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The energy levels of the hadron are described by a Lorentz-invariant wave equation in the form of super-
multiplets. The mass levels belong to the finite-dimensional reducible representations of the group
G= U(3, 1) SSO(3,2) whose generators form the algebraic basis of the wave equation. All the states are
occupied, and therefore, for baryons, there are no supplementary conditions imposed on the wave function.
The level spacings are mostly regulated by a constant p of the theory, which for p&1 leads to a hadron type
of spectrum for various multiplets, in which case the deviation from the G symmetry is of the order 1/p. The
dimension numbers X and Eo of the LT (3,1) and SO(3,2), respectively, assume the roles of principal quantum
numbers to differentiate between the various spin supermultiplets. The 370 distinguishes also between
Fermi-Dirac (cVO

——4) and Bose-Einstein systems (Xo——5, 10). The spin multiplicities for Xo——4 and N= 1,
4, 6, 10, 15, 20 are obtained, and the corresponding eight mass levels of positive parity are derived as func-
tions of the three parameters and of the spin and other quantum numbers for Eo——4 and S=1, 4, and 6
only. Agreement (3 parts in 1200) with the observed masses of ™0, , Z, Z+, F+, p, 0, h+ is obtained. The
transitions between principal levels L1VO,Ng as well as within the spin multiplets of a given level are briefly
described. The Lorentz-invariant generators for the group SU(2) constructed in terms of the generators of
the U(3, 1) and the Poincare group are used as a space-time isospin group. Finally, in the limit p = ~ all
masses, for any supermultiplet $1Vp,N], coalesce into the same mass m (one of the parameters of the
theory), and the wave equation reduces to a Dirac-type equation for half-integral spin (Xo——4), or to a
Kemmer-type equation for integral spin (ilfo =5, 10), depending on the representation of G.

I. INTRODUCTION

' 'N a fundamental paper by signer, ' nuclear levels
~ ~ were classified according to the representations of
the group SU(4). Many attempts have been made in
the past few years to extend signer's unification of
spin and isospin to particle physics. The first and most
successful generalization of isospin is, of course, the
SU(3) classification of hadrons. However, its isolation
from space-time has attracted the attention of many
theorists. Following the unsuccessful proposition of
combining space-time and internal symmetries via the
group U(3,1) by this author~ and also by Barut, s

Gursey, and Radicati4 have succeeded in mixing the
spin and internal symmetry in the group SU(6). De-
spite its several impressive achievements, the troubles
arising in the relativistic generalizations of SU(6) have
somewhat diminished' its role in particle physics.
Other attempts with current algebras' and in6nite-
component wave equations7 are still in a speculative
phase. Dothan, Gell-Mann, and Ne'eman' have at-
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tempted to obtain hadron energy levels as representa-
tions of noncompact groups in contrast with signer's'
theory, where the nuclear levels were classified accord-
ing to the comps, ct SU(4) group. These authors have
looked at the possibility of using unitary, i.e., in6nite-
dimensional, representations of noncompact groups to
classify the energy levels of hadrons.

Any higher-symmetry scheme must at least be com-

patible with Lorentz invariance so that a group of
unitary operators on the physical Hilbert space can be
dined. Furthermore, the spin and parity of the repre-
sentations should not be constructed out of the Dirac
(-,',0)+(0,—',) representations of the homogeneous
Lorentz group alone. Such an approach entails the
possibility of constructing, for example, —,'+ particles
alone and leads to a superAuous number of spin and
parities in a supermultiplet. It is, of course, quite con-
ceivable that there exists an infinite number of strong-
interaction resonances, but a higher-symmetry scheme
to account for such states must, in order to lead to a
dynamical description of these states, have nontrivial
restrictions. One such possibility is the choice of a
group G as a direct product of $0(3,2) and U(3, 1)
where only four-, and Ave-, ten-dimensional irreducible
representations of the former are allowed and where all

the /vite-dimensional (1,4,6,10,15,20, . . .) irreducible
representations of the latter can be used to classify
the mass levels of the resonances. The choice of the
four, five, and ten dimensions for the SO(3,2) is a con-
sequence of the fact that the Dirac and Kemmer-
DuKn algebras have no other irreducible representa-
tions which are compatible with Z=c(p'+m'c')'i' and
ps =c'(p'+no'c') respectively. In addition to these
facts, the group U(3, 1) does not have half-integral
representations so that the undesirable parity and spin
abundance could not occur.
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In this paper we shall proceed with the above
premises which are more substantive in that they com-
bine symmetry and dynamics in a wave equation. The
present paper is, essentially, a pooling of resources
accumulated since i958 in various papers' by the author
and combines all of these efforts into (hopefully) a
meaningful system. The basic idea behind all these
attempts was the expectation that isospin (or rather
internal symmetry) has its origin in the space-time
description of matter. The following contains some
evidence in this direction.

(i) The mass levels of hadrons as supermultiplets can
be classified in a Lorentz-invariant way, according to
the fizzite-dimensional representations of a noncompact
group, which is just the direct product of the groups"
SO(3,2) and U(3,1).Therefore, the reducible wave func-
tions of the various spin multiplets are of the type (see
Appendix A 6)

sional vector indices ct,b,c (=1,. . . , 6) and also by the
five-dimensional vector indices z], $,X,&o (=1,. . . , 5), and
where a square bracket around the indices implies anti-
symmetry while a curly brack. et implies symmetry under
permutations of the respective indices. Thus

+aIIgv] +a(vugg] p +a[ah] +a[ha]1' ' ' ) etc.
&

P)P iyee ~ )4o

The index n is acted on by a finite-dimensional Sl-(2,C)
subgroup of SO(3,2) transformations alone. In this
paper we shall use only the class of SO(3,2) transforma, —

tions generated by the Dirac matrices Li.e., Eo——4, the
dimension number of SO(3,2)] ,'zy„—, -', o„„.The repre-
sentations for ED=5, iO which refer to the Kemmer-
Duff[n matrices P„,P„„= i(P„—P„J3„P„—) will be discussed
in the next paper.

(ii) The free hadrons obey the wave equation

+ay +a py +aay +a f) cu] y +a fa b] y +a I a b) y

S=i X=4 A =6 E=i0 E=i5 /=20 (1.1a) where
(r„,pop" irrtc) e= —0, (1 2)

+a[abc] z +a [[&e], [v$]]z +a[abc]z +a[ [Xca], [vb] ] z ~ ~ ~

xV=20 %=45 X=50 E=55

with
+aIaal 0

y +aIabbl

where f[f represents the dimension number of the U(3,1)
representations, which are denoted by the six-dimen-
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Phys. 8, 1694 (1967); in Coral Gables Conference on Symmetry
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fornia, 1967; and in Proceedings of the Fifth Coral Gables Con
ference on Syznznetry Principles at High Energies, Universzty of
Miami, 1968, edited by B. Kuryunoglu, A. Perlmutter, and C.
Agnes Hurst (W. A. Benjamin, Inc. , 1968).' The Dirac and Kemmer equations break the symmetry gen-
erated by SO(3,2) just as they violate the full SU(2,2) symmetry.
Both SO(3,2) and SU(2,2) contain SL(2,C) as a subgroup. A more
general approach may be based on the four-, five-, and ten-dimen-
sional representations of SU(2,2) in place of the same representa-
tions of SO(3,2), which is a subgroup of the former. If we choose
SU(2, 2), then both leptons and hadrons and also the photon can
be described, in a I.orentz-invariant way, as the finite-dimensional
representations of G=SU(2, 2)(3U(3,1). In both alternatives, the
group U(3,1) must be retained as a fundamental basis of the
theory. The mass splitting is due to the deviations from the U(3,1)
symmetry. A fundamental difference between SU(3,1) and
SO(3,2) is the absence of half-integral representations of the group
SU(3,1). The latter property of SU(3,1) imposes a "selectivity"
on the possible particle states (spin, parity, mass, and all other
quantum numbers). Thus a wave function of the type 4 p~. . .,
where a, p, y, . . . , are Dirac four-spinor indices, could contain a
superbundant number of particle states as contrasted to the states
(1.1) where in each supermultiplet the %=4 representation of
SO(3,2) occurs only once.

&"=p 'I'"+g"+)p 'J" (1.3)

are the 16 matrices constructed as a linear combination
of the U(3, 1) generators I'„„+pg„„and J„„.The ten
traceless matrices I'„„=I'„„,g&"I'„„=0,together with the
six matrices J„„=—f„„, generate the group SU(3,1).
The metric tensor g„„ is defined as g44=1, g, ~= —8, I,

(j, 4=1, 2, 3), g&, =g;4=0.
For the integral-spin systems the Dirac matrices y„

in (1.2) must be replaced by an integral-spin representa, —

tion of SO(3,2). For example, the Kemmer-Duffin
matrices P„provide, via the wave equation (1.2), a
description of spin and isospin multiplets with integral
spin. "From the definition (1.3) of the r matrices it is
clear that:

(a) Hadrons (for which p) 1) violate, approximately,
the SU(3,1) symmetry. The larger the constant p, the
smaller is the deviation from SU(3,1) symmetry. In
fact, for p= ~ the wave equation (1.2) is invariant under
SU(3,1). In this limit, Eq. (1.2) becomes

(p "PI, izztc) 4=0—, (1.4)

where 4' is a 4Ã-component wave function representing
a half-integral spin multiplicity depending on the di-
mension number X of U(3, 1). For integral-spin repre-
sentation of SO(3,2), e.g. , the matrices P„and P„„, the
corresponding wave equation for the limit p=~ is

11 Formally, we can combine the Dirac and Kemmer equations
into a single equation, (V~0 p„+&mc)+=0, where the four ma-
trices, F~,& are the generators of SO(3,2) and where for %0=4 we
have F„=&iy„and for %0=5 or 10 I'„=zp„. However, such an
equation does not provide a basis for the hadron mass spectrum.
The breaking of the SO(3,2) symmetry alone with E0=4, 5, and
10 is not enough to construct discrete mass levels. The breaking
of the SO(3,2) symmetry both for %0=4 and Ã0 ——5, 10 is neces-
sary to differentiate between Fermi-Dirac and Bose-Einstein
systems. The level structure of these systems arise from breaking
in addition to SO(3,2), the U(3, 1) symmetry.
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given by (see Appendix A7)

(p„p& ime)4=0, (1.5)

where 4 is now a 5A- or 10S-component wave function
representing integral spin multiplets. Thus Dirac- and
Kemmer-type equations result as a correspondence
limit of the wave equation (1.2). In this limit all the
masses coalesce into a single mass m but carry different
spins. The actual Dirac and Kemmer wave equations
result for iV=1 and IVp=4 and 5 (or 10), respectively,
where cVp is the dimension number of the group 50(3,2).
Thus for )V=1 we have I'„„=J„„=O,and Xp ——4, 5 (or
10) are represented by p„and P„, respectively. Equa-
tions (1.4) and (1.5) describe free baryons and mesons,
respectively, all of equal mass.

