At wrong-signature
nonsense points, the discontinuity across the left-hand
cut of the Froissart-Gribov projection has poles, the
so-called Gribov-Pomeranchuk poles, arising from the
third double-spectral function. ' In order that these
poles in the discontinuity not lead to essential singular-
ities in the amplitude, there must be cuts in the t plane
which move with J. These cuts also arise from the
third double-spectral function. ' As J approaches a
wrong-signature nonsense point, a cut moves up from
the unphysical sheet in the t plane to cover the right-
hand unitarity cut. ' The fixed pole in the discontinuity
across the left-hand cut is now allowed to be a fixed
pole in the amplitude.

The presence of the moving cut in the wrong-signature
case means tha, t the requirement that the point be
interior to one of the SN intervals referred to in condi-
tion I can be relaxed. It should be pointed out, however,
that the fixed poles which survive at wrong-signature
nonsense points need not be related to the Gribov-
Pomeranchuk pole, not to the third double-spectral
function. We now have, in addition to I and II, the
following.

Condition III. At any wrong-signature n-s or n-n
point, the continued amplitude can have fixed poles.

(IIIa) The residues of the poles need not have
dynamical branch points in t.

To this list of conditions for fixed poles must be
added one further restriction. The conditions which

16 R. Oehme, Phys. Rev. Letters 18, 1222 (1967).
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have been given derive solely from t-channel unitarity.
The allowed poles, however, are also subject to the
restrictions of s-channel unitarity as embodied in the
Froissart bound. Thus, there can be no fixed poles to
the right of J=1.

It would appear that fixed poles are, at least in
principle, a complication of spin. As we will see shortly,
the fixed poles of interest in hadronic reactions are, in
practice, a consequence of the existence of many-body
states.

III. LOCATION OF FIXED POLES

Having established the set of conditions under which
fixed poles are allowed, it is now necessary to show that
the set is not empty for the interesting reactions. Only
reactions with even baryon numbers will be considered.

A. Hadronic Reactions Involving Fixed Poles

The least-massive physical state involving two
hadrons is the two-pion state. Since the pions have spin
zero, there is no SN interval. Consequently, there are
no fixed poles at right-signature points in the ~x elastic
scattering amplitudes. The three amplitudes involved
have zero baryon number and hypercharge, with
isotopic spin, 6 parity, signature, and parity given by
I =0+++, 2+++, and 1+ . In the first two of these
amplitudes, the wrong-signature fixed poles can be at
Jo———1, —3, . . . , whereas for the last amplitude they
can occur at J&= —2, —4, . . . .

Amplitudes for reactions leading to the two-pion
state cannot satisfy condition I. In order for such
amplitudes to satisfy condition II, they must have an
SN interval. Thus only wrong-signature fixed poles can
occur in xx —&gg with I~ =0+++, and in sr~ —+EX
for I~~~ =0+++ and 1+

An extremely important case is ~sr —+ AX. Here there
are two helicity amplitudes p«and pi„each of which
can have Ig =0+++ or 1+ . $00 has no SN interval,
so only wrong-signature fixed poles are allowed. Qio has
the SN interval $0, —1g; condition II can be satisfied
because the 4~ state, with its infinite SX interval, lies
below the 1VX state. Thus bio can have right-signature
n-s fixed poles for I~ =0+++ at J0=0, and for
I~ =I+ at Jo ———1. The residues for these fixed
poles must have right-hand cuts. Of course, bio can
also have the usual wrong-signature fixed poles for
Ig "=0+++ at —1, —3, . . . and for Ig =1+ —at
0, —2, —4, . . . .

Dolen, Horn, and Schmid, '~ using finite-energy sum
rules (FESR), have examined the amplitude bio with
Jgs~ = 1+ (the kinematic-singularity-free counter-
part of which is usually called 8& &) and have found
the wrong-signature n-s pole at J0=0. As we have seen,
such a wrong-signature pole'8 can have a part related

' R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
{1968).' It is true that condition II is also satisfied for this wrong-

to the Gribov-Pomeranchuk singularity, which one
hopes is small, and a part whose residue need not have
a t-channel branch cut. It is noteworthy that the pole
found by Dolen et ul. '~ appears to be dominated by the
Born term.