(b) In the language of SU(3,1), the photon and its
interaction with matter is described by the equations

(I'„„).pax p/Bx„= Q„„.J", (1 6)

where summation over the matrix index b runs from 1
to 6 and where the complex six-vector x, (a = 1,2, . . . , 6)
is defined as X, = 8,+i 3C, , X;+p x&'= 8, i——3C;—, j= 1, 2, 3.
The matrices I'„„and the coeKcients Q„„are given in

Appendix A. In Eqs. (1.6), a=1, 2, 3 yield Maxwell's
equations. The equations for a=4, 5, 6 correspond to
opposite parity (or polariza, tion) of the first set with
a=1, 2, 3. The six currents Q„„,J" for a=1, 2, . . . , 6 cor-
relate with the left-hand side to yield Maxwell's equa-
tions for each a. Other interesting properties of F„„and
J„„in six dimensions refer to the energy tensor of the
electromagnetic field which can be expressed as

2'pe=4(1'pv)apxpxb)

while J„„satisfy the identity

(J„„),px, x p
——0. (1.8)

Moreover, the matrices I'„„also appear in the commuta-
tion relations of the quantized electromagnetic 6eld:

Lx,(x),xp(x')] = —(ic/A) (r,„ppp").,D(x—x'); (1.9)

these commutation relations are equivalent to the usual
commutation rules. The above relations illustrate an
affinity between the six-dimensional representation of
SU(3,1) and the electromagnetic field.

It is clear from (1.6) that the electromagnetic field

breaks (exactly) the six-dimensional SU (3,1) symmerty,
as well as the five-dimensional SO(3,2) symmetry,
even though it is covariant with respect to the trans-
formations of its 50(3,1) subgroup generated by J'„„.
This observation of the SU(3,1) and 50(3,2) symmetry
breaking of the photon is the basis of this paper. For
massive systems the breaking (approximately, but not
exactly) of SU(3,1) will be extended to the entire

spectrum of its /wife-dimensional representations. For
the Dirac and Kemmer equations 50(3,2) provides a
minimal symmetry-breaking group. These two sym-
metry-breaking mechanisms above can be combined in
a I,orentz-invariant way into breaking of a G symmetry
consisting of the direct product of the groups U(3, 1)
and 50(3,2). This is achieved by the wave equation
(1.2) by including in it the translations or the four-
momentum operator p„of the Poincare group. The use
of U(3,1) in place of SU(3,1) is, of course, not acci-
dental. The requirement of approximate G symmetry
implies a large mass term (and therefore introduction of
the constant p) which, together with the correspondence
limit pointed out above, is possible only by includin&
the one-dimensional representation of U(3, 1) in the
theory. The large mass term (approximate G sym-
rnetry), 6', 6, 1" invariance, and relatively close mass-
level spacings compared to the mass of elementary
systems lead us to regard (1.2) as a wave equation for
free hadrons.

The possibilities p(1 (large relative mass spacings as,
for example, is the case for the lepton spectrum) and

p =0 will not be discussed in this paper. The next paper
in the series (on the meson spectrum) shows that the
supermultiplet where F0=5, %=6 yields, for p=0,
X=O, Maxwell's equations or the photon. The case p(1
in the same type of wave equation as (1.2) is interpreted
as leptonic states.

The appearance of the X term in (1.2) is, essentially,
an extension of the relation (1.8) for the photon. The
relation (1.8) for massive systems is of the form +J„„%',
which need not vanish. In this way all 16 generators of
U(3,1) take part in the formulation of the theory.

Furthermore, we observe that the opposite states of
polarizations X;, X& for the photon is taken over, in the
case of six-dimensional SU(3,1) representation, for half-

integral spin systems, in the form 4;, 4 ~'. The latter
correspond to particle and antiparticle states with

opposite parities, respectively. This I orentz-covariant
decomposition of the states 0', into 0; and 0 & is

quite similar to splitting up into the upper and lower

components of the Birac wave function 0 . These facts
regarding the role of the group U(3, 1) in the theory can
be used for the parity assignments of the supermultiplets.

The application of this approach to leptons leads to a
slightly diferent equation where 6 and 6' invariance is

violated. These questions together with the lepton spec-
trum will constitute the subject matter of the third

paper in this series. The next paper will deal with the
higher-dimensional representations of G for baryons
and also the mass spectrum of the mesons: the super-

multiplets L5,4j, L5,6j, L10,4j, (10,6j etc. (the 0+, 1+,
2+ mesons), where the first and second numbers in the
brackets refer to the dimension numbers (which we

designate as principal quantum numbers) of SO(3,2)
and U(3, 1), respectively.
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II. POINCARE INVARIANCE OF WAVE EQUATION transformation rules

The wa ve equation (1.2) given in earlier publications"
was based on the group SU(3,1) and therefore did not
contain the fundamental constant p. The wave function
+ satisfying (1.2) is a probability amplitude for finding
E&EO states of particles representing all possible spin
states (contained in any representation of G) with
various masses in positive- or negative-energy states
(the latter only in the case of No ——4). The mass levels
in 4'~,~ can be labeled as M(s,Z,N, 1Vo) where s is the
spin and Z represents the remaining quantum numbers
which commute with the spin and with themselves.

The Lorentz-transformation properties of the wave
function can be established for any principal quantum
numbers E and Eo. Thus if, for example, J„„and ~0.„,
correspond to the spin matrices of U(3,1) and SO(3,2)
respectively, then the total angular momentum operator

g„„=L„„+J„,+ ', o„„-
commutes with the o.„„p"p" term of the wave equation
(1.2) (see Appendix A). For the ordinary Lorentz trans-
formations (finite-dimensional representations), the
total spin angular momenta J„„+i2o„„are,of course,
not Hermitian. For the unitary representations, with an
appropriate definition of the scalar product of states,
the g„„are Hermitian. The relativistic angular momen-
tum operators

Loy xppp xppp ~

with p„=iAB/Bx" and x„as the coordinates, generate
the transformation

exp{——,if'"L,„)%'(x)=%(A 'oo) =4'(x') . (2.2)

Thus under a I.orentz transformation of the coordinates
x"~ A"„x" the wave function transforms according to

e(x) S(A)e(A-'x) =e'(x'), (2.3)

where the nonunitary operator S(A) is defined by

S(A) =exp) —-', 4'f'"(J„„+', o „„)), (2-.4)

and it acts on both the SO(3,2) and SU(3,1) indices of
%. The Lorentz matrix A is defined as

S(h.—') r „y"S(h.) =A&„r„y", (2 7)

which entail the statement that the operator
transforms as a vector. We note that the statement (2.7)
is valid also under unitary representations of the
Poincare group.

Now, for the free particles of mass M(s, Z,N, No) of a
supermultiplet LNo, Nj, the unit operator of the cor-
responding Hilbert space can be defined by

I(N, ,N) =Q Q ~1V„1V,p, g,s,Z)(Z, s,g,p, N„N
~

&(8(p p& M'(s, Z—,N, No))d'p, (2.8)

where R is the unitary matrix

@r s z, srz(N)oN&, y)

=o*.4z Dr r'& ' ~'PV(h, p)$, (2.11).

lf'(~, p) =L '(Ap)AL(p) (2 12)

is the "Wigner rotation" with L(y) being the "Wigner
boost" defined by

L(y) =exp(iep N) p=y/p N, =M4;. (2.13)

The matrix L(y) boosts a particle from rest to a momen-
tum p which is related to its mass by

where the spin s and Z run over all s and Z values
contained in the supermultiplet LNo, N] and l' runs over
all 2j (No, N)+1 values of the spin z component and
where p4)0. The states ~1Vo,N, p |,s,Z) are assumed to
obey the continuum normalization

(NoN, p, t,s,Z j
Z', s',p', l',No, 1V)

=~(p-') p ~«~-~-" (29)

Under a I orentz transformation A, the corresponding
unitary operator U acts according to

U~Aro, lV, p, p, s,Z) = g Sr z, r z(1tro, Ar, &,y)
f's'Z'

&& i AP, No,iV,l', s',Z'), (2.10)

A = exp( —-,'4'f&"M„„), (2 3) p4'= y'+M'(No, N, Z,s) . (2.14)

and satisfies the relations

CI ~'u~'~=II-) (2.6)

where 3f„„are the usual 4&4 matrices generating
Lorentz matrices Lsee Eq. (8.24)). The Lorentz invari-
ance of the wave equation (1.2) further requires the

'2B. Kursunoglu, in Proceedings of PLATO International Ad-
vanced Study Institute, Istanbul, Turkey, 4966 (W. H. Freeman and
Co., San Francisco, 1964). Also in Proceedings of the Fifth Coral
Gables Conference on Symmetry Principles at High L'nergy, Uni-
versity of 2''ami, 1968', edited by B. Kuryunoglu, and A. Perl-
mutter (W. A. Benjamin, Inc. , New York, 1968).A more detailed
discussion is contained in Phys. Rev. 167, 1452 (1968), where spin
dependence of the mass spectruxn was not observed.

The above results show that the wave equation (1.2)
is, for all supermultiplets [1Vo,N j, Poincare-invariant
and therefore the Poincare group is unitarily im-
plemented.

FF„„F '=F„,~, FJ„„F '=J„„t, (3.1)

(3.2)

III. CONSERVATION OF CURRENT

For every representation of the symmetry group
G = U(3, 1) SO(3,2) there exist Hermitian parity
matrices 1' and 0, belonging to SU(3,1) and SO(3,2),
which affect the transformations
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(84/Bx, )r„,P+((+=0, (3.3)

where (t) is the Hermitian conjugate operation and
where l „matrices belong to a representation of SO(3,2).
The Hermitian conjugate operation on the wave equa-
tion (1.2) yields

where, for example,

Jl4(&) 7 Jl4(4) & JP(&) 1 JP((()) ) (3' 0)

represent baryon currents. The set (3.9) contains also
0+, 1+, 2+, . . . meson currents like

JP(1) ~ JE(4) ~ Jp(6) ~ Jp(10) q
~ ~ ~ (3~ 11)

~ J~n()) ~
~ ~ ~ (3 12)

where

(3.4) and4 =CtFQ.

Hence, combining (3.3) with (1.2), we obtain, in the
usual way, the conservation law of the current All of the above vector currents have space-time sym-

metries only, and they will play an important role in
the intersupermultiplet transitions and also in establish-
ing superselection rules.

8J„/Bx„=0,
where the current J„is given by

3.6
IV. (P) (', 1 AND OTHER DISCRETE SYMMETRIES

where for 1V()——4, 5, and i„corresponds to y„and P„,
respectively. The corresponding parity matrices F for
E=1, 4, 6 and 0 for Eo——4, 5 are given by

For No =4 and E=6 the corresponding wave func-
tion, under time reversal, transforms according to

0 0 0
where

+(x) ~ Py2+2*(—l,x) = w+(x), (4.1)

F j ) F
0 —1 0 0

0 0 0

0 0 —1 0
(3 7)

I,X4 ———X4, It+j =~j ~

P~~pl = P) ~ P =I~p .
The translation operators p„are changed into

F F44—
0 I3

I3 0

0 0 0'

0 1 0 0

Hence, each term of the wave equation (1.2) transforms
according to

r pe() —r„„* p e'()= —r pe'()
q~p„e(x) ~ —q„'p"e'(x) = —q~p„e'(x), (4.2)

J q~p"+(x) ~ —J *~"p'"=J q~p"+'(x)
0=

0 0

.0 0 0

0 7 where we used the definitions of the matrices F„„,J„„,
as defined in Appendix A and where

0 0 0 0
Therefore, the wave equation (1.2) shall remain in-
invariant under a time-reversal operation provided, at
the same time, the constant 'A is replaced by —X. Thus
the constant 'A behaves like a pseudoscalar under a time-
reversal operation.

Under a charge-corljlgatioe operation, the wave func-
tion transforms according to

0 0 0 0

0 —1 0 0 =Pp,

0 0 0 1 0

0 0 0 1.0

respectively, where I3 is the three-dimensional unit
matrix,

For p) 1, J„represents a hadron current with a small
Lorentz-covariant and SU(3,1)-broken part superposed
over a Lorentz-covariant but SU(3,1)-invariant com-
ponent.

The positive-definite nature of J4 as a probability
density for spin multiplets of particles with different
masses corresponding to SAD states will be discussed
separately for each supermultiplet PV(),1Vj.

The vector current J„ in (3.6) represents a super-
multiplet current. Therefore, the currents corresponding
to the wave equation (1.2) can be labeled as

e(x) r44/2%*(x) = 'kc = ('e(x), (4.3)

and each term of (1.2) transforms as

r q~p"e~ —r q~p"e&

V"p.+ —V"p.+c,
J„„~p"e~ J„.~~p"e„

where we used the relations

727' 72 Vp, q r44Jpv r44

44Fpv F44 F44Fpv F44 Fpv ~

J f¹N] J (Xp)e(~)
Hence we see that the charge-conjugation invariance is

(3.9) obtained if at the same time, we replace the constant



X by —) . Thus in this case X, as a dimensionless number,
behaves like a charge. The fact that X has also to change
its sign under the time-reversal operation implies that
it is not related to an electric charge alone. "

The space-parity transformation is affected according
to

where
I&$4 x4 ) I&xj — xj e

The wave equation (1.2) remains unchanged under
parity operation. The reRection of both space and time
coordinates is affected according to

F5=
y 6 Z6 " Jpv Jp[r (4.6)

but is not a Casimir invariant of SU(3,1) for N =6. The
matrix I's belongs to the algebra of the group SU(3,3)
just as the ys in the Ns ——4 representation of SO(3,2)
belongs to the algebra of the group SU(2,2) where

(4.'?)

The I'5 matrix also transforms as a pseudoscalar under
space parity transformation.

From the above study of reAection symmetries it is
clear that the equation is invariant under (P, E, and 6
for fixed p and A..

I et us now consider two more examples for the re-
Rection symmetries of the theory. The case S=1 and
Ns=4, as follows from the wave equation (1.2), is just
the Dirac equation for a spin-~~ particle and the cor-
responding invariance principles are well known. For
N =1 we have the representations I'„„'=I'„„+pg„,=pg„.,
J„.=O of U(3,1), which satisfy the commutation rela-
tions of U(3,1). (See Appendix A.)

For X=4, ED=4, the corresponding action of the
reRection symmetries which leave the wave equation
(1.2) invariant are

"A possible speculation, at this point, is to posit X as
P =eg/Ac=-,'n, or P =2n ', where n=&1, ~2, . . ., and g is a
magnetic charge. See P. A. M. Dirac, Proc. Roy. Soc. (London)
A133, 60 (1931);Phys. Rev. 74, 817 (1948);J. Schwinger, in Pro-
ceedings of the Third Coral Gables Conference on Symmetry Princi-
ples at IIigh Energy, 1966, edited by A. Perlmutter, J. Wojtaszek,
G. Sudershan, and B. Kuryunoglu (W. H. Freeman and Co., San
Francisco, 1966}.Under {P operation, X is accompanied by a rela-
tive reQection of both electric and magnetic charge.

and Eq. (1.2) remains invariant under the total reRec-
tion provided, at the same time, the constants p and. X

are replaced by —p and —) . The 6&6 matrix F5 in the
N=6 representation of U(3, 1) is deRned by

0

where we employed the relations

and where under V' and [' the various terms of (1.2)
transform as in (4.2) and therefore the symmetry prop-
erties of the constant ), remain the same as for /=6,
So——4. However, in this case, the constant p does not
participate in the total reflection symmetry and the
equation remains unchanged for a fixed p. Thus, the
symmetries of the supermultiplets with principal quan-
tum numbers Ns ——4, N =6, or brieRy L4,6$ and L4,4j,
differ with respect to their p content. The 6rst manifesta-
tion of this difference of symmetry will be seen in the
mass formulas of the supermultiplets $4,6$ and L4,4j
where the latter mass formula is not invariant under the
transformation p —+ —p.

For both supermultiplets $4,4j and $4,61, the corre-
sponding parity and charge-conjugation operations anti-
commute. This means that in both cases of L4,4] and
L4,6], the particles and antiparticles, described by the
wave functions 0' „and 0' t„„~, have opposite parities.
This result may be expected to apply all other half-
integral spin representations of the G symmetry.

V. SUPERMULTIPLETS [N, N$ OF [" SYMMETRY

In order to exhibit the particle structure of the wave
equation (1.2), it is necessary to reduce the NsN-
component wave function into its irreducible parts
representing various spin multiplets in positive- or
negative-energy states (for the case of half-integral
spin) and different masses. We must point out that not
all the nonunitary representations LNs, Nj of G can
yield a current density J„ for which J4 component
represents a positive-definite probability density. '4 For
example, the representations X=4, 10, 45, 55, . . .
(built from the repeated use of Ns ——5, N=4) for any
So do not yield positive-definite probability densities.
This can be seen readily by observing that the wave
functions 4 „,4 [],„],when used in the deRnition (3.6)
of the current density, yield nonpositive-definite J4.
However, some of the E=1, 6, 15, 20, 50, . . .representa-
tions of U(3, 1) (built from the repeated use of N=6)
for Ns ——4, with the corresponding wave functions (see
Appendix A 6)

+any Fa [as]) Fa[ese]) &y f'y &) 1 ) ~ ~ ~ ) 6 (5 1)

yield positive-definite probability densities. This fact
is well known for the representation L4,1j, the Dirac
equation. The representation Xo ——4, E=6 of G has,
with respect to U(3,1), a structure similar to an electro-
magnetic-field tensor represented here in its complex
six-vector form 8+iX'., 8—iX. The probability density
is the sum of terms of the form &+K'. This state of
affairs may not persist for all the wave functions for
which/=15, 20, 50, . . . .The 36- and 216-dimensional

'4K. Johnson and E C. G. Snda. rshan, Ann. Phys. (N. Y.)
13, 126 (1961).
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FIG. 1. The half-integral spin and parity supermultiplets, where the minus superscript indicates negative parity and those without a
superscript refer to positive-parity particles. The parities of the last 20-dimensional representation have not yet been assigned.

representations of U(3, 1) are reducible according to (see
Appendix A6)

6&&6=1+15+20,
6X6X6 = 6+10+15+15+20+45+50+55. (5.2)

For the [4,4], [4,6), [4,10], [4,15], and [4,20]
supermultiplets the corresponding wave functions 4 „,
+~~) +~~)„~) +~~~~~) +~~,~,~) and +~(,ql are reducible
according to their spin assignments as shown in Fig. 1.

The spin content of the supermultiplet [4,4] is ob-
tained from

[(l 0)+(0 l)) (-' l) = [(l 0)+(0 l)]
+[(l 1)+(1l)), (5 3)

so that one has two —,'+ states and one —,'+ state in posi-
tive- or negative-energy states (opposite parity). For
the supermultiplet [4,6), we have the reduction

[(0 -')+(l,0)) [(0,1)+(10)]= [(o -')+(l,0)]
+[(o,l)+(l,0))+[(1-')+(-',1)], (5 4)

which contain a total of two —,'+ and two ~+ states in
positive- or negative-energy states (opposite parity).
When the same analysis is performed for the other
superrnultiplets [4,X), one obtains the scheme given in

Fig. 1. The actual assignments of names to the above
supermultiplets will have to wait for further quantita-
tive as well as symmetry analysis of the theory. In
this paper only the mass levels [4,1), [4,4), and [4,6]
corresponding to eight masses have been calculated.
The knowledge of the levels [4,10), [4,15], and [4,20),
corresponding to an additional 16 masses, could aid
considerably in disentangling possible level regularities
predicted by this theory. A discussion of these levels
will appear in the next paper.

which act on 4 to retain a spin-~ part and project out a
spin-g part) and

I"+ =3(5'—4)A-, I"++=3(~' 4)A+, (6.2)

which act on 4 to retain a spin-~ part and project out a
spin-2 part, both in positive- and negative-energy states.
In the above,

A~ =-', (laiy51'g) (6.3)

are also projection operators. The operator

with

5' =W/p' =s(s+1),

W =W„W", W"= ', e"""f„p., -

(6 4)

(6.5)

is the Pauli-Lubansky invariant of the Poincare group,
where

(6.6)

are the spin operators. The invariant 8' can be written
as

W= 'p'f' t"" -0 f' 'p"p"— (6.7)

Furthermore, TV satisfies the equation

(W/p')'= '(W/p') 45/16 -(6.g—)

For the supermultiplet [4,6], the operator W (see

VI. OPERATOR FORMALISM OF THE
$4,6$ REPRESENTATION

The spin decomposition of the wave function + in the
wave equation (1.2) for the case where the G symmetry
is represented by $0=4, S=6, can be obtained. by using
the projection operators