Aviv and Horn, ' also using FESR, have examined
the same amplitude at different points. They have
found strong evidence for a pole at the right-signature
point Jo= —1 and much weaker evidence for similar
poles at —3 and —5.' These authors assert, in partic-
ular, that the pole at —1 is not dominated by the Born
term but seems to be a cumulative background effect.
This feature is consistent with the property of the
condition which allows this pole, namely, the require-
ment that its residue has a right-hand branch point at
the m.m. threshold. We cannot explain the poles at
Jo= —3 and —5; if they are really there, a new condi-
tion for their existence must be found.

The analysis of reactions such as zx- —+ ~V (A), where
V (A) is one of the established G= —1 vector (axial-
vector) mesons, is similar to that for ~7r-+cVX. In
general, an amplitude for a reaction leading to a 7rm.

state can have only those fixed poles allowed by condi-
tions II and III.

The role played by the mx state in limiting the fixed
poles in the amplitudes considered above is played by
the states 7rE and EE for 8=0 amplitudes with I'= 1,
I =-'++ or ~++ and I =2, I =0++ or 1++, respec-
tively. A similar role is played by two baryon states of
various hypercharge and isospin. For reactions leading
to these states, only conditions II and III can be
operative.

When other reactions are considered, one finds a
proliferation of fixed poles. In all amplitudes having
quantum numbers not yet mentioned, the lowest
threshold involves a state with three or more pions.
The largest SN interval for reactions leading to these
states is L

—~, ~ j, i.e., the entire real j axis. Ampli-
tudes with these quantum numbers always satisfy
condition I and so can have fixed poles at any n-n or
n-s points. The same is true even in amplitudes with
the two-body quantum numbers mentioned, if neither
the initial nor final state in the reaction is the two-body
state itself; e.g., qq~qg, EK —+ EK, EX—+EN, etc.,
can have any n-n or n-s fixed poles.

B. Photoyroduction .'Fixed Poles in
"Weak" Amplitude'P

So far our attention has been on purely hadronic
reactions. Now we turn to the widely studied reaction
p~ —+EX. There are four helicity amplitudes in this

signature n-s pole. Property IIa need not hold, however, because
of the presence of the moving cut.

"R, Aviv and D. Horn, Phys. Rev. Letters 21, 704 (1968).
These authors assert that these poles are not in conflict with
unitarity because of the ghost-eliminating factor. We have seen,
however, that even if the poles are factored out of the amplitude,
they are still present in the unitarity condition and must be
explained by a mechanism which is consistent with that condition.
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case: bio+ and pii+ with Ig =0 = 1+, or 1 ++;
Pro with Isa~=0 +, 1+ +, or 1—~; and finally,

with I~s~=O +, 1++, or 1 +. The amplitudes
also contain secondary contributions with the

I, G, and I' noted, but with opposite signature. Photo-
production of charged pions involves the amplitudes
with I~=1+ and 1 and neutral pions those with
Ig= 1+ and 0 . The two-pion state corresponds to the
lowest branch point in Pro+ and Pii+ with Ig=1+
In all of the other amplitudes, the three-pion state is
lowest. All n-n or n-s fixed poles are allowed because
the lowest threshold state is neither the initial nor the
final state.

At this point let us digress to refute the old argument
for fixed poles in photoproduction. It has been suggested
that fixed poles can occur at nonsense points in weak
amplitudes. The argument states that when (electro-
magnetic or) "weak" interactions of hadrons are
computed to lowest order in the weak coupling, then
exact bilinear unitarity, which ordinarily would forbid
fixed poles, does not apply. If the computation were
carried out to all orders in the weak coupling, then the
fixed pole allowed by linear unitarity would be trans-
formed into a moving pole in the usual way. "

This argument would lead to a curious result, how-

ever, if it were valid for photoproduction. The weak
trajectory in this case would have the form n(t) =Jo
+t,'e(/), where we have made explicit the presumption
that the pole is fixed at Jo to lowest order in the charge e.
The pole term, correct to all orders in e, would have
the form

where, because exact unitarity is valid, the residue
factorizes:

Pvw, xÃ "ryn rKN ~

Because the pole is coupled to an external photon line,
the residue factor y~ must be of order e, at least. There
are two possibilities for the y~g factor:

(i) y~i7r~e', at least. In this case, the pole term
should be neglected if one retains only terms of lowest
order in e.