I' =-', (15/4 52)A, I +—-', (15/4 —S2)h+, (6.1)



BEHRAM KURSUNOCLU

Appendices A and 8) can be written as

W/p'= 11/4 —A i+2Am ——s(s+1), (6.9)
A3= p 'o"'I'"p.p". (6.21)

I pl, +I, gr„=l (6.12)

is the unit operator in the space of the [4,6] representa-
tion of G. Using the above de6nitions and Table II in

Appendix 3, we can easily obtain the action of the
projection operators on the various terms of (1.2) as

I' J=2ipl' +, I' ~J= —2ipI'
(6.13)

I'+ J= —iyI'++, I'~pJ=ipI'+

I' I =I I', I' +I"=—2~3pI" +,
(6.14)

I'++I' = —47 3pl"++,

F+ A2 ——F+
(6.15)

Ai= p 'o"'J„,p„p", A, =-'o. "J =(r.KA, (6.10)

and E, are the usual 3&3 spin-1 matrices.
Now, the 24-component wave function 4" can be

(iecomposeR accor(Img to

4=(I' +I' ++I'~ +I'~+)4
+0 ++4+ +0++, (6.11)

Hence, using the definition (6.12) of the unit operator
and the relations (6.13)-(6.15) and (6.19)—(6.20), we

obtain

J„,yl'p" =2i[11/4 s(s+—1)]y&p„r, , (6.22)

I'„„y p" = [(3——,'s(s+1))
+i(-,' —;s(s+1))r2]yl"p» (6.23)

—,'o &"J„„=—[11/4—s(s+1)]-', (1—2ri), (6.24)

p 'o.»1'„„pp" = —[11/4—s(s+1)]2r, (6.25)

p
—'o»J p p"=[11/4—s(s+1)]2ri, (6.26)

p A o»j„„pp"=—o'""J (6.27)

where, in the derivation of (6.23), we have used the
reduction (see Table II)
I'I" = —p 'y(yl I' ) =yp '(2r, p'—+iA )

=6r3pi' . (6.28)

The above relations exhibit the spin dependence of
the various operators, and they will be found very useful
in the derivation of the mass spectrum.

The action of 8' on the wave functions is obtained as

W% =4p'0, W+ +=-,'p'0 + (6.29)

J=~„,v p, r=r„„v p, y=v p„. (6.16)

The operator ~3 belongs to the vector operators r;
(j=1,2,3) defined by

=-', (A —h. ), r = —2ir, r = ', p 'I'„„p"p"-, (6.17)

satisfying the commutation and anticommutation
relations

[rior&] i~i&&r~ ~ (rior&) a~i& i (6 Ig)

respectively. The operators v-; comInute with the total
angular momentum operators g„„defined by (2.1), but
they do not commute with the spin operators J„„+io„„
and therefore they cannot be employed as ordinary
isospin operators. However, we shall utilize them as
"space-time isospin operators. ""

tA"e shall further need the relations

(6.19)

W4p = (15/4)p'4+, W%pp = (15/4) p'4'p+. (6.30)

Hence we see that 4 and 0' + are the wave functions
for spin-~, an(I 0+ and 4+.+ represent the wave func-
tions for spin-2 states. Thus the wave function 0,
describes two spin--,'and two spin--,' particles in posi-
tive- and negative-energy states. These results are in
agreement with the spin analysis of the wave function
given by (5.5).

VII. ENERGY LEVELS OF THE
SUPERMULTIPLET [4)6i

It is now quite a simple matter to derive the mass
spectrum corresponding to the representation [4,6] of
the G symmetry. From (6.22) and (6.23), it follows
that the wave equation (1.2) can be written as

[2(2A —1)r,+2i(A+1)r,+2i (3A —1)r,]q~p„e
+p(q~p„inc)% =—0, (7.1)

A 31'+ =2iv 31'+. 2 3F++= —2iv3I'+ t. ,

W,r = —4i.,r, W,1,=4i.,r
(6.20)

which involves the space-time isospin operators ~, ,
where

A =-', (15/4 —5') A'=A.
~5 The noncommutation of the "space-time isospin operators"

with spin, and their commutation with total angular momentum
only, is, of course, a natural consequence of a relativistic theory.
Presumably, this is the only way to include additional quantum
numbers within a purely space-time structure. Further develop-
ment of this theory could make use of a possible saturation of the
algebra arising from the commutation relations between the three
operators F„„p&p",J„„p&p",p&p„of the wave equation (1.2). Such
an approach, besides simplifying the mass-spectrum calculation,

Operating with the projection operators A+ and using
the relations

A.g7.g
=~ ~A.g, A.pv. 2 =&is 3A.p, A.mrs = v 3k~,

may provide a basis for internal symmetries. In this case, the
members of an isospin multiplet could lie in di&erent super-
multiplets.
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we obtain the set of equations

[2(A —2)r,q~p„—i mcp$e+

+[p+iX(3A —1)]y&p„%='0,
[p —i~(3A —1)]~ p„e,

+[6A rv~p„i—mcpje =0,
where

4+ ——A+0 .

Hence, eliminating 0', for example, we obtain

(q~p„i Mc)%+—0, ——

where the Inass term is given by

4mcp(2A 1)r—3
3fc= ———

3A (X'+1)+X +p' —(mcp/p) '

p=(p p")"'.

(7 2)

(7 3)

(7.4)

(7.5)

Equation (7.4) is also satisfied by 4 . The mass spec-
trum follows from

The new wave functions N~+ are eigenfunctions of v3

belonging to eigenvalues +—,'. Thus,

(7.16)

Thus the two eigenvalues of v3 correspond to two differ-
ent masses of spin s(s=2 or 2), and in positive- or
negative-energy states. Hence, we see that, in analogy
to isospin formalism of the nucleon, the wave functions
%~+, %~ describe two different states (different
masses) of the same system. The wave functions N~+,

are, of course, orthogonal. We can, therefore,
assign to mass states, for a 6xed spin, r quantum num-
bers. Hence it follows that the wave function of the
system is of the form

X=1,. . .2(2sj1), k=1, . . . (2r+1),

from which, for s=~~, ~=~, for example, we have an

eight-component wave function, and for s= —,', r =, the
wave function has 16 components. According to this
picture, the various parts of the wave function are of
the form

in the form

(p' —~'c') ++=o (7.6) 4' i=(%' )„, 0' 2
——(4' +), n=1, . . . , 4

mcp/p =a3 [9/4 —s(s+1)j
~(p'+(~'+1)[19/4 —s(s+1)j}'" (7 7)

where s=» ~ yield two particle and two antiparticle
masses for each spin value. Equation (7.6) is Poincare-
and U(3, 1)3SO(3,2)-invariant. This, as will be shown

later, leads to the existence of an absolutely conserved
quantum number.

Equation (7.4) still contains the space-time isospin
component va. Ke must therefore investigate its role
in the theory. A convenient way to study the role of
rs is to write (7.4) in Hamiltonian form as

where

ih8%'+/Bt =H%g,

H=cn p+2raPORc',

mr=2~ 3E.

(7.8)

(7.9)

(7.10)

DRED
———,'(1a2rs),

we can replace Eq. (7.8) by

(7.11)

and

where

iA8% ~+/Bt =H+4'++

iAB%'~ /Bt=H %~-
H~=cn p&P5Rc'

'kg+ =5'%'y .

(7.13)

(7.14)

(7.15)

The Hamiltonian H, total angular momenta g; =1.;+S;,
and the operators v; commute with one another. There-
fore, like total angular momentum g;, the r; are also
constants of the motion, and g3, r3, and H can be mea-
sured simultaneously. Furthermore, by using the pro-
jection operators

for spin ~~, and

%qi ——(4+ )i, 4'i, 2=(%++)y, X=1, ~, 8

for spin —',. The above wave function satisfy (7.12) and.

(7.13) with appropriate spin values of H~.
If we choose a frame where v~ is diagonal, then, as

follows from the definition (6.17) of ri, we have

Ap ———,'(1m 2ri),

and the wave functions 0', 4' +, and 4'+, 4'++ are
eigenfunctions of v.

~ belonging to the eigenvalues &—', .
The operator v.j serves to differentiate between positive-
and negative-energy states of the multiplet but it anti-
cornmutes with rs.

Wc Inay now rewrite the baryon inverse-rn. ass for-
mula (7.6) in the form

mcp/p =ZB+8 (p'+ (X'+1)[19/4 —s(s+1))}'t', (7.17)

where Z=&1 and the baryon nunzber 8 assumes the
values 1 and —1 for baryons and antibaryons of spin s,
respectively. The baryon number is determined as a
consequence of solving for mass, the Poincare- and
U(3,1)3SO(3,2)-invariant algebraic equation (7.6) and
is, therefore, absolutely conserved. We observe that in
placing 8 in (7,17) we have used the fact that the
square-root term, because of the relatively large value
of p, is the largest term. The number Z is inserted in
(7.17) to account for the & signs in (7.7). However, the
identification of Z as a quantum number will have to
be postponed until higher Inass levels are calculated.

By using the definition (4.4) of the parity transfor-
mation, we see that the parity of the [4,67 is unarnbigu-
ously dered to be positive.
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(rpv)p'= 2gpv~p' gpp~v' gvp~p

(J„.),'=i(g„,8„g„,—8„).

(8.1)

(8.2)

Actually, in this case F„„ is expressible as a bilinear
combination of J„„in the form

r p
= 'g"I"-I" 2(~—'~"+~:~pp)

where, as before, we have

g~ F„„=O.

(8.3)

VIII. ENERGY LEVELS OF THE
SUPERMULTIPLET $4,4$

The four-dimensional representations of the SU(3,1)
generators are given by

Other properties of the wave functions 0' and 0'+
follow from using (8.8), as

(8.14)

where the last two relations for 0'+ imply that 4+ is an
eight-component wave function. We must note that
Eqs. (8.15) are not subsidiary conditions but are con-
sequences of the definition of 4+ by (8.11), which
projects out a spin-~ part of the original wave function

Now, using either (8.5) or (8.10) and the relations
(8.14), together with

7pv Pp+7 P&&vp Pp &Furthermore, J„,here are the generators of the ordinary
I.orentz transformation

A =exp( ——,'ifp"Jp„),
and operating with p' and yp on the former, we obtain

(8.4) the coupled equations

where f„„are the six parameters of h..
Substituting from (8.1) an.d (8.2) in the wave equa-

tion (1.2), we obtain it in the form

[(2p+1)y pp„—2imcp]+. =2 (1—iX)V,y
+2(1+i )p.~, (8.5)

where

[(1-a)happ„-ibQ-p'u*q=0,
[(1+~*)7" P. + f]n +2( 1—2 )4 =o,

2(1—8) 2mcp6=-
2p+1 2p+1

(8.16)

vt&=p"+p n =7"+p (8 6) On eliminating q from (8.16), we get the wave equation

and where the spinor index of 4, &t., and q is suppressed.
The spin projection operators in this case are given by

(happ„—iMc)y=0, (8.17)

(8.7)

for projecting out spin ~3 and ~~, respectively. The Pauli-
Lubansky invariant W in (8.7), as follows from its
definition (6.7)& is given by

8'P '), '=(15/4)~, '+v.v +P 'p,v v"p.
P'&pp'&"P p -2P 'PpP' (8-8)

and it, of course, commutes with rp„happ", Jp„yppv, and

Pp'
By operating with I'+ and I' on (8.5), we obtain the

equations

p(p —1)+3[X'+s(s+1)]—(m'c'p'/p')
3fc=-- mcp.

2 (m'c'p'/p')

The wave equation (8.17) is also satisfied by g. Hence
the equation

(p' —M'c')&=0

yields the mass spectrum

mcp/p =&1+{1+3p.'+s(s+1)]+p(p —1)}'~2 (8.18)

where s =g.
From the relations (8.15) and the definition (8.8), it

follows that 0'+ is an eigenfunction of 8':

[7"p.—imc2p/(2p+ 1)](++).=o (8.9) (&/p') ++ = (»/4) ++, (8.19)

for spin-~3 states, and

[7"P.—imc2p/(2p+ 1)](+-).
= [2/(2p+1)][(1 i k)yA+(1+8 )p.—z] (8.1o)

which reconfirms the fact that 0'+ represents a spin-~3

state. In the same way using (8.14) and (8.9), we obtain

P'(lI'/P'). '(+ ).= '4» 7'(lI'/P'-):(+-)= '~, (8 2o)—-
for spin--,' states, where

N+ ——F+4, 0 =F 0,
and where we used the relations

which show again that g and g represent the wave

(8.11) functions of two spin- —', particles whose masses are given

by (8.18). We have thus shown that the 16-component
wave function 4 of the supermultiplet [4,4) represents a

(8.12) singlet spin-$ particle of mass

(8.13) M &,(, B2pm/( 2p1+)——(8.21)
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S=-', ~.+-';~b+-', O, (8.23)

where the 4&(4 Hermitian matrices ~, and ~b are de-
6ned by

~,=M iN, —~b=M+iN,

Mj gtjklJkl ) Ej J4j ~

(8.24)

The matrices 7„and v bj obey the commutation rules

7ajp7ak 4&&jkl7al y

$Tbj, Tbb] = 2$bjktrbl ) )rag)ebb j=0 )

and the anticommutation relations

(8.25)

fr„,r,b) =28,b, (rb;, rbb) =28,b. (8.26)

Thus v.„and 7bj are each four-dimensional representa-
tions of the usual spin algebra.

For the supermultiplet L5, lj the spin matrices can be
written (see Appendix A 7) as

0
(8.27)

and they correspond to spins j. , 0 . The reason for this
parity assignment stems from the fact that ~, and gb are
related by the parity transformation

'Cb=FY~P ) (8.28)

where F is the space-time metric. Thus, by adding the
~ spins of two elementary systems of opposite parity,
we obtain 0 and 1 spins.

IX. DISCUSSION OF MASS SPECTRUM

The Poincare-invariant wave equation (1.2) de-
scribes the energy levels of "the hadron" as finite-
dimensional representations of the symmetry group G
L= V(3,1)gSO(3,2)] which is broken to the order p '.
The equation yields only timelike solutions for the mass
spectra. There is no overdetermination of particle states
since all the components of the wave function are used
up for various spins and masses, and, therefore, there
are no supplementary conditions on the wave function.
The more usual approach is based on a definite mass

and a doublet of spin--,' particles with mass"

mcp/P =ZAN+8(1+3LX'+s(s+1) j+p(p —1)}'",(8.22)

where 8 is the baryon number and Z=&1.
Finally, as seen from (5.4) and (5.5), the spins of the

P4,4) and L4,6$ multiplets result, of course, from adding
the spins of the elementary systems. For example, the
spin operators (J„„+-,'0„„)of L4,4j can be written as

(9.1)

for the supermultiplet [4,4]+, and the mass relation

PL2 8$] Pl 4 Pl g

(9.2)

for the supermultiplet [4,6j, where

and definite spin. For example, in the Rarita-Schwinger'
equation for spin 2, one has to introduce supplementary
conditions to reduce 4" „ into a wave function with
eight independent components only. This is also the
case for specific spin states derived from the Bargmann-
Kigner' equation. The latter approach was applied
by Salam" in his U(6,6) classification of elementary
particles.

In this paper only the low-lying levels L4, 1j+, L4,4/+,
and L4,6j+ have been calculated, where superscripts
refer to the parities of the supermultiplets. These super-
multiplets contain a total of eight baryons and eight
antibaryons with spins ~ and 2. As space-time super-
multiplets, the L1Vb, lV) contain various spins in con-
trast to SV(3) theory, where each multiplet has only
one lzind of spin. The constants X and p are not the cause
of mass splitting, but they play a fundamental role in
the spacing of the mass levels. For example, an increas-
ing p provides an "attraction" of the levels towards the
singlet mass ns, while the constant X serves to inhibit
the "attraction" caused by the increasing values of p.
The appearance of the square roots in the mass for-
mulas is, of course, the characteristic of all the. half-
integral-spin systems. The latter is, from the point of
view of a space-time description, the reason for the
inclusion of the antibaryons in a supermultiplet to-
gether with baryons. This picture does not preclude the
possibility of reclassifying the combined supermultiplets
according to a scheme provided by the internal sym-
metries.

Now, in the absence of further information on -the

parameters X and p, the mass formulas (7.17), (8.21), and
(8.22) can be analyzed in terms of the mass differences
and mass ratios of the supermultiplet members. Ir-
respective of their values being the same for all the
supermultiplets or changing in a regular way from one
supermultiplet to another, the parameters p and X can
be eliminated for each level to obtain "sum rules. "Thus,
by using (7.17), (8.21), and. (8.22) for 8=1, we obtain
the mass relation

'6 The masses of the doublet s= —, and singlet s= ~ have, in this
case, resulted in expressions (8.21) and (8.22). We may, for practi-
cal purposes, combine (8.21) and (8.22) into a single mass formula

mcp/P =ZB+Bf [(p+,')'+Z' '$15/4 s(s+-1)5 (3b—2+3—2—p)$ l'"
where now s=~~, ~~ and Z=O, &1. Also from the discussion in
Sec. IV, it follows that L4,4) is a positive-parity supermultiplet.

"W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
"V.Bargmann and E. Wigner, Proc. Natl. Acad. Science V. S.

34, 211 (1948).
19 A. Salam, in Proceedings of the Second Coral Gables Conference

on Symmetry PrinciP/es at Fli'gh Energy, University of 3IIianu,
1965, edited by B. Kursunoglu, A. Perlmutter, and I. Sakman
(W. A. Freeman and Co., San Francisco, 1965).
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and where M (-'„—1), M (-;,1), M, (-'„0) and m (-'„—1),
ms( —„1),ms(ss, —1), tn4(s„1) are obtained from (8.21),
(8.22), and (8.17), respectively. The arguments —1, 1,
and 0 label the "Z content" of the levels while the first
numbers in the parentheses refer to spins. In (9.1),
because of M~&M2, m must be greater than M3, the
sPin-ssmember of the [4,4]+. In PrinciPle, each suPer-
multiplet of the wave equation (1.2) should give a mass
relation of the types (9.1) and (9.2) mixing the masses
of the various spins. The masses on the left- and right-
hand sides of (9.2) carry spins si and —'„respectively.

The mass formulas (9.1) and (9.2) have been scruti-
nized by Perlmutter. His computer analysis of (9.1) and
(9.2) and also of (7.17), (8.21), and (8.22), in the light
of the existing elementary-particle data, leads to some
interesting results. In the case of (9.2), he compared the
i'atlos Bsi&ls/(tiki —ass) alld tiss5$4/(floss —554) aild i't ap-
peared. that the best fit (3 parts in 1200) was for mt=
(1314.7 MeV), ms=2+(1189.7), nzs ——I'+(1382), and
m4 ——6 (1243.9), where the numbers in parentheses are
the experimental values. With this set of values, the
mass formula (7.17) yields re=1331.9 for the mass
pa,rameter of the theory. Actually, for the choice of m~

and m~ as above, he obtained ms ——1382.1 and m4

=1244.3. With these ma, ss values, the mass formula
(7.17) gives p=18.739 and X=3.325.

For the supermultiplet [4,4] he used the ns value
1331.9 of [4,6] or the mass 1321.25 of and found
that Ms in the mass formula (9.1) could only be the
mass of one of the 6's, the only spin ~3+ with a, mass less
than 1331.3. If this is the case, then the equality of the
mass ratios 4MiMs/(Mi —Ms) and mMs/(m iVs) is-
obtained if M~ is a, Z and M2 is a nucleon. The results
are not sensitive enough to discriminate among the
various charge states. However, since Z+ was used in

[4,6], it was eliminated in [4,4]. Table I gives the re-
sults for the various combinations of Z' and Z and
e, p, to within a reasonable precision (at least at this
time).

From the above numerical analysis it is clear that:
(i) The breaking of the G symmetry for the super-
multiplets [4,4] and [4,6] is different. The former
breaks it in the I'„„y&p„ term by about 17% and in the
term XJ„„y&p" by about 45%. In the [4,6], these rates
are 5 and 18%, respectively. (ii) The change of X from

[4,4] to [4,6] is ab'out 9% and, therefore, smail com-

pared to the change of p in the respective super-
multiplets. (iii) In the absence of further analysis, with
the inclusion of, for example, [4,10], [5,1], [5,4], and

[5,6] there is no obvious way to deduce a general or
specific conclusion on the numerical behavior of the
constants p and X.