(») Y~sr'
In the latter case the pole would also be present in

the 31Ã scattering amplitude with full residue y~g' e'
= 1. Thus we are faced with the curious circumstance of
a "weak" pole which contributes strongly to a hadronic
process. Furthermore, the pole does not go away when
one neglects all but the lowest order in e; the pole
merely becomes fixed at J=Jo. Since it is untenable to
have a strong contribution of a weak pole, possibility
(ii) must be rejected.

' R. Dashen and S. Y. Lee, Phys. Rev. Letters 22, 366 (1969);
J. B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E. Low, ibid.
18, 32 (1967); V. Singh, ibid. 18, 36 (1967).

As it turns out, it is possible to include terms of higher
order in e and retain all of the poles allowed so far.
Isospin and 6 parity are no longer useful in classifying
the states but one can look at the different charge
states. In the case of charged pions, the threshold for
the px state is coincident with the thresholds for states
with two or more photons and a pion (as well as with
the position of the pion pole)."Again the infinite SN
interval associated with these many-body states now
allows all n-s and n-n poles. A similar result holds in
the neutral pion case where the lowest two-body
threshold for the yy state coincides with that for three
or more photons (and with the position of the photon
pole).

IV. NATURE OF FIXED POLES

Now that we know where fixed poles are allowed, we
must next look for dynamical mechanisms which can
actually generate them. One clue to their origin is
that they are fixed at points which are nonsensical in
the f channel. This fact suggests that the fixed poles
need have little to do with particles or resonances, i.e.,
with ordinary Regge trajectories, in the t channel.

A. Possible Mechanisms for Fixed. Poles

Poles which are allowed by condition III will not
contribute to the asymptotic behavior of the physical
amplitude, because of the wrong-signature factor.
This is true of the pole itself even if it were to occur
in the residue of some moving pole; in this case, however,
the behavior of the residue at the position of the pole
is altered according to the now-familiar "new dip
mechanism. '" Clearly, the Gribov-Pomeranchuk pole
is of this type, but what possibly has not been fully
appreciated is that fixed poles arising from sources
other than the third double-spectral functions are
allowed as well. The fixed pole found by Dolen, Horn,
and Schmid, " for example, appears to arise mainly
from the Born term in the mE scattering amplitude.

The general form of the contribution of such s- and
u-channel pole terms to the absorptive part of a singular-
ity-free physical amplitude is

For the continued amplitudes of definite signature, the
contribution is

(1/2q q )[r.$ „(s)e (s)+5(—1)'1" &, „(z)e, „(s)j.
It does not matter to the signatured amplitudes, with
which we have been dealing, if the point Jo where the
fixed pole is located is a right- or wrong-signature point

2'Care must be exercised in applying condition I to states
involving photons. The transverseness of the photon means that
certain helicity states are forbidden.
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in the physical amplitude. Thus, contributions arising
from Born terms may survive even at right-signature
points, if they are allowed by condition I. A similar
comment applies to the single-spectral functions which
generally accompany the stable-particle poles. Born-like
contributions cannot arise under condition II because
they do not have the requisite right-hand cut in t.

Clearly, these Born contributions have characteristics
peculiar to the s and I channels. It is possible that
other contributions characteristic of these channels
can exist; for example, one might expect that s(u)-
channel effects can arise from the double-spectral
functions p«(p„~) and p, . For lack of a better term, we
will refer to these contributions as "residual crossed-
channel effects. "

Models have already been constructed which attempt
to include Regge poles and the effects of other channels.
The prime example of this type is the Regge-plus-
resonance, or interference model. "Objections to this
model were raised and quickly given firm support when
it was shown, through the use of FESR, that the model
committed double counting. "The main implications of
the FESR have been formulated into the principle of
Dolen-Horn-Schmid duality, which requires that
resonances (and background) in the s or u channels
sum up to give the t-channel Regge amplitudes. It
might be thought that the concept of residual crossed-
channel eRects introduced above is in conflict with
duality. This is not the case, however, because these
eRects have equally valid descriptions in the s or I
channel, whence they arise, and in the t channel, as
fixed poles.

Finally, we mention one other possible mechanism for
fixed poles. Certain models for coupling Regge poles to
external particles with spin exhibit fixed poles at right-
or wrong-signature points. "These models are based on
the technique of summing certain classes of Feynman
diagrams, usually of the type associated with p, & and
p„&. The fixed poles in question occur in the residues of
moving poles at n-s points. It is not yet certain that
these particular poles survive when other classes of
diagrams are considered. If they do survive, however,
they fall in the category of, and provide a possible
mechanism for, poles allowed by condition II.