One of the limitations of the above mass analysis is
the fact that it has been based on the experimental mass
values alone (except spin and parity) without the use
of some internal quantum numbers. Thus we may ex-

pect to find other mass fits that can be just as (or more)
accurate as the one selected above. In fact, Perlmutter
finds that the choices [As,1P(1470)] for s=s and

PP, Q
—] for s=—', in the supermultiplet [4,6] yields an

accuracy of 3 parts in 1000, while [As,A'(1470)] and
[6+,Q ] fit the mass relation with a, greater accuracy
of 1.6 parts in 1000. Other possibilities of similar order
of accuracy are the pairs [Z',=-

—], [A,&'],
[Z,1V'(1470)] with [6, '(1530)]. An even more
striking fit (but wrong parity) with an accuracy of 2

parts in 10' is the choice of [A(1405),1V(1550)] together
with the pair [A(1520,Z(1660)]. However, the possible
experimental fluctuations in the latter mass values
(and the negative parity) rule them out. In the case of
the [4,4], other possibilities are [p,lP'(1750)], [i1(1930)

(1530)]with an accuracy of 5 parts in 1000 and also

[Z,S'(1470)], [Ã"(1750),Q ] fit to the order of 4
parts in 1000. However, despite the still unrevealed
numerical nature of the fundamental parameters X and

p and as-yet-unidentified internal quantum numbers of
the theory, we believe that the above "agreement" with
observation is not accidental even though later all of
these particles may have to be shifted to higher-level
supermultiplets of this model.

An attractive possibility is to choose the level [4,1],
i.e., the U(1) level, as the most stable state of matter
and assign m to be the proton mass. For higher levels,
we may choose different values of m. In this way,
higher-dimensional representations of U(3, 1) [=U(1)
XSU(3,1)]can be associated with the less stable states
of matter.

Furthermore, it will be shown in the next paper that
the various possible fittings of (9.1) and (9.2) are not
accidental. For example, the sum rule (9.2) of the
[4,6] reappears in higher levels, indicating a periodic
structure in the baryon spectroscopy.

TABr.r. I. Calculated values of p aud X from s, mass fit for L4,4$. X. SUMMARY AND CONCLUSIONS

1192.46 (Zo)

M2

938.256 (p)

1197.32 {Z-) 938.236 (p)

1192.46 (Zo) 939.55 (n)

1197.32 (Z-) 939.55 (n)

3II3

1235.7
1238.96
1234.4
1237.65
1234.6
1237.87
1236.5
1239.8

1328.97
1332.75
1328.97
1332.75
1327.05
1330.81
1330.81
1334.6

6.624 3.075
6.604 3.085
6.526 3.018
6.507 3.028
6.676 3.084
6.657 3.095
6.559 3.037
6.540 3.047

If the electromagnetic, weak, and gravitational inter-
actions are switched off, then the hadron belongs to the
finite-dimensional representations of the noncompact
group G [=U(3, 1)SO(3, 2)] which is the direct
product of U(3,1) and SO(3,2) (only for A s=4, 5, 10).
All of the free hadron states are described by the G-
violating wave equation (1.2). Supermultiplets of
baryons and also supermultiplets of mesons of various
spins, parities, and masses are characterized by the
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principal quantum numbers S and Eo, the dimension
numbers of the groups U(3, 1) and SO(3,2), respectively.

The group U(3, 1) has come from the observation
that it is the minimal symmetry group which is broken
"exactly" by the electromagnetic field (for 1V=6). The
group $0(3,2) is the minimal symmetry group broken
by the Dirac and Kemmer wave equations for the spin

~ and the spin 0 and 1 fields, respectively. The Dirac
equation describes the electromagnetic intera, ctions (in
the absence of other interactions) with great accuracy,
but, because of its single-spin and single-mass parameter
structure, it does not describe the energy levels of the
free baryons. The same shortcomings for the meson
energy levels applies in the case of the Kemmer equa-
tion. In this paper we have generalized the breaking
of S=6 symmetry by the electromagnetic field, and the
breaking of SO=4 and %0=5, 10 by the Dirac and the
Kemmer wave equations to the entire spectrum of the
finite-dimensional representations of the group G. We
have further assumed that the breaking of the G sym-
metry for the supermultiplets [1V0,1V] is not, necessarily,
at the same rate. Each supermultiplet can deviate from
G symmetry at a different rate. This idea was the funda-
mental reason for introducing the constant p into the
wave equation (1.2). The observed facts on the mass
level spacings of the hadrons being small compared to
the mass itself, and also the observed disparity in these
spacings for the various internal quantum numbers,
are not in conQict with the present theory.

Under a Lorentz transformation of the wave equation
(1.2) all the supermultiplets transform independently of
one another. This guarantees the conservation of the
baryon charge, parity, spin angular momentum, and
all other quantum numbers that may be contained in
the theory. So far, only the supermultiplets [4,1]+,
[4,4]+, and [4,6]+ have been calculated, and the fits
discussed in Sec. IX did not conform to the usual
internal-symmetry classi6cation of the baryon mass
levels. However, it is quite conceivable that the super-
multiplets of this theory can be related by some
Poincare-invariant quantum numbers and that the
additive character of the hadron's electric charge can be
derived. "The close fit of the mass formulas (9.1) and
(9.2) with eight of the observed baryon masses of spin —,

'
and spin ~3 may be quite fortuitous, but it can also be
an encouraging sign for the expectation of further re-
sults from the theory. In the next paper we shall
discuss the supermultiplets[4, 10]for more baryons, and

[5,1], [5,4], [5,6], [5,10], [5,15] [10,1], [10,4], and
[10,6] for the mesons. The third paper will be devoted
to the problem of the magnetic moments and electro-
magnetic mass corrections, and also to the mass spec-
trum of the leptons.

Finally, we observe that transitions (strong, weak,
electromagnetic) between the various supermultiplets

"Presumably the parameters expressing the dimension numbers
No and E of SO(3,2) and U'(3, j.), respectively, will play the role
of internal quantum numbers.
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APPENDIX A

1. Algebra of Dirac Matrices

We are using the representation of Dirac matrices
where v; (j=1, 2, 3) are Hermitian and v»=iP is anti-
Hermitian and y„satisfy the anticommutation relations

{v.v.}= —2g"I» (A1.1)

where I4 is the four-dimensional unit matrix. The spin
matrices O~„and the y5 are defined by

g 'I
2'»[vwv ]~ v& viv~v&v»

i 0
(A1.2)

The various commutation relations of y's used in this
paper are

fv» v p}= (v5,v»v~} =o, [~p. v»] =o, (A1 3)

[-:~...v.]=~(g,.v, —g-v.), (A1 4)

B~"2~"]=2i(g"~"+g-~.. g-~- g"~"—), (A—1 5)

k( s» u~} = ~~u~v5+gvng~~ gv g~u~ (
ll 0'

I » 6f
v.v.v, = —~.„.v:v'+g„v. g..v, g;v. (A1g)——

I pg+50pu g &pvprr&

where e„„p is the usual Levi-Civita tensor.

(A1.9)

as well as between the members of a supermultiplet can
be based on the correspondance of U(3, 1) representa-
tions for the baryons and for the mesons. For example,
the field 4, of the [4,6] will interact with the fields
C'q (X=1,. . . , 5 or 1,. . . , 10) of the [5,6] and [5,10].
In fact, the electromagnetic interaction itself will follow
the same patterns provided we set p=0, X=O in the
[5,6], [5,10], etc. , all of which yield Maxwell's equa-
tions. We must further remember that the p and ) of
the Bose fields are not equal to the p and X of the Fermi
fields. It is clear that the interaction couples the various
members of the supermultiplet [4,1V]. Thus, apart from
the electromagnetic transitions between the spin
multiplets and their members, the interaction concept
of this theory implies a certain relation between the
magnetic moments of the baryons.

Transitions between the supermultiplets [1V0,1V] and
[1Vo',1V'] may be described, for the quantized theory, in
terms of the commutators

Pp~"'(x),J„~~"(x')]=Cy„i»~ ~'~"(x x'), —
for the conserved vector operators J„~ 0 and J„~
The above general statements on the concepts of inter-
action will be amplified and applied in the future papers
of this series.
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fu~=2e~j~ ~=2(ejt~j j+Q~~' ') j (A2.5)

xj=(x,)*.
Thus the various components of Q„„„asdefined by
(A2.2) and (A2.3), are

Q4U=Q4l'= ~jl, Q14j = &jl)—
Qkl j= —«kl j, Qkl'= (Qkl j)*=«kl j

(A2.6)

(A2.7)

Now, using the definitions (8.2) and (8.3), we can
just write down the generators of SU(3,1) for iV=6 in
the form

(J..).b= —22(e...e'b —Q"-e.'b), (A2 8)

(p..) ~. ) =-:g.,e,.-e -.—:(Q-.Q.'+Q. .Q." ), (A2 9)

(Jl )l bi= (Jl )[b ] (l'j.)t.bl=(l'j)(b. I,
also

g rpv 0 ) rpv rvp ) ~pv Jvp ~

In order to represent r„v and J„„in matrix notation,
we must utilize other properties of the Q tensor listed
below. From Q»,Q„'b we obtain four different kinds of
tensor s:

(~")'=Q- Q'. ',
(8")'l=L(~")j')*=Q-'e' l

(A2. 10)

2. Six-Dimensional Representation of 8 U(3, 1)

The X=4 is the regular representation of the group
SU(3,1). All the nonunitary finite-dimensional repre-
sentations of SU(3,1) can be constructed with the aid of
this regular representation and the representation for
E=6. The generators of the regular representation are
given by (8.1) and (8.2). They satisfy the commutation
relations of SU(3,1),

$J„„J,.$= '(g„J„.+g.„J,„g,„J„.—g„.J,„)—,
Ll'" l'"3=2(g-J-+g"J" g"—J" g-—J-),
I I'„„,J, ]=Z(g, „l',„+g,„l'„,—g,„l'„,—g„,l'„,) .
These commutation relations are satisfied also by the 16
generators l"„„+pg„„,J„„ofthe group U(3,1).

In order to find the 1V=6 representation of SU(3,1),
we use the E=4 generators to construct the mixed
tensor Q,„,(= —Q„„,) by

Q~.i= (J26+2FJ41)~. , Q~.2= (J61+2I'J42)~. ,

Q„,2 = (J12+2IjJ42) j v,
(A2.2)

Qp.4= —(J»—2I J41)p. , Qp-. = —(J»—»J42) p.

Qpj6 (J12 ZI' J42)Nv j
(A2.3)

where F is defined by (3.7), and where

Q"0+6) =(Q,.j)*=Q..', i =1, 2, 3, (A24)

so that raising the index j corresponds to complex
conjugation. The tensor Q„, connects the complex elec-
tromagnetic six-vector x, to the real tensor f„„by

Using the definitions (A2.6) and (A2.4), we can write
(8„„)jl in matrix notation as

844= I2, 844=811+822+866,

84, =8,4=K, , B,i =Bi;=K,Kl+KlK; fj, lI—2, (A2. 12)

where

0 0 0
E1= 0 0 —i.0 i 0.

0

.'0

0
E2= 0

—i 0
0 0
0 0.

0
0 0
0 0.

(A2.13)

—1. 0 0
811—— 0 1 0

0 0

&33= o
.0

1 0 0
822 ——0 —1 0

.0 0 1.
0 0

0
0 —1,

(A2. 14)

j"0
823 ——0

.0
0 Of
0

—1 0.

0 0 —1'
831—— 0 0 0

0 0.
0

812=
0

—1 0
0 0
0 0.

(A2.15)

C11=C22 =C33= —I3, C« =I3,
C4l ———Cl4 ——El ) Cjl ———b, l —ZC; lsEs )

(A2. 16)
D11 L 22 D33 I3 ) D44 I3 )

D4l Dl4 +l ) Djl Cjl ~

Hence the genera, tors of SU(3,1) for IV=6, in matrix
notation are given by

2(~j gj I2)
J„„=

0 A„„

8„„0

(A2. 1'7)
2(D"—g"I )-

(A2. 18)

where, as follows from (A2. 16) and (A2.17), we have

~kl &k ls

E, 0

0 E,
(A2.19)

and where Kj and 8;l in a 6.xed frame of reference obey
the commutation relations of the group U(3). The A„,
(=~1„„matrices) diRer from 8,„ in having K; replaced
by —E,.

The matrices C„v and D„„are given by

(~") 1=Q.WQ'. l,
(D,)"=L(~..), » =e., e, (A2. 11) ~4Z

0 —ill
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The matrix
I3 0

0 —I3
(A2.20)

is related to the algebra of the X=6 representation as
y5 is related to the Dirac matrix algebra:

f F„„,Fb}=0, [J„„,F;j=o. (A2.21)

Ke conclude the discussion of the X=6 representa-
tion by listing the remaining algebraic properties of the

pva

(A2.22)abQ&pvaQprrb gyrrgvp gixpgv[r )

1 '
2 &ga b+ p vamp [r b &yvp a )

dQ„.Q""b= —3.b,

(A2.23)

(A2.24)

where g b is the tensor representation of I'5. Other
relations are

pvJQpaj gpvgpv gppgvc pvpc &

c
f ~

pv'Qp~ =
gl ~gpv gl pgv~W&&pvp~)

Q„..= ', i~p—„p.—gabQ"b
= ——,'imp„p, (F,.-Q")„(A2.26)

J„„= 2iF—,e„—„„Jp', Jp" =-', iF,e""J,. (A2.27)

(Cp.);b = —(~.,);b+2g„~,b,

(D )&7c= (D )&'"+2g „3&—' (A2.28)

3. Ten-Dimensional Representation of SU(3,1)

The procedure we have established above for X=4
and 37=6 is the general way of constructing all the
nonunitary representations of SU(3,1). For the ten-
dimensional representation, we can use the Q.ve-
dimensional spin matrices of the group SO(3,2) (see
Appendix A 7) and construct the J„„"and F„„"in the
forms

(Jpv ) l [»'], [aa'll 2'b[(Pap) & &'(]3v )aa'
-(~.,). (~. )..l, (A31)

(F ")[[»],[ ]]=-'g (P..)» (]-']")
—l [(]3..) '(]-'].')- +(]-']") '(P.')- j, (A3 2)

where Pp„are defined by (A7.9), and where X, X' ~, and
co' run from 1 to 5, and %=10.Moreover,

2 (Ppv)»'(Ppc) =gpcgvp gppgvc r (A3.3)

, (4pc)» ([3' )- —g~- gb —
g& gb - ) ( 3 )

g) co g)],o) g5Xg5o) ~

The matrix form of gz„ is given by (3.8). By using the
definitions (A3.1) and (A3.2) and the relation (A3.3)

-', 3.bx,xb ——-', X.X.=-', (X)x,+x&'x]) =3."—8', (A2.29)

—,'ig. ,x x,= —', i(x,x;—x&'x&) =h X. (A2.30)

The representations for X=6 operate on the wave
function 4, which is reducible according to (5.5).

and (A3.4), and noting, for example, that

c o[[»'] [aa'll(~ pv) [[»'1 [CC'll

X (Jpc)[,[aa']] (Jpc) [[»'],[cc'll

X(Jpv)[,[cta']] v

one can easily verify the commutation relations of
U(3,1). Under the transposition of the rows and
columns, the generators for X=10 (in the covariant
form of their ma, trix indices), like the case for le=4
and E=6, symmetrical for j'. „„and antisymmetrical
for J„„.The representations (A3.1) and (A3.2), in the
case of Eb ——4 of SO(3,2), operate on the wave function
0' ~y„~, which is reducible according to

[(0,-')+(l 0)]8[(0,1)+(10)+(-', l)3
=2L(0 l)+(-' 0)3+2[(I,-')+(l, l)3

+[(o l)+(l 0)1 (A3 5)

Hence the wave function 4 p,„~ corresponding to the
supermultiplet [4,10j describes a quadruplet of s='2,
a triplet of s =3. Thus the wave function represents
4X-,'[5X(5—1)j=40 states. By using the X=10 gen-
erators, we can obtain the ones for X=45 and E=55
representations.

4. 15-Dimensional Reyresentation of g U(3, 1)

In this case, the J„„of%=6 can provide the basis to
construct the %=15 representation of U(3,1). Hence
we may just write them down as

(Fpv ) [ [ab], [cd]] sgpv(Jpc)ab(J )cd
—4[(Jp.).b(J.')"+(J").b(J.').dl, (A4 1)

(Jpv ) [[ab], [cd]] d'b[(Jpp)ab(Jv )cd (Jvp)ab(Jp )cd) v!(J.).b(J").b= g"g" g„g-, —(A4.2)

where a, b, |,, and d range from 1 to 6 and where X=15.
These representations, in the case of 1VO

——4 of SO(3,2),
operate on the wave function 4' t, b~, which is reducible
accolc4ng to

[(0,—',)+(2,0)j [(1,1)+(0,1)+(1,0)j
= [(o,—')y(—'„0)$+[(0,-')y(—',o)j+[(1,—')y(—', 1)j

+2L(1,-')+(-:,1)j. («.3)

Hence the wave function 4'
~ b~ corresponding to the

supermultiplet [4,15) describes a quadruplet of s=2, a
quadruplet of s=~ and a singlet of s=~. From the
generators of the X=15 representation, we can con-
struct the representations for X=105 and E=120.

S. 20-Dimensional Representations of 8 U(3, 1)

By now we see clearly that the nonunitary repre-
sentations of the group SU(3,1) are obtained by climb-
ing the ladder of representations with the help of the
previous representations"'in an alternating order of
choosing the J„„and I'„„ in 4, 6, 10, etcv) dimensions.
The commutation relations (A2.1) of SU(3,1) are
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satisfied by

(P» ) [[ab},[cd) } 8g»(Ppc) ab(~ )cd
——:[(I'„).b(1". )"+(I'").b(1".')"]

~lv3[(1'..).bg"+(I'")"g.b], (A5 1)

(&,8) [[.bj, [.d }]=4z[(I'„).b(1',p).d

—(I'").b(i'.')'7, (A5 2)

where g, b (g„=o) is the tensor representation of I'b

defined by (A2. 20) and where gp"I'p. =o, (I'»~)[[ b},[ b}}

Or (I» ) [[aaj, [cdj } (p» ) [[ab},[cc}}=Or aild .1V =20.
In verifying the commutation relations (A2.1), we use
the relations

l(I'..).b(l', .).b=g"g.+g-g- ——:g"g" (A5 3)

The corresponding wave function )Ir [,b} (with 0,=0)
can be reduced according to

+-[.b}= L(o -')+(l 0)]8[(I 1)+(o,2)+(2,0)+ (0,0)7
= [(-'„o)y(0, —',)]+[(-;,o)+ (0,—',)7+[(-;,o)y(o, -', )]

+[(z,1)+(I,k)]+[(2»)+(18)]
+[(2,2)+(2k)],

which correspond to a triplet of s=~, a quadruplet of
s=-,' and a triplet of s=-', states. The & sign in (A5.1)
does not imply two diferent representations. This can
be seen by noting that the commutation relations (A2.1)
of U(3,1) are invariant under a unitarity transformation
affected by the parity operator (I'44), b(I"44),d There-.
fore, the two solutions (A5.1) are, via the parity trans-
formation, equivalent.

A second representation for S=20, which acts on
the wave function 4

t b, l, can be constructed in terms
of the generalized Q tensor in the form

g. . .., =--.'(e., e. .g. .-g., Q. .g...)
Ijpc (r b ~~ ape (r b p~

——',i(Q„,.Q. ,Q, b
—Q„.Q.'.Q„b) . (A5.4)

In terms of Q„„[,b, ], we may write

(I » )[[abc],[«f] j (1/ g)gpvgpc[abclg [«fj
—(1/24)[Qpp[ b ]Q'[d j]

+Q p[ b jgp [d f]] (A5 5)

(J )[[ b ] [d f]]=—(z/24)(Q [ b ]Q [d f]
—Q.p[.b ]Qp'« f]) (A5 6)

where E=20. In this case the wave function 0'
t b, l is

reducible according to

L(0 2)+(2 0)7(g) L(o I)+(1,0)+(0,3)+(3,0)]
=[(0,-')+(l,o)]+L(o,l)+(l,o)7+[(o,l)+(-' 0)]

+[(0,-')+(l 0)7+[(I,-')+(l, 1)7
+L(3 2)+(k 3)] (A5 &)

These correspond to a doublet of s=-,', a doublet of
s=» a doublet of s=» and a doublet of s=-,' states.

These reprqgent;ations for Eo =4 and %= 1, 4, 6, 10,

15, and 20 (two types) comprise a total of 42 baryons
and 42 antibaryons and are, of course, not enough to
cover all of the observed states of the baryon. However,
we shall not go beyond A =20 in this paper.