B. Channel Characteristics

Ke have seen that t-channel fixed poles can reflect
behavior purely characteristic of the s or I channels,
i.e., the residual crossed-channel effects. It is of interest
to determine, therefore, to what extent one can classify
the various contributions to the Regge asymptotic
series according to channel. In this section we will try
to give a firmer meaning to this admittedly imprecise
terminology. The Regge description, however, is not
yet a dynamical theory; to attain the stated goal, it

' V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967).
"A. Swift, Phys. Rev. 166, 1621 (1968).

+ 0 ~ ~ '

(b) + +~+ ~+
Fro. 2. (a) Feynman diagrams in a t-channel ladder sum.

(b) Reduced ladder diagrams which survive in the limit of large s
and which lead to Regge behavior.

will be necessary to resort to some common models.
Thus, the interpretation given here is subject to
change.

A contribution to the scattering amplitude will be
regarded as characteristic of a given channel if it
corresponds to the exchange of one or more particles in
that channel. Thus a single-particle pole in an amplitude
is characteristic of the channel in which it occurs; a
box diagram having two-particle discontinuities in
two channels is characteristic of both.

What is the situation for a Regge trajectory) From
the point of view of the van Hove model, "for example,
a t-channel trajectory corresponds to an infinite sum
of particle exchanges in the t channel; one particle at
each physical value of J (i.e., at sense points of right
signature). With the definition given above, a van
Hove-like trajectory is certainly characteristic of the
t channel alone.

Trajectories can be generated in field theory by
summing ladder diagrams /see Fig. 2(a)$. With the
above interpretation, it appears that all terms in the
sum are characteristic of the s channel and all but the
first are characteristic of the t channel. In order to
obtain the trajectory, however, it is necessary to go to
the limit of large s and to retain only the leading term.
In this limit we are left with terms which correspond to
those of Fig. 2(b), where the particle lines are associated
with two- (dimensional) momenta. Clearly, all s-channel
characteristics have disappeared; so in this model also,
the trajectory is characteristic of the t channel alone.

The models considered above are consistent with the
well-known property that Regge trajectories only have
right-hand (t-channel) dynamical branch points.

We are thus led to formulate these results, and those
of Sec. IV A, as a basic principle: Regge trajectories are
characteristic only of the channel in which they occur, but

fixed poles in a channel can be characteristic of the crossed
channels. We now consider the most important applica-
tion of this principle.

'4 L. van Hove, Phys. Rev. Letters 24B, 183 (1967).
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V. SOME CONSEQUENCES OF EXISTENCE
OF FIXED POLES

The existence of fixed poles would appear to be a
complication for Regge theory. Here we will show,
instead, that the fixed poles may simplify the theory
considerably.

A. Conspiracy as Fixed Poles

When all kinematic simularities are removed from
t-channel helicity amplitudes, certain constraint rela-
tions exist at )=0 among amplitudes with different
quantum numbers. Constraints also exist between
amplitudes with the same quantum numbers at thresh-
olds and pseudothresholds, but these are well under-
stood in terms of the threshold behavior of states
with low orbital angular momentum. The various ways
in which the constraints may be satisfied have been
classified as follows. "

(1) Evasion: Constraints are satisfied by relations
among the residues of different poles, but the trajectories
themselves are unrelated at t=0.

(2) Daughters: Constraints are satisfied by infinite
sequences of trajectories with the same quantum
numbers, the daughters lying lower than the parent
trajectory and spaced by two units of angular momen-
tum at 1=0.

(3) Conspiracy: Constraints are satisfied by relation-
ships between trajectories with diferent quantum
numbers at k=0.

There are basically two types of conspiracies. The
first type, which may be called daughter like conspiracy-,
requires the existence of odd-numbered daughters,
spaced by two units of angular momentum at 3=0 and
all having the same quantum numbers. The odd
daughters, however, have signature and parity opposite
to that of the parent and the leading odd daughter lies
one unit below the parent at 1=0. In this case, terms
with the same s dependence occur in different ampli-
tudes and the constraints can be satisfied in a nontrivial
fashion; the terms with the same s dependence can be
identified as a "minor" contribution" of the parent or
even daughter in one amplitude and as the odd-
daughter contribution in the other amplitude. To the
extent that one can understand this existence of
daughters as a requirement of analyticity at )=0, then
this type of conspiracy, wherein all of the trajectories
involved are related to the same parent, is perfectly
natural.

The second type of conspiracy involves two-parent
trajectories and their daughter sequences. The parent
trajectories have the same signature, but opposite
parity, and they coincide at 3 =0.This type of behavior,
which requires the coincidence of two different parents,
may be called true conspiracy.

"K. Leader, Phys. Rev. 166, 1599 (1968).
26 L, Jones and H. K. Shepard, Phys. Rev. 1'gS, 2117 (1968).

Consider now a Regge trajectory o, which can be
exchanged in the t channel of some reaction. At the
value 3, , where Ren(/) passes through a right-signature
point J; in the sense region, there should be a particle
of spin J; and (mass)'=t, t one can expect to see the
particle if Imn(t;) is not too large). One can use
Feynman techniques to compute the general one-
particle-exchange contributions to the various t-channel
helicity amplitudes for each particle on the trajectory. '7

An interesting pattern emerges, namely, the behavior
of this entire set of contributions to the various helicity
amplitudes at 3 =0 is consistent with evasion, or
daughters, or the daughter-like conspiracy. One never
finds behavior consistent with true conspiracy from
exchanges characteristic of the t channel. "

The classic example of the general property occurs
in the reactions yp —& ir+n and np~ pn, where the
sharp foward peaking had led some authors" to invoke
a conspiring pion. The contribution of a conspiring
pion trajectory to the kinematic-singularity-free ampli-
tudes for these reactions is finite at 1=0. Ordinary one-
pion exchange, however, gives a contribution which
vanishes at t=0. The same is true for the one-particle
exchange of any other "particle" on the pion or conspir-
ator trajectories. "

That one-particle exchanges can never enter into
true conspiracy is easy to understand. Opposite-parity
exchanges are inherently independent and so they
must satisfy the constraints separately, i.e., evasively.
It is true that one-particle exchanges with high spin are
not consistent with Regge behavior. Their properties are
not irrelevant, however, because a suitable generaliza-
tion of the van Hove model to the case of spin has been
made. "The model exhibits all of the requisite Regge
properties except, of course, that of true conspiracy.

There is one other interesting feature of one-particle-
exchange calculations that is relevant in this context.
Any s- or u-channel exchange, when expressed in terms
of t-channel helicity amplitudes, automatically satisfies
the constraint conditions in a manner consistent with
true conspiracy. A similar comment applies to any
contribution, such as a box diagram, which retains
some of the character of the s or u channels.

Since fixed poles, in contrast to ordinary trajectories,
can reQect these residual crossed-channel effects, it is
only natural that the fixed poles be accused of con-
spiracy. Indeed, this is necessary if our standard ideas
concerning the 1=0 coupling of external particles to
those exchanged internally are not to be drastically

'7 B. Diu and M. Le Bellac, Nuovo Cimento 53A, 158 (1968);
G. Cohen-Tannoudji, Ph. Salin, and A. Morel, CERN Report
No. TH 860, 1967 (unpublished); L. Durand, III, Phys. Rev. 154,
1537 (1967).

2 H. F. Jones and M. D. Scadron, Phys. Rev. 1/1, 1809 (1968).
~9F. Arbab and J. W. Dash, Phys. Rev. 163, 1603 (1967);

R. J. N. Phillips, Nucl. Phys. 82, 394 (1967); J. S. Ball, W. R.
Frazer, and M. Jacob, Phys. Rev. Letters 20, 518 (1968)."S.D. Drell and J. D. Sullivan, Phys. Rev, Letters 19, 268
(1967); S. Frautschi and L. Jones, Phys. Rev. 164, 1918 (1968).
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changed as the transition to Regge exchange is made.
We are thus led to formulate another principle, namely,
that on1y fixed poles enter into true conspiracy

That fixed poles can conspire is a consequence of the
conditions for their existence. First note, however, that
although property (Ib) states that fixed poles must
occur in at least two amplitudes, this is not the pair
which contains the different conspirators. The reason is
simply that these amplitudes, which appear in the same
unitarity condition, must have the same quantum
numbers, whereas the conspirators have opposite parity.
The conditions which allow fixed poles, however,
depend either on the size of some SN interval or on
whether the nonsense point in question has the wrong
signature. It is clear that if these conditions are met
at a nonsense point in an amplitude of one parity, they
generally are met as well for the corresponding point in
the constrained opposite-parity amplitude. The fixed
poles thus allowed can be made to satisfy the constraints
at I,=O merely by a relation between their residues.