6. Further Remarks on Wave Functions

The wave functions 0' „4',b, %,b„.. . , of the
reducible supermultiplets [4,6], [4,6X6], [4,6X6X6]
are related to their spinor-tensor representations 0' r„„l,
+0'fp&l, I:p(rl~ +0'[e~l b&l, I.v&l~ ~ ~ by

+aa= 2Q "a+a [pv] r +a[pv] = cg»a+ac (A6 1)

+«b 4Q ag b+a ipv], [pc] r (A6.2)

+a [pv], [pc] =4gpvagpcb+aab r (A6.3)

-b =.Q"".-Q"bQ' ~ ["]["][,b.],, (A6 4)

+a[pv], [prr] [)rrc] sgpvagpcbg)rrcc+«bc (A6.5)

By using the relation

Qpr a (I44)abgpvb Qpr (A6.6)

we can de6ne the Hermitian conjugate of the wave
functions by

(+..)"=-', (I'«).bg»b+. „,', (A6.7)

(+..b)'=4(I'44). .(1'44) bdg». g"d+.[„,][,.]', ,(A6.8)

where I'44 belongs to the 1}r=6 representation of 5'U(3, 1).
F«m (A6.1), we further have the results

zg»4+a[»] =@ 4+z~aj, (A6.())

+ '= —gg»'+ [»=].;rpi~ „—, (A6. 10)

+a4jr ~aj 2&jkl+akl ~ (A6.11)

The wave function 0 b can be reduced to yield the
wave function of the singlet [4,1]+with positive parity
(for the particle) or the singlet [4,1] with negative
parity (for the particle). These wave functions are
given by

4.(+) = ,5.b% ..b -,%. ——
a(a—+...++.»), (A6. 12)

4zg b+—,b= —4z('I';, —4») . (A6.13)

Thus the wave function 0', b can be decomposed in two
possible ways as

gr, b( ) —++ (+)I) b+(+ [ b} [) b+ (+))

+4 [ b], (A6.14)

ab a= bZ+a g +a(b+ a[ab3}Zgab%'a( )
++ [ b], (A6.15)

corresponding to the supermultiplets

[4,36]+= [4,1]++[4,20]++[4,15]+, (A6.16)

[4,36] =[4,1] +[4,20] +[4,15], (A6.11)

respectively.
The same analysis above can be applied to [4,
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6X6X6j and obtain two opposite-parity supermul- The Kemmer equation, in this representation of P„, is
tiplets L4,6j+ and L4,6) . The corresponding wave given by (1.5).
functions are The spin matrices II, =-,'ejb]pb[ can be written as

The wave function O' I b, } can be used to construct the
wave function for the supermultiplet L4,50j in the form

C'a[oh. ] =4'a[ub. ] 8(@—au/] bc+0 «b/]ac++ac/]«b), (A6.21)

where

+ma = ~bc+afabcI ~

The wave function C [,b, ] has 4XL(6X7X8/3!)—6]
=200 components. The wave function 4' t b, ~

describ-
ing the supermultiplet (4,20j can be written as

+«[«bc] +««[bc]++ab [ca]++««[bc] ~
(A6.22)

which is fully antisymmetric in a, b, and c.

7. The Group SO(3,2)

Finally, in concluding this Appendix we shall briefly
discuss the algebraic structure of the group 50(3,2).
The commutation relations for its 10 generators
JAB( — JBA), 4, 8= 1, 2, . . . , 5 are given by

f~ABp JCDj=&'(gBCJAD+gBD JCA

gACJB—D gADJC—B), (A7.1)

where the metric gAB is defined by Pb in (3.8). These
commutation relations are satisfied by J5„=—', ip„,
J„„=i~o„„ for the spin i~and also by J»——iP„, J„„=P„„
for spin 0 and 1, where P„„=—i(P„P„—P„P„).The four
Kemmer-Duffin matrices p„are defined in a representa-
tion where

0 0 0
0 0 0

pi ——0 ~0/0
0g0 0

0 0

0 —i
0 0
0 ~0
0 0
0 0,

0
0

p, =- 0
0
.0

0 0 0
0 0 0

0 0. 0
i 0 0

0

0
0
0

(A7.2)
0
0

Pb= 0
0
.0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 j, , P4

———0 0 0
0 0 0 0 0 0 0
0 i 0 0. .0 0 0

0 0
0 0
0 0
0 i
i 0.

In this representation the matrices P, (j=1,2,3) are
Hermitian and p4 is anti-Hermitian, and they satisfy
the relations

+aa g ~bc+a(abc) g+afabbl(+)-1 =1
=-', (+.„j+@.."), (A6. 18)

+au 4&gbc+a(abel 4&(+aujj Pau ) q (A6 19)

where the fully symmetric tensor 4 ( b, ) is defined by

«[abc ] +au[ cb]++a [bc]«++ac[ bu] ~ (A6 20)

', (r.—,+r b;) 0-

0
(A"/.4)

yield the spins of the two particles with negative parity,
where Ii is the matrix of the space-time metric. The
existence of the states with spins 1, 0—will depend,
of course, on the structure of the wave function and the
corresponding conserved current vector. However, the
novel aspect of the above result is the fact that the
pseudoscalar and pseudovector mesons result, in our
theory, as composite systems of two fundamental units
carrying spin ~ and opposite parities to one another.
For example, the 20 states of the supermultiplet L5,4]
are filled with three 0, four 1, and one 2 mesons.
The parity relationship above can be seen further by
expressing the matrices ~, and ~b as "mirror images"
of one another. Thus under the unitary transformation

U "(7-,U =I28 0;=
0 0;

(A7.6)

UtrbjU=o;I2 (= j'yb, ——pub, p), (A7.7)

0

U] U'= I4, (A7.8)
0

.0 0.

and the matrices v, and eb are transformed into the
Kroneck. er products of 0; with the two-dimensional unit
matrix I2. Under a parity transformation by the Dirac
matrix p, (A7.6) remains unchanged, but the first two
components of (A/. 7) change sign, which, of course,
does not affect the angular momentum commutation
relations between the components of 0;8I2.

Finally, it is easily seen that the spin matrices P„„can
be written as

where r„and r b; are defined by (8.24)—(8.26). Hence we
see that the integral spin 0 or 1 results from the com-
position of two commuting spin- —', angular momenta.
It is important to observe that the spin matrices II;
correspond to spins 1, 0 . The addition of the two
commuting angular momenta &c, and ~~b, because of
the parity transformation property

(A7.5)

P.P,P,+P,P,P, = (g..P,+g.,P.)— (A7.3) P"=~+J" (A7.9)
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S~= -,' (1+Pb),

0
0

Pb= 0 0
0 0
0 0

0 0 0
0 0 0

0 0
0 1 0
0 0 —1.

P"P,+PpPb =o, Pp.P"=PbP p. ,

(A7.11) Tr(I'"Jp ) =0)

-'g"V",J")=g".
(88)

(89)

(A7. 12) Some of the Lorentz-invariant relations are

Also,
(A7.10)

(r„„,J,.) =g„„J,„+g.„J,„g„—,J.„g,—„J„. 2g—„„J,.
+i(Apgpp+App» Apppp Apppp) & (87)

and J„„are given by (8.2) belonging to the iV=4
generators of SU(3,1) but, these J„„arenot in the space
of the SU(3,1).

APPENDIX 8
Because of the crucial importance of the [4,6]

representation of G and in particular of S=6 for U(3, 1),
we shall list here a few more operator properties for the
/=6 case. By using the definitions (A2.12) and (A2.13)
for the six-dimensional matrices I'„„and J„„,we can
easily establish the anticommutation and trace relations

(I'„„,I'„}=g„,i'„„+g„i'„.+g. I'»+g„,I'.,
+2(g"g" g"g, —+g-g-) 2(g"I—',.+g,.I'..)

(-"+A—"i + .-.+ -p,), (81)

o»I'„„I',.p"p'=i[11/4 —s(s+1)]p'(1—4ri), (811)

o»J„„J,.p"p =i[11/4 s(—s+1)jp',
J „I'.pp"p = —4ip'r3 I'ppJp, p"p'=4ip'rg,

(812)

(813)
J„,i',pq"p p = —2iI',

J»J„.q,p =2ypp„+2[1 1/4 s(s+1)]—happ„r&, (814)

J»J„.q p, =2qpp„2[11/4—s(s+1)—]vpp„r„(815)
I'."J„„happ = —2ir,

—: ""J,.~'P, = —
I
»/4 —(s+1)]v"p.( —l),

oJ»ip'„P"P'= —4P'[11/4 —s(s+1)](72+irq), (817)

where

Further,
Apso QpvaQpab ~ (83)

4Tr(PppPp~) =gp~gpp+g»g~~ 2gp~gp~ ~ (82) J '=(I/2P')(v"p"p —J),
~-'= -(1/2P')[»/4- (+1)]

X(1—(9/10)1 )1., (818)

(J",J")=2(g-g- —g"g")
+g-I'-+ g-I'- g"I'" —g"I'"—

+Appvp+Av~pp Apspp Avpp~ ~

4Tr(Jpv Jpa) =g»gv~ gpagvp )

Tr(I'„„)=Tr(J„„)=0,
2Tr(Ap"p~) gp~g"p g»gp~

o»I'ppJppP"P =2iAM3P

o "pJ„„Jp,p"p' =2iApA ap2.
(84)

A set of useful commutation relations are

(86)

[I,Ai]=[I,A2]=[Xi,A2]=[I',A ]=[Xi,A ]=0.
Other useful relations can be found in Table II.

TABLE II. Results of multiplying the first column of operators by the first row of operators.

J =~pvV"P" I =~yves"P" A 1P2 o~~~v pPpP A2 =~~o&vJpv A sP2 =~»r„„P,Pv 2rsP2 =I'qvP&P"

—p2

iA IP2

iJP2

2rsP2 27 3pp

A2 —iX J
A sp' i(1' —2v sp) p2

—iA 1p2

L2 (O.KX —t) —A 1$P2

—(223+iA s)p'
2 (2zrs —A+A 3)P2

i(psrs J—2p) P2

(AI,J}=0
—2' —pA J

PA3,Jg =0

i(z~sp —Q)p»

(~s,J}=o

LAI, I j=0

2(-ip+~, J)P

(p+iJ)p'

—2(»~3+~-»)p' (2~-O' K+» —»P2

-iJP
s (zp —ys&'q J)P2

[AI,J}=o
—2 LA I —2A rsp jP2

LAa, l g=o
t AI+z(t —x e K) jp4

(As, A1} =0

—iA sp4

f 2-3,AI} =0

—ih.+J
zih. +p —A+J

i(z~sp —1 )P'
2(y9/4 g2)„P2p

LA3,Jj =0
2(ip+A J)p

(4i2-3 —A 3)h. P2

—(4i~s —A 3)X,P2

A 12P4

iA IP4
(2.3,As} =0

(2 —e K)~ p2 —i(4~3 —»r5A3) P4

L~s,pj =o
i(p —z~sp) p2

f~s,J}=o
(p —iJ)P'

iAsp4
(rs,AI) =0

—iA IP4

(~3,As) -o
pg