It should be noted that in the two cases where the
conspiracy phenomenon is firmly established, namely,
in photoproduction and n-p charge-exchange scattering,
condition I allows both of the Ig = 1 opposite-parity
t-channel amplitudes involved in the conspiracy con-
straint3' to have fixed poles.

In the context of group-theoretical predictions,
assuming that the 50(3,1) classifications are meaning-
ful, " the foregoing implies that ordinary tra, jectories
(and perhaps some fixed poles) should be identified with
Toiler poles of clasp I or II and only fixed poles should
be identified with class III. Since the fixed poles occur
at integral J, however, they need not have infinite
daughter sequences. In the same context, but for t&0,
it should be noted that the existence of fixed poles
requires that the full richness of the spectrum of SO(2, 1)
be utilized"; i.e., in addition to the principal series
representations, which are ordinarily identified with
the Regge background integral, one must use the
discrete series representations, which can be identified
with the nonsense points.

B. Miscellany

Here we mention briefly several disjoint topics
wherein fixed poles can play an important role. The
list is by no means meant to be exhaustive.

(1) Superconvergence: If, for some range of i, the
leading trajectory lies below a nonsense point, the
amplitude to which it contributes is either super-
convergent or has a fixed pole at that point. Formerly,
fixed poles were allowed only at wrong-signature points.
Now the amplitude will not be superconvergent at
right-signature points where it has a fixed pole.

"R. Diebold, Phys. Rev. Letters 22, 204 {1969);F. J. Gilman,
Stanford Linear Accelerator Center Report No. TH 589, 1969
(unpublished).

"M. Levy-Leblond, Nuovo Cimento 4SA, 772 (1966)."J.F. Boyce, J. Math. Phys. 8, 675 (1967).

(2) Large-angle scattering: If ordinary trajectories
are more or less linear in I,, then for s sufficiently large
and E fixed well outside the forward and backward
peaks, all of t- and I-channel trajectories will have
fallen to very low values. If, further, there are fixed
poles with residues weakly dependent on t (or u), they
will dominate the moving poles and become, so to speak,
the bridge between the forward and backward peaks.
In this region, however, third-double-spectral-function
effects, such as Regge cuts, will be relatively more
important than in the region of small t or N.

(3) Dip filling: In a differential cross section, the
dip which is expected at the value of t where the leading
trajectory passes through a nonsense point may be
partially or completely filled if there is a fixed pole at
that point. Thus, dip filling need not be associated with
the behavior of the residue for that trajectory.

A case in point is the behavior of the residue of the 3 2

pole near n =0 in the t channel of the reactions ir=p —+gn
and E+p +E'6+-+. Note also that the apparent leveling
off of the A2 trajectory" may be due to the emergence
of the allowed fixed pole as the dominant contribution
for i= —1.0 (BeV/c)'

(4) Clearly, old phenomenological analysis of reac-
tions in which fixed poles are now expected to contribute
should be redone.

VI. CONCLUSIONS

We have shown that, under certain conditions, fixed
J-plane poles are allowed by unitarity, even at right-
signature points. Only those poles which appear
explicitly in the Froissart-Gribov projection have been
considered, namely, those which arise at nonsense points
from the J-plane singularities of the rotation functions
of the second kind. The conditions for the existence of
these poles have been determined and several mech-
anisms which may generate them have been considered.

Some of the less obvious distinctions between fixed
poles and ordinary trajectories have also been con-
sidered. It has been shown that fixed poles can exhibit
characteristics peculiar to the cross channels, whereas
ordinary trajectories, at least those generated by any
of the models currently in vogue, exhibit characteristics
only of the channel in which the pole occurs. On the
basis of these channel characteristics, we have seen
that fixed poles provide the natural explanation of
conspiracy in boson channels.

The existence of fixed poles revives the hope that
Regge cuts are unimportant at high energies. Whether
these poles do, in fact, account for all of the phenomena
which currently are thought to necessitate cuts, must
be verified separately in each case. The relatively
simple properties of the poles, and their economical
parametrization, are sufhcient reasons for exploring
this possibility.

"R.J. N. Phillips and W. Rarita, Phys. Letters 19, 598 (1965).


